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Abstract .  We present a new, efficient stereo algorithm addressing ro- 
bust disparity estimation in the presence of occlusions. The algorithm 
uses multiple windows and left-right consistency to compute disparity 
and its associated uncertainty. We demonstrate and discuss performances 
with both synthetic and real stereo pairs, and show how our results im- 
prove on those of closely related techniques for both robustness and ef- 
ficiency. 

1 I n t r o d u c t i o n  

The aim of computational stereopsis is to reconstruct the 3-D geometry of a scene 
from two (or more) views, which we call left and right, taken by pinhole cameras 
(for a comprehensive review on computational stereo, see [8]). A well-known 
problem is correspondence, i.e., finding which points in the left and right images 
are projections of the same scene point (a conjugate pair). This is approached as 
search: finding the element in the right image which is most similar, according 
to a similarity metric, to a given element in the left image (a point, region, or 
generic feature). 

Area-based (or correlation-based) algorithms [1,3] match small image windows 
centered at a given pixel, assuming that  the gray levels are similar. They yield 
dense depth maps, but fail within occluded areas and poorly textured regions. 
Feature-based algorithms [6,12] match local cues (e.g., edges, lines, corners) and 
provide robust, but sparse, disparity maps requiring interpolation. These algo- 
rithms rely on feature extraction. 

Several factors make the correspondence problem difficult: (i) its inherent 
ambiguity requires the introduction of physical and geometrical constraints; (ii) 
occlusions, i.e., points in one image with no corresponding point in the other; 
(iii) photometric distortions [2] arising when conjugate pair pixels have signifi- 
cantly different intensities; and (iv) figural distortion [9] that  makes the projected 
shapes different in the two images. 

This paper presents a new robust area-based algorithm, addressing all prob- 
lems (i)-(iv) listed above by exploiting symmetry/in matching and multiple win- 
dows. For this reason it will be called Symmetric Multi-Window (SMW) algo- 
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ri thm in the following. Preliminaries needed to meet some assumptions on im- 
age pairs is first illustrated (Sect. 2). The SSD correlation method is presented 
(Sect. 3), followed by our adaptive, multi-window scheme (Sect. 4), which con- 
trasts distortions and yields accurate disparities. Robust disparity estimates in 
the presence of occlusions are achieved thanks to the left-right consistency con- 
straint (Sect. 5); the associate uncertainty is estimated too (Sect. 6). SMW algo- 
ri thm implementation is sketched in Sect. 7. Experimental results are presented 
in Sect.s 8 and 9. 

2 A s s u m p t i o n s  

Our algorithm for disparity computation assumes that  conjugate pairs lie along 
raster lines. In general this is not true, therefore stereo pairs need to be rectified 
- after appropriate camera calibration - to achieve epipolar lines parallel and 
horizontal in each image [5]. 

The SMW algorithm also assumes that  the image intensity of a 3D point is 
the same on the two images. If this is not true, the images must be normalised. 
This is done by a simple algorithm [2] which computes the parameters of the 
gray-level transformation 

It (x, y) = a i r  (x, y) + fl V(x, y) 
by fitting a straight line to the plot of the left cumulative histogram versus the 
right cumulative histogram. 

3 So lv ing  C o r r e s p o n d e n c e  

Similarity scores are computed, for each pixel in the left image, by comparing 
a fixed small window centered on the pixel with a window in the right image, 
shifting along the raster line. As a similarity measure we adopt the Euclidean 
distance, which is also called SSD (Sum of Squared Differences) error: 

~ [ Iz (=+~,  y+~) - I ,(x+~ + d, y+~)]~ 

C(x,y,d) = (~,n) (1) 

(era) (¢.n) 

where ¢ E [ -n ,n ] ,  7/ C [ -m,m] .  The computed disparity is the one that  
minimises the SSD error. Subpixel precision is achieved by fitting a curve to the 
errors in the neighbourhood of the minimum [1]. 

If one computes SSD by a straightforward implementation of (1), the asymp- 
totic complexity of the resulting algorithm is O(N2nm), with N the image size. 
However, one should observe that  squared differences need to be computed only 
once for each disparity and that  the sum over the window should not be recom- 
puted from scratch when it is moved by one pixel. The optimised implementation 
that  follows from this observation [3] has a computational complexity of O(4N2), 
which is independent of the window size. 
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4 W i n d o w  S h a p i n g  

As observed by Kanade and Okutomi [9], when the correlation window covers 
a region with non-constant disparity, area-based matching is likely to fail, and 
the error in the depth estimates grows with the window size. Reducing the 
latter, on the other hand, makes the computed disparity more noise-sensitive. To 
overcome such difficulties, Kanade and Okutomi proposed a statistically sound, 
adaptive technique which selects at each pixel the window size that  minimises 
the uncertainty in the disparity estimates. 

In this work we take the multiple window approach in the simplified version 
proposed by [7]. For each pixel we perform the correlation with nine 7 x 7 different 
windows (shown in Fig. 1), and retain the disparity with the smallest SSD error 
value. The idea is that  a window yielding a smaller SSD error is more likely to 
cover a constant depth region; in this way, the disparity profile itself drives the 
selection of an appropriate window. 

5 L e f t - R i g h t  C o n s i s t e n c y  

Occlusions create points that  do not belong to any conjugate pairs. In many 
cases, occlusions occur at depth discontinuities: indeed, one may observe that  
occlusions on one image correspond to disparity jumps on the other. Although 
occlusions help the human visual system in detecting object boundaries, in com- 
putational stereo they are a major source of errors. 

A key observation to address the occlusion problem is that  matching is not a 
symmetric process: when searching for conjugate pairs, only the visible points in 
one image are matched. If the role of left and right images is reversed, new con- 
jugate pairs are found. The so-called left-right consistency constraint [4] states 
that  feasible conjugate pairs are those found with both direct and reverse match- 
ings. Consider for instance an occluded point, e.g., B in the left image of Fig. 2: 
although it has no corresponding point in the right image, the SSD minimisa- 
tion matches it to some point (C ~) anyhow. One can see that  the latter point, 
in turn, corresponds to a different point in the left image, but this information 
is available only by searching from right to left. 

In our approach, occlