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Abstract. The paper proposes a general framework for shape detection based 
on supervised symbolic learning. Differently from other visual systems 
exploiting machine learning, the proposed architecture does not follow the 
object segmentation - feature extraction and (learning based) classification 
approach. Instead, an initial data-driven processing selects points of interest in 
the scene by means of complex features which hypothesize the presence of the 
target shape; hypotheses are validated by a classifier defined by a machine 
learning algorithm. Learning is exploited not only for defining the model, i.e. 
the description of the target for the classifier, but also for defining the 
description language, i.e. the feature set useful in generating reliable object 
hypotheses. The proposed architecture of visual system has been implemented 
for an industrial application of unstructured shape detection: examples and 
results are reported in the paper 

1. Introduct ion  

Computer vision community is engaging in generalizing vision paradigms and 
devising complete and flexible approaches to visual tasks. Many proposals of visual 
systems include now a machine learning stage. Machine learning is adopted under 
different paradigms mainly to face uncertainty associated with noise, intending noise 
in a broad sense (including sensor noise, cluttering, target occlusions, signal-to- 
symbol distortion induced by view-centered observations) [1]. However, learning is 
often essential for handling the model definition and providing adequate classification 
parameters in the case of detection of unstructured objects or shapes. In fact, the 
model of object targets cannot always be a priori defined in terms of geometric, 
topologic or other metric features (as for instance it easily performed for many 
handmade objects), but in many contexts only a qualitative description of the target is 
available. Many application fields are covered by this last framework and may take 
advantage of learning for defining target models: examples are recognition of hand 
gesture, landscape inspection, medical images analysis, and appearance-based 
recognition[ 1,2,3,4]. Another interesting example is quality inspection, where humans 
are very skilful at processing visual stimuli and performing classification but they do 
not exhibit the same ability in inferring and formalizing the rules for classification [5]. 
According to these considerations, we propose an architecture for unstructured and 
qualitatively described shape recognition that makes a substantial use of learning with 
the goal of defining a reliable shape model used in the recognition process. Learning 
affects also the image analysis process since its results are applied for setting the 
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description language used in the final recognition. Learning is used in conjunction 
with a hierarchical image analysis system based on a data-driven paradigm for 
performing layered parametric transformations. This proposal recalls other similar 
approaches, and in particular the one of Bolle and al. in [6], which describes a 
complete approach for object recognition based on parametric transformations on the 
feature spaces with the aim at providing a scene description in terms of complex or 
"generalized" features. In [6] parametric transformations are associated with a 
recognition network under a constraint satisfaction scheme for representing the object 
models. Instead in our proposal selection of visual features and related parametric 
transformations and classification are guided by the results of a symbolic learning 
process. 
In the paper we describe the architecture of the visual system, by focusing on the 
layered and hierarchical image analysis block and the tree-based classifier. We present 
the object representation based on a hierarchical feature set together with an example 
of industrial application in the context of quality inspection, 

2. The visual system architecture 

According to the wide related literature, we aim at detecting objects in images on the 
basis of a set of visual features whose selection is goal-directed. Fig. 1 shows a 
scheme of the proposed architecture that is based on some fundamental issues: 1) the 
image analysis system for feature extraction providing object representation is 
hierarchical and layered; 2) the object representation is not performed by 
segmentation followed by feature measurements; on the contrary, significant features 
extracted from data hypothesize the presence of objects and then the feature tuples 
represent a possible object; 3) tuples are matched with the object model by means of a 
classifier which symbolically encodes the knowledge of the model; 4) the learning 
subsystem is based on a supervised symbolic learning algorithm which starting from a 
training set infers rules and the related classifier; moreover it selects the minimal and 
reliable set of features used in the hypothesis representation. 
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Fig. 1. The visual system architecture 

The architecture defines a goal-directed overall process that is in essence data-driven 
at the lower levels while is strictly model-based at the highest level. The specific goal 
guides an initial selection of possible visual features. The result is a description of the 
scene in terms of features. Features are structured in hierarchical layers, with growing 



