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Abstract .  This paper describes a method for incorporating the chromin- 
ance information when estimating motion in a colour image sequence. It 
is based on a Maximum-Likelihood (ML) fbrmulation of the motion es- 
timation problem which assumes homogeneous additive Gaussian noise 
in each colour component, with known inter-field correlation statistics. 
It defines a noise-decorrelating colour space transform which provides 
a simple implementation of the ML formulation. Results for noisy syn- 
thesised colour sequences with known motion and noise statistics demon- 
strate the superiority of the exact ML formulation over straightforward, 
unweighted three-component estimation, most noticeably in high noise 
conditions. 

1 I n t r o d u c t i o n  

Colour video signals consist of both luminance (intensity) and chrominance in- 
formation. The chrominance has two degrees of freedom, so a full colour signal 
consists of three fields for every frame. There are a variety of representations 
of these three fields, most commonly defined as some linear transformation of 
the red-green-blue (RGB) basis which is rooted in the human visual system for 
analysing colour. For example, the YUV colour space is defined as [2, page 67] 

[!] 01][i] = -0.15 -0.3 0.45 (1) 
[0.4375 -0.375 -0.0625 

where y is the luminance component and the u and v fields contain chrominance 
information (the matr ix entries vary somewhat depending on the visual constants 
used). Most algorithms for motion estimation of colour sequences have worked 
in YUV-space and ignored the chrominance components. 

It was suggested by Mitiche et al. [7] that  chrominance could be used as 
an additional cue in a multiconstraint method for estimating motion between 
video frames, though they reported no results which incorporated chrominance. 
Konrad and Dubois [4] extended their original maximum likelihood (ML) motion 
estimation framework for scalar signals to encompass three component fields. To 
do this, they defined a quantity called the vector displaced pel difference (DPD) 
by analogy with the scalar DPD of monochrome estimation. They demonstrated 
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improvements in the quality of the colour-based motion field over the purely 
luminance-based field for synthetic and real colour sequences. Their  method 
assumed that  the colour fields contribute equally and independently to a single 
motion estimate field. This is implicitly based in turn on the assumption that  the 
noise in each field is additive Gaussian, uncorrelated and equivariant. In their 
paper on the use of colour in video resolution enhancement, Tom and Katsaggelos 
[8] used the same implicit assumption. 

However, this cannot be relied on in practice. For example, if noise is uncor- 
related in YUV-space, it will be far from uncorrelated in RGB-space. If there 
is no knowledge of the original image-gathering system and its noise properties, 
unweighted three-component estimation could go seriously wrong. This paper 
describes the true ML estimator for vector image sequences which allows for 
correlated additive noise in the three colour components. The ML formulation 
may be applied to extend the standard region-based matching and gradient- 
based algorithms. We then define a noise-decorrelating transform, akin to the 
Karhunen-Loeve transform, into an "optimal" colour space. If this transform is 
applied to the three original colour fields, the true ML estimate may be found 
using the common implicit assumption of equal and independent contributions 
by the three transformed components. 

Our test results, obtained on colour sequences with synthesised motion and 
correlated additive noise, demonstrate the superiority of the optimal method 
over estimation based on equal and independent contributions from the each of 
the red, green, and blue fields. The improvement becomes more noticeable as 
the amount of noise increases. Our results also suggest that  the most efficient 
strategy would be adaptive, based primarily on luminance and only incorporating 
chrominance appropriately where required. 

2 T h e  M L  M o t i o n  E s t i m a t o r  f o r  C o l o u r  S i g n a l s  

We follow the formulation of Konrad and Dubois [4] in setting up the ML es- 
t imator for a three-component sequence. The vector u = [ul, u2, u3] T represents 
the true or underlying image, with its three colour components, which would be 
obtained by a noise-free optical system. The sequence {u~, n C Z} represents 
the sequence of images sampled at integer time instants. We use the common 
assumption of intensity conservation, which requires that  intensity in each com- 
ponent  is constant along the motion trajectory defined by the displacement d(x)  
at pel x: 

un(x) = Un-1 (x - d(x))  (2) 

Taking into account observation noise, we can rewrite (2) using the observed 
signal sequence {gn, n E Z} as 

gn(x) - g n - l ( x  - cl(x)) = en(x) (3) 

where e~ is the differential noise vector at frame n, which has twice the variance 
of the individual frame noise. Equation (3) may be rewritten as 

D P D ( x ,  ~l(x)) = en(X ) (4) 
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having replaced its left hand side with the vector displaced pel difference. 
Our aim is to estimate the translation model parameter d based on the 

observations gn-1 and gn- The Maximum Likelihood (ML) estimate is defined 
a s  

(](x) = arg max {p(gn(x)ld , gn(x))} (5) 

