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Abs t r ac t .  A numerical scheme to solve the Dirichlet type problem for 
the first order Hamilton-Jacobi equation related to the shape-from- 
shading model is proposed. The algorithm computes the maximal so- 
lution of the problem provided a compatibility condition on the dis- 
cretization steps is satisfied. This global formulation a~ows to include in 
the model the informations brought by the shadows in a rather natural 
way avoiding cumbersome boundary conditions on the interfaces between 
light and shadows and the use of additional informations on the surface. 

1 I n t r o d u c t i o n  

Let S be a Lamber t ian  surface given as a graph z = u(x), x E ]R ~ and let us 
assume tha t  there is a unique light source at infinity whose direction is indicated 
by the unit vector w = (wl,w2,w3) E lR 3. We will assume in the sequel that  w is 
known. As it is well known, (see fie. [6]) the partial  differential equation related 
to the Shape-from-Shading (SFS) model can be derived by the Image Radiation 
Equation 

n(fi(z)) = i(~) (i) 
where I(z) is the brightness function measured at all points z in the domMn of 
u, fi(x) is the unit normal to the surface at the point (x, u(x)) and R(~(x)) is the 
reflection map  giving the value of the light reflection on the surface as a function 
of its orientation (i.e. of the normal) at each point. The brightness function I 
is known in the model since it is measured on each pixel of the "picture" for 
example in terms of a grey level (from 0 to 255). To construct a continuous 
model we will assume that  I takes (real) values in the interval [0, 1]. 
Assuming tha t  u has a compact  support  Y2 and recMling that  for a Lambert ian 
surface R(fi(z))  = f i (z) .  & equation (1) can be written in the form 

I ( z ) ~ / l +  I Vu(z )  [2 + (wl, w2)" Vu(x)  - w3 = 0, for z e Y2 (2) 

which is a first order nonlinear partial  differential equation of Hamilton-Jacobi  
type. Moreover, we complement the equation with the natural  Dirichlet bound- 
ary condition 

u(x) = 0 for x E 0t2 (3) 
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which corresponds to the assumption that the surface is standing on a back- 
ground. The solution of the above Dirichlet problem (2), (3) will give the surface 
corresponding to the brightness I (x)  measured in the "picture" representing X?. 

There are several technical difficulties related to this problem. The first 
is that  the surface can be non differentiable at some points so that  we have 
to consider solutions in a "weak sense". The theory of viscosity solutions for 
Hamilton-Jacobi type equations provides the right framework for the analysis 
of the problem (see [4] for an up-to-date presentation of that theory) although 
to get uniqueness, the problem is usually solved adding some informations such 
as the height at the points where the brightness has a maximum or the complete 
knowledge of a level curve (see e.g. [10]). Recent results of the theory of viscosity 
solutions allow to characterize the maximal solution without extra informations 
besides the equation and to construct an algorithm which converges to that  so- 
lution. From the numerical point of view one would like to have an algorithm 
able to compute non smooth solutions. 

The addition of "shadows" makes the problem even more complicated since in 
principle the equation is defined only where I (x )  > 0 and the interfaces between 
light and shadows could be non regular curves. The approach briefly described 
here allows to compute a global solution with just one single computation and 
does not require any preliminary reconstruction of the light/shadow interfaces 
(for a more detailed analysis of the algorithm we refer to [7]). 

It should be noted that other global algorithms have been proposed in [9]. 
They use different numerical schemes to solve the associated Hamilton Jacobi 
equation (f.e. the finite difference scheme introduced in [11]) and they do not 
include shadows as we are. 

2 A p p r o x i m a t i o n  o f  t h e  m a x i m a l  s o l u t i o n  o f  t h e  e i k o n a l  

e q u a t i o n  

Let us start examining the theoretical results available for the case of a vertical 
light source. That  case corresponds to (c01,w2,w3) = (0,0, 1) so the general 
equation (2) becomes 

I ( x ) x / l +  [ ~ u ( x )  12 - 1 = O, x E $2 (4) 

Writing (4) in explicit and adding the homogeneous Dirichlet boundary condition 
we obtain 

{ [ V u ( x )  L= f (x) ,  x e 
u(.) = 0 • c o n  (5 )  

where 

f ( x )  = I(x) 2 1 0 < l (x )  <_ 1. (6) 

Note that  with a vertical light we will never have shadows since our surface is a 
graph. This implies that  I(x)  can only vanish at some single points. Moreover, 
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f(x) = 0 where I(x)  = 1, i.e. the r ight-hand side vanishes at all points of max- 
imum brightness and this causes the lack of uniqueness of "classical" viscosity 
solutions. However, a result by Ishii-Ramaswamy [8] gives a characterization of 
the maximal solution of (2), (3) for the eikonal equation corresponding to the 
case of a vertical light source. 