537 

levels of abstraction in order to deal with the increasing complexity of scene aspects 
extracted by the visual process. This approach follows the proposal of "generalized 
features" of [6], so that the feature computation of a higher level is carried out by 
means of parametric transformations as a function of other features of the same or 
lower levels. Therefore, as indicated in Fig. 2, we define many layered 
multidimensional spaces: each Sj space contains points represented by a feature tuple 
VJ= <vii .... Q~j>. Therefore features of each level accumulate evidence of salient 
particulars of the scene, in order to generate goal-dependent hypotheses: in the case of 
shape detection, hypotheses are related to the possible presence of the target shape. 
A peculiar aspect of our work is that not all the possible combinations of features of 
different levels will be used in the classification. Instead we select only those points of 
the highest level identified by "high" values of semantically significant features. The 
object hypothesis is generated with a top-down backward process, starting from top- 
level features and using only those features of the lower levels generating the ones of 
higher levels. In practice, the object hypothesis is computed by exploiting either the 
previously executed visual tasks (of the bottom-up approach), or suitable anti- 
transformations or, eventually, also by operating further processing in that zone of the 
image where the attention has been focused. Finally each computed multilevel tuple of 
features is a possible hypothesis on the presence of target, represented as 
O = L.)i=0. ' .jV i. 
Many works use different level features in the classification: but if all potential tuples 
are considered, a possible combinatorial explosion of hypotheses calls for the use of 
"ad-hoc" classification algorithms or special-purpose neural network based 
approaches [1]. Instead, the definition of a hierarchical and structured limited set of 
features allowed for adopting also a general-purpose symbolic approach. 
Different representations of knowledge models have been used in visual systems, such 
as constraint networks [6], interpretation tree search [4], rules [3], or combination of 
them. Our visual architecture includes a classifier which validates the object 
hypotheses on the bases of a decision tree inferred after a learning phase. 
The multi-level representation is often redundant and generally could cause a severe 
and undesirable cost of the overall visual process. This is the second reason for using 
machine learning: the exploitation of a general purpose symbolic learning tool enables 
for tuning some learning parameters, in order to specialize or generalize the classifier 
depending on application constraints or acceptable error-rates. The produced decision 
tree allows for selecting a very compact reduced set of features of various levels which 
is enough expressive of the problem and can be used for the final hypothesis 
validation. 

3. Hierarchical feature spaces for an inspection application 

The previously proposed architecture has been adopted for an application of defect 
inspection on industrial metallic products. In this problem, defects appear to human 
eyes as elongated, roughly straight and thin shapes, very bright with respect to the 
neighbor background. No quantitative information is however available for 
distinguishing them from other similar shapes (due to sensor noise, surface roughness 
or surface blobs). Inspection must be carried out under UV light, since the target 
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shapes are visible only after a non destructive test, called MPI (Magnetic Particle 
Inspection) [7]. It allows for increasing the evidence of surface (and sub-surface) 
cracks, which can be recognized as thin long and roughly straight fluorescent strips. 
The given qualitative description of the target suggests the adoption of some well 
assessed image analysis techniques, together with other special-purpose algorithms. 
Gray level filtered images are used as input of the visual system. Features extracted by 
means of image processing are considered at the lowest level, so that the image space 
is the SO space of the devised architecture. S1 is the space of simple primitives, such 
as curves or regions: in this application is the Hough space for lines obtained with the 
gradient-weighted Hough transform, which uses both information on the gradient 
magnitude and their orientation [8]. In this space some features can be extracted, such 
as the local peaks in the two semi-spaces HI and H2 of the Hough space, between 
[0,re] and [rc,2~] respectively which manifest the presence of straight edges with 
opposite gradient orientation. 
The $2 space collects more structured primitives: in our system is the Correlated 
Hough Transform (CHT) space that is defined by a suitable correlation between 
meaningful points of the Hough space [5,9]. The CHT is a correlation of the H1 points 
with adequately filtered points of H2. It has been proven to be very robust to noise and 
non ideality for revealing the presence of thin, straight and elongated shapes, as the 
considered target shape is [9]. Therefore,the $2 points, because of CH, accumulate the 
evidence of possible targets: the visual system selects points of interests in $2, 
representing detection hypotheses. An hypothesis is described by a tuple of features, 
comprehending CH, some features extracted previously of computing CH, and others 
obtained by an anti-transformation in the points of interest of the image. In the 
application, the computed tuple is O = (CH 2, H11, H21, H2a l, Tk 1, NP °, Va °, Ga°), 
where the ceiling number indicates the level of the feature space. These features are 
briefly described as follows: 
• CH is a "high" local peak in $2; it is the most salient feature computed according 

to the target model [9]; 
• H 1 is the gradient weighted Hough value in H1 c S 1 at the same coordinates of the 

point CH in $2; it indicates the "rectilinearity" of the first target edge, by 
supposing the target brighter than the background[9]; 

• H2 is the highest local peak in H2c  S 1, computed in a neighbour of the point 
where the second peak (representing the second straight edge) should be found, in 
the case of an ideally straight defect; 

• H2a e S 1 represents the average value of the previous considered neighbour and 
accounts for possible not-ideality both in straight shape and in thickness. 