If we assume zero-mean Gaussian noise statistics, we can write the joint prob- 
ability density function (pdf) of e(x) as 

p(e(x)) c< exp (- - leT(x)R-l(x)e(x))  (6) 

where R(x) is the 3-by-3 covariance matrix characterising the interaction of the 
three noise components at pel x. The likelihood is given by the vector noise joint 
pdf. Combining this fact with (4), we can write 

p(g,~(x),gn_l(x),d) c< exp ( -1DPDT(x ,d )R- l ( x )DPD(x ,d ) )  (7) 

so the ML estimator becomes 

d(x) = arg min {DPDT(x ,  d)R -1 (x )DPD(x ,  d)} (8) 

2.1 ML Estimation Using Region-based Matching 

To obtain a more robust estimate of ~1, an assumption of constant local flow over 
a region of pels /2 = (xi, i = 1 , . . . ,  N} is commonly invoked. This assumption 
is approximately valid if the motion field is continuous and the regions are not 
too large. If we define the 3N-element displaced region difference vector as 

DRD(/2 ,  d) = [ D P D ( x l ,  d ) . . .  D P D ( x N ,  d)] T (9) 

we can estimate ~l over the region ~2 as 

cl(/2) = arg min {DRDT(/2,  d )R~IDRD( /2 ,  d)} (10) 

where R a  is the 3N-by-3N noise component covariance matrix over the region 
/2. 

Equation (10) may be simplified by the assumption that  there is no noise 
correlation between different pels in the region/2. This gives Ra a block diagonal 
structure, where each block is the 3-by-3 matrix R of component noise covariance 
of (6) (the x argument may be dropped if we further assume homogeneity, i.e. 
position-independence). When R a  has this structure, so too does its inverse, 
with each block equal to R -1. The ML estimator becomes 

a(/2) = arg min D P D T ( x ~ , d ) R - 1 D P D ( x i , d  (11) 
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Equation (11) shows how to find cl by an exhaustive search over a set of d candid- 
ates. This is the optimal region-matching strategy in the presence of correlated 
component noise. 

If, furthermore, the noise in each component is uncorrelated, R becomes 
diagonal: 

R = diag (a~, k = 1, 2, 3) (12) 

In this case (11) becomes 

a(~?) = arg min E ~ -~DPDk(xi' d) (13) 
i = 1  k = l  O'k 

which now involves minimising the sum, over the region, of the squared (scalar) 
DPDs of each component, weighted by the inverse of the noise variance. This is 
the formulation obtained by Konrad and Dubois [4]. In effect the contribution 
of each component to the estimate is weighted by the SNR of the corresponding 
difference image. 

2.2 G r a d i e n t - b a s e d  M L  E s t i m a t i o n  

An approximate solution to the region-based vector ML estimator (10) may be 
found by expanding g~-I  (xi - d) around xi using a first-order Taylor series: 

gn-l(Xi - d) ~ gn - l (x i )  - (Vgn-l(Xi))  T d (14) 

where 

N g l  n-l(x~) 
Vgn- l (x i )  = Og2 ,n- l (x i )  ~ ' x ~ g 2  ,~ -1( i )  (15) 

' x 

This approximation allows a closed-form least-squares solution to be found for 
d, called the gradient-based ML estimator: 

~1( $2) = (GT R~IG)-IGT R~lz (16) 

where 

G = [Vgn- - , (Xl ) . . .  Vgn-I(XN)] T (17) 

and z = [ g n - - l ( X l )  - -  g n ( X l )  . . .  g n - - l ( X N )  - -  gn(XN)] T (18) 

As with region-based matching, the assumption that  noise at different pels is 
uncorrelated and homogeneous simplifies the computation in (16). In practice 
this method is severely limited in its measurement range because of the neglect 
of higher order terms in (14). The range may be increased by using an iterative 
approach which uses an equation similar to (16) to compute updates to an initial 
estimate of cl [3]. 
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2.3 A Decorre lat ing  Transform 

Equation (1) defines the transform from the RGB colour space to the YUV 
space. A general linear colour space transform on RGB space may be written as 

g = c (19) 

for an n-by-3 matrix C. In the new colour space ("C-space"), the inter-component 
noise correlation matrix becomes 

RC : CRrgbC T (20)  

Clearly if we can find a matrix C such that Re = a2I for some a, the vector ML 
gradient-based estimator (16) and region-based matching estimator (11) revert 
to straightforward formulations in which the colour components make equal and 
independent contributions to the final estimate, as postulated by Konrad and 
Dubois [4]. 

To find such a noise-decorrelating transform, given Rrgb (or Ry~v, in which 
case we apply the transform to the YUV fields), we can use singular value decom- 
position (SVD). Because Rrgb is square, symmetric and non-negative definite [2, 
page 33], it is orthogonally diagonalisable with non-negative eigenvalues: 

Rrgb -~ V D V  T (21)  

where D is diagonal with non-negative entries, and V is orthogonal. The number 
of non-zero eigenvalues is the rank n of Rrg b. The case n < 3 results when at least 
one component is a linear combination of the others. In this (exceptional) case, 
when Rrgb is non-invertible, (11) and (16) may not be used. The SVD-based 
method will identify this case and project to a colour space of appropriately 
reduced dimensionality, thus saving computation. This is done by extracting the 
invertible n-by-n portion D' of D and the corresponding rows V' of V. Setting 

c = (v )-ly 'T (22) 

guarantees t h a t  CRrgbC T --- In as desired. This procedure is similar to the 
Karhunen-Loeve Transform for compressing images [2, page 163], except it is 
carried out using noise rather than signal statistics. 

3 T e s t s  o n  S y n t h e s i s e d  S e q u e n c e s  

The synthesised test sequences were obtained by applying motion fields of three 
distinct kinds--uniform translation, rotation, and divergence--to the 128-by-128 
pel central portions of frame 1 of the "carphone", "foreman", and "suzie" colour 
sequences respectively. 

To add correlated noise, we first found three 128-by-128 uncorrelated, equivari- 
ant white Gaussian noise images with variance 0 ,2 . An invertible 3-by-3 matrix 



491 

M was used to transform the noise fields into M-l-space;  the transformed noise 
was added to the RGB signal fields. This procedure gave 

Rrgb = (T2M-I(M-1)  T 

[ 1.7393 0.1871 -0.1886" 
= a 2 | 0.1871 0.1318 -0.0742 (23) 

[ -0 .1886-0 .0742  0,3654 

This particular M was chosen to give a clearly non-diagonal/~rgb in order to 
best illustrate the potential improvement from the proposed approach over un- 
weighted RGB-space estimation. 

A modified version of the iterative gradient-based algorithm was used. The 
algorithm includes a stabilising term in the matrix-inversion step of the update 
(16) to give better convergence performance and robustness during iteration. 
To further increase the measurement range, the algorithm was implemented 
hierarchically, based on a 4-level Gaussian pyramid decomposition--see [3] for 
details. The final full-density field was obtained by bilinear interpolation from 
the field of region vectors. 

To measure the accuracy of the full-density motion field, we used Fleet and 
Jepson's angular measure of error [1], averaged over the field excluding a strip 
of width 16 pels around the boundary of the image. This is is akin to a relative 
measure of error, except it does not give undue weighting to errors in very small 
motion vectors as relative error would. 

For each of the three test sequences, three sets of results were obtained: 
those using unweighted RGB-space ME; those from luminance-only estimation; 
and those from vector ML estimation, obtained by first transforming from RGB 
to the optimal colour space. Figure 1 shows these results, plotted as mean error 
angle against a. In each case the optimal strategy is clearly the most robust to 
noise. The difference between the RGB and optimal strategies is illustrated in 
Fig. 2, which shows the lower right portion of the motion fields at a = 36 for the 
rotation sequence, superimposed on images of error angle (darker means greater 
error.) The improvement using the optimal strategy under conditions of high, 
correlated noise is clear. 

The results also show that  at tow noise levels, there is little to be gained 
by using the optimal approach as opposed to RGB-space ME. Furthermore, 
luminance-only estimation loses little by comparison with the optimal strategy 
at the lower noise levels. These results have been repeated for the complex- 
wavelet-domain ME algorithm of Magarey and Kingsbury [5, 6]. 

Luminance-only ME requires only slightly more than a third of the amount of 
computation required for full-colour ME. Our results suggest that  this strategy 
provides near-optimal performance except where noise overwhelms luminance 
contrast. In such cases, chrominance information may be incorporated (according 
to the ML formulation) to increase the robustness of the estimates. An adaptive 
strategy, in which luminance is the primary quantity ibr estimation, with some 
criterion to indicate where the chrominance information should be incorporated, 
would provide the best tradeoff between accuracy and efficiency. Our on-going 
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Fig. 1. Mean motion field error vs a for RGB, luminance-only, and optimal 
estimation. (a) Translation sequence. (b) Divergence sequence. (c) Rotation se- 
quence. 

Fig.  2. Lower right portion of motion fields superimposed on error angle im- 
ages (darker means greater error.) Sequence: rotation, with correlated noise 
a = 36. (Left) RGB-estimated field (one estimate per 4 by 4 pels). (Right) 
Optimally-estimated field (same resolution). 
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work is aimed at finding a general technique for characterising the noise from 
typical video sources, and finding a criterion for incorporation of chrominance 
information. 

4 C o n c l u s i o n  

In this paper  we have shown how to formulate the ML motion est imator  ibr col- 
our image sequences in the presence of correlated, homogeneous Gaussian noise 
in the three component  fields. Vector ML formulations for region-matching and 
gradient-based approaches were given in terms of the inter-component  noise cov- 
ariance matrix.  If the covariance matr ix  is diagonal, each component  contributes 
independently to the ML estimate. We have shown how to define a linear t rans-  
formation into a new colour space in which the noise covariance is the identity 
matrix.  In the new, "optimal" colour space, the components may be t reated 
as equal and independent contributors to the ML estimate.  The effectiveness 
of the optimal colour space t ransformation was demonstrated for a modified 
gradient-based algorithm applied to three synthesised test sequences contain- 
ing additive noise with deliberately induced covariance. Our tests also showed 
tha t  luminance-only estimation performs reasonably well by comparison with 
the more expensive full-colour approach, particularly at  low noise levels. This 
suggests that  the best s t rategy for a general colour sequence would be adaptive.  
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