In order to construct a numerical approximation, let us observe first that  the 
eikonal equation (4) can also be written as 

max { - - a . V u ( x ) } = f ( x ) ,  
aEB~(0,1) 

~(x) = 0 

xE12 

x•012 
(7) 

since the maximum will be achieved for a* =- - V u ( x ) / I  Vu(x)  I. 
Here and in the sequel we will assume for simplicity that u > 0. This is not 

restrictive, since the equation just depends on Vu and we can always add to u 
the constant u0 - min~ea{u(x)} to satisfy that  requirement. In order to obtain 
an approximation scheme in the form of a fixed point problem it is useful to 
introduce the new variable 

v ( . )  = 1 - e -~ ( ' )  (s) 

Note that  by definition 0 < v < 1. The problem for the new variable v is 

max { a . V v ( x ) - l } = O ,  xE12 v(x) + ~eB~(0,1) - 7 ~ 5  

I, v(x) = 0 x • 012 
(9 )  

where f is given by (6). 
It is known (see e.g. [1]) that  (9) has a unique continuous viscosity solution 

provided f is bounded and never vanishes in 12. 
Let us introduce the fully discrete scheme. To simplify, we wilt assume that 

the "picture" is a rectangle 12 C R 2. Let us consider a mesh of the set 12~ = 
12 + 5B~(O, 1). We will denote by :T.i,~ the set of indices of the nodes xi belonging 
to 12, by Iout the set of indices of the nodes belonging to 12~ \ 12 (where we will 
impose the boundary condition) and by Z their union. We will also denote by 
Ni,~, Nout and N respectively the number of nodes belonging to 12in, 12out and 
to their union. 

Let k be the size of the mesh and let W k denote the space of piecewise affine 
functions which are linear on the cells (p1 finite element approximation). We 
look for a solution w • W k of 

w(xi)=aeB~(O,1)min { e - h w ( x i + h ~ ) } + ( 1 - - e - h ) ,  for ieiT.in (10) 

w(xd  = 0, for i • zo~.  (11) 
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In [5] it has been proved that  the numerical solution of (10) exists and it is 
unique. The numerical solution of our problem can be computed by a fixed 
point iteration on the operator T : IR N --+ IR N 

( min { e - h A ( a ) V } i + l - e  -h,iEZi,~ 
( T ( V ) ) ,  = 0 ; Zo,,, (12) 

where V is the N-dimensional vector containing the values at the nodes of the 
mesh, i.e. ~ = v(xi), and A(a) is the matr ix  of the local coordinates of the 

a points xi + h /~,). 
It is easy to prove that  the operator T is a contraction mapping  and a mono- 

tone operator from [0, 1] N to [0, 1] N so that  there exists a unique fixed point 
V*, V* = T(V*). By the monotonicity property start ing from a subsolution 
(Vo <_ T(Vo)) the sequence will monotically converge to the fixed point. This 
property is crucial to speed-up convergence and it also helps to compute the 
maximal  solution. 

3 A p p r o x i m a t i o n  o f  t h e  m a x i m a l  s o l u t i o n  w i t h  s h a d o w s  

Let us go back to our general equation corresponding to a light source in the 
direction of w. If the light is oblique we will have shadows so that  we can divide 
the support  of the surface (the domain of u) into two regions, 

s ~ z -  { x :  ; (x )  > 0}, s~  - { ~ :  I (~)  : 0} (13) 

which represent respectively the "light" and the "shadow" regions. Naturally, 
(2 : ~t U (2s and we will assume that  also the projection of the shadows on the 
background will fall in ~ .  

In S2t the equation is always the same, whereas in the "shadow" region the 
surface can have any shape since the model is not able to describe the real 
surface there. This is why other authors have included boundary conditions (f.e. 
Neumann boundary conditions) on 0(21 to treat  the problem in (21 just  ignoring 
the region (2~. This can in turn create some difficulties in the construction of 
the numerical algorithm since the boundary of ~t can be non smooth and it will 
not belong to the mesh (unless a special mesh is constructed start ing from that  
boundary).  

Following [3] we include the region g2~ in the computat ion just  defining there 
a conventional surface to replace the (unknown) surface. We will substi tute to 
the surface the "separation ray" (or "shadow ray") i.e. the ray separating light 
from shadows. Tha t  ray has the same direction of ~o. This means that  in ~ we 
have to solve the equation 

( ~ 1 , ~ ) .  v u ( ~ )  - ~3 = 0, ~ ~ s~  (14) 

Note that  (2) coincides with (14) since I = 0 in ~2,. Then, we can use the 
same equation everywhere in ~ and we will not need to introduce any boundary 
condition on ~t, i.e. we can write the global problem as 
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{ I(x)~/l+[vu(x)]2+(wt'w2)'vu(x)-w3=O'xef2 (15) 
u(x)  = 0 x ~ O~ 

Following the same lines of Section 2, we obtain the fully discrete scheme 

w(xi)- min ~ ~w(xi+hb(xi,a))-(1-~)I(xiw)aa3 (i-w(xi))}+l-/? a~B3(o,1) [ 
(16) 

where ~ = e -h  and b(x, a) = ~ ( I ( x ) a l  - ~1, I(x)a~ - ~ ) .  
The new operator T~ corresponding to the oblique light source is 

(Tsu)(x)--a6Ba(0,1)min { ~u(x+hb(x,a))-(1-~)~(1-u)}+ l-/9 
Under appropriate conditions, the operator Ts has the same properties of T and 
the algorithm will converge monotonically to the maximal solution. 

On the boundary we just impose the homogeneous Dirichlet boundary con- 
dition. This condition implies that  the shadows must not cross the boundary of 
/2, so the choice w3 = 0 corresponding to an infinite shadow behind our surface 
is not admissible. For the analysis of the algorithm and for some hints on its 
implementation we refer to [7]. 

4 N u m e r i c a l  e x p e r i m e n t s  

The experiments has been made using curves and surfaces with different types 
of regularity (just continuous or differentiable) and with different numbers of 
maximum brightness points. In the vertical and in the oblique case we have 
made a cut-off on I at the level f,  defining the new brightness function 

~[(x)={I(x) i f 0 _ < I ( x ) < I  (17) 
[ if i_< I(x) < 1 

The cut-off  is necessary in the vertical light case since when I(x) = 1 the 
vectorifield "blows-up" at the points of maximum brightness. As far as the choice 
of the discretization steps is concerned, we observe that  the convergence to the 

k 
maximal solution takes place when k and h are such that ~ > 1. 

Let us consider some 2-dimensional surface reconstructions with vertical light 
source. In the first example we have reconstructed a piramid. In that  case the 
brightness image (Fig. lb) has a unique grey level. The reconstruction is repre- 
sented in Figure la, it has been obtained with Ax = Ay = h = 0.05, i = 0.99 
and gives an L z error of about 0.0195. As a second example we considered a 
smooth surface. Figures lc, ld  and le respectively show the real solution sur- 
face, the brightness image and the maximal solution. In this case the image has 
five internal maximum points where we have to make a cut-off (here i = 0.96). 
The numerical solution has been computed for Ax = Ay = 0.02 and h = 0.01. 
Figure i f  is the numerical reconstruction of the same surface obtained fixing 
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the height at the maximum brightness points a~s in [t2]. We conclude with the 
reconstruction of a real grey-level image representing a va.se (Figure 2a). Figure 
2b shows the computed surface for Ax = Ay = h = 0.01 and I -- 0.99. It is 
interesting to compare the original image with the images obtained computing 
I from the computed surface. Infact, once we have the surface we can compute 
I ( x i j )  at each node xij simply making the scalar product ~ • ~(xij) .  However~ 
note that the numerical solution has been computed over a grid so that  the 
normal is not uniquely defined at each node. In principle, there are four ad- 
missible normals corresponding to the triangles having xij among their vertices 
and several (non equivalent) choices are possible. Figure 2c shows the intensity 
obtained taking the normal of the upper rightmost triangle. In that case one can 
note that the numerical surface is non smooth along three curves. One can also 
compare the original image with the one in Figure 2c obtaining an L 1 error is 
about 0.0082. Taking all the possible normals (four as we said) one can compute 
four different values of the intensity at every internal node xlj .  Figure 2d shows 
the image corresponding to the minimum of those values at each node, the L 1 
error is about 0.0076. In that case the picture looks smoother and closer to the 
original. 
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