• TK ~ S1 is the mutual Euclidean distance between the ideal edges of i l l  and H2.It 
is the upper bound of the shape thickness. It is used also for delimiting a focus of 
attention in the image space; 

• NP ~ SO is the number of voting points of the image space which are transformed 
in the point of the Hough space corresponding to H1. It estimates the edge length. 

• VA ~ SO is the average vote of the voting points, i.e. the average Gradient of each 
point voting for the point corresponding to HI; 

• GA~ SO is the average gradient of the image: differently from the others, it is a 
global feature of the whole image. It should be used as a corrective weight: images 
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containing cracks should have a "high" average gradient but not "too high", since 
for the MPI process the fluorescence is collected only in the zone of a possible 
crack and is not distributed on the surface. 

It should be noted that the tuple representing the object has been computed starting by 
the most salient features, CH. This limits the number of possible hypotheses extracted 
from images, starting only from features of lower levels: for instance, the single 
presence of a high value of H1 is not enough for suggesting the presence of the target, 
since high values of H1 (without being supported from high values of other features) 
can be measured also in presence of spurious fluorescent blobs or other shapes not 
thin enough to be classified as a defect. 
As a practical example, we report some measures on inspected images in Fig.2. They 
represent some particulars of workpieces with or without defect. Table 1 shows their 
correspondent feature values, computed on images with a gray level represented with 
a real number in the range [0,1]. 

Table 1. Tuples for images of Fig. 2 

CH HI H2 H2A NP ,V A 
I38 12.33 0.97 3.02 12.64 21 0.088 
134 13.63 1.00 3.02 12.51 21 0.084 
I12 393.29 7.04 1 5 . 7 6  55.82 17 1.006 
117 8.44 0.59 2.72 14.10 17 0.085 

TK GA X 1 0  3 

5 46.2 
5 44.9 
2 60.66 
3 45.44 

Fig. 2. Example of images 

4. The automatic learning subsystem 

The highest level of the visual process addresses the decision making task with 
reference to the knowledge base on the target. Its implementation depends on the 
representation used for the target model: it can be encoded within the classifier, as in 
the case of connectionist systems, or can be symbolically defined by means of rules, 
decision trees, semantic nets and other symbolic techniques exploiting predicates on 
features. 
Our visual system includes the Quinlan's C4.5 classifier based on learning by example 
algorithms which automatically generate both the decision tree and, after an adequate 
pruning operation, also a knowledge representation as a set of production rules [ 10]. It 
has been selected after a comparison with other approaches based on different 
paradigms, since it resulted very suitable for managing both symbolic and continuous 
values in accordance with the application requirements [10,11]. 



540 

Since the goal is to validate hypotheses on the presence of the target shape (i.e. the 
defect) by means of the feature tuples, we address a classifier based on two classes of 
interest, namely Defect and NoDefect. 

C4.5 [release 8] decision tree generator - Read 317 cases (8 attributes) 
D e c i s i o n  T=ee :  
CH • 78.6283 : Defect (29.0) 
CH <= 78.6283 : 

CH <= 8.86457 : NoDefect (133.0) 
CH > 8. 86457 : 

GA > 47.0579 : NoDefect (98.0) 
GA <= 47.0579 : 

CH > 17.7267 : Defect (18.0) 
CH <= 17.7267 : 

GA > 45.6994 : NoDefect (13.0) 
GA <= 45.6994 : 
I GA <= 44.6796 : NoDefect (3.0) 
I GA > 44.6796 : 

H2a > 12.1436 : Defect (15,0) 
[ H2a <= 12.1436 : 

1 I I H2a <= Ii'4278 : Defect (5"0) 
I 1 H2a > 11.4278 : NoDefect (3.0) 

Fig. 3. The decision tree generated by C4.5 on the training set  

For each image, we considered the points of the $2 space having CH value higher than 
a given percentage (75%) of the maximum CH value, as possible positive hypotheses 
of the presence of the target shape. The used training set is composed of 317 tuples 
(67 Defect (21.1%) - 250 NoDefect (78.9%)). In order to train the classifier in the 
ambiguous region, the training set was composed so as to contain also NoDefect 
objects exhibiting high CH values, that are hard to be classified correctly. 

45. ~i "21 ;?;": 4 .I ';i"'~ ~; [] ? (H2a) 

 ii:i!, i1 ii!: :,i !::!ii: 
I 8.86 17.72 78.6 CH 

Fig. 4. Classification based on CH and GA features 

Fig. 3 shows the decision tree produced by C4.5. The test set was generated by Cross- 
Validation, extracting one object at a time from the training set and submitting it to the 
classifier obtained from the remaining examples. Table 2 reports error results both in 
the training set and in the test set: In this last case also a partition between false- 
identification errors in the classes of Defect and NoDefect is provided. False- 
identification occurs when the decision tree assigns an element to a class i when it 
belongs to a class j~q [12]. In the case of quality inspection the false identification in 
the NoDefect class is more critical, since it indicates the percentage of target which 
actually are not detected. Instead, the false identification rate in Defect class increases 
only the percentage of rejected workpieces. However it must be limited because it 
affects the final production efficiency. 
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Table 2. Results on the training and test sets 

Training Set Test Set 
Overall error(%) Overall error(%! Defect error(%) NoDefect error(%) 

t24.5 tree 0.0 2.8 4.5 2.3 
, ! , 

C4.5 tree (no GA) 6.0 12.9 44.8 3.8 

As a first important result, the use of a general-purpose machine learning tool provides 
a compact and efficient decision tree, by suggesting the use of specific numeric 
thresholds on the features and the related unary predicates. The decision tree of Fig. 5 
is actually adopted by the classifier used for validating target hypotheses. 
The results of learning validate the use of a hierarchical image analysis sub-system: 
obviously most of the predicates are carried on the highest level feature, CH, which is 
the most significant one; nevertheless the points of interest are represented by multi- 
level features. While the importance of the highest level feature, CH, (actually 
computed for the specific application) can be intuitively accepted, an important and 
less expected role is played by the average gradient of the image (GA). This feature 
takes into account both the image noise and the evidence of the defect with respect to 
its background; it turns out to be more valuable than a simple corrective weight factor 
since the relation between CH and GA variations and the Defect-NoDefect 
classification is not linear. This is described in Fig.6 by a graphical representation of 
the decision tree in the simplified feature space of CH and GA only. 
The inner white rectangle indicat0es the ranges of CA and GA where the correct 
classification needs the information on other features (such as H2a). 
Without the low-level GA feature the learning and the consequent classification obtain 
considerably worst results. In this case the decision tree turns out to be well more 
complex and specialized than the previous one. It takes into account six features of 
seven available, instead of only three of the tree of Fig.4. Moreover it exhibits a non 
negligible error-rate, as shown in Table 2. 
Furthermore, a valuable contribution of this work is in the use of learning together 
with a layered image analysis subsystem: learning on tuples constructed starting from 
features of the highest level space handles for setting the minimal feature set useful for 
hypothesis description. In particular the decision tree suggests the use only of three 
features, one for each space level. The other five values in the tuple are not used by 
the classification tree. This is an important feedback on the vision process which 
enables for a priori avoiding measuring all those features, thus reducing computational 
load. 
In this way the visual system used in a real on-line working environment is able for 
performing shape detection in a limited amount of time and the whole quality 
inspection process is provided in real-time. Several images of the workpieces are 
acquired so as to inspect different object poses, and a piece is classified as defective if 
at least an hypothesis on the defect presence is validated by the classifier. Moreover, 
the learning algorithm is available on-line for automatically updating the classifier in 
case of whichever changing of the working environment. 



542 

5. Conclusions 

This work presented a visual architecture for detecting target shapes in images, based 
on a machine learning tool used with a hierarchical and layered image analysis system. 
The hierarchical structure of the image analysis block allows for maintaining the 
explicit relationships between features describing objects and it is exploited in two 
directions: a first bottom-up direction is used for focusing the attention; a second step 
in the opposite direction from the highest level down to the pixel level is used to 
compose a tuple representing one hypothesis. The hypothesis evaluation is carried out 
with decision trees automatically inferred from a training set. 
The use of automatic learning is exploited for selecting the smallest subset of 
meaningful features and for easy updating the classifier when the external condition 
change. Learning showed that some of the objects features, even if they appeared to be 
salient, were not significant for the specific classification task, and therefore can be 
ignored. This feedback from the classification systems to the low-level image 
processing allowed for reducing the computational load and improving the reliability 
of the vision task that has been applied in a real industrial inspection process. 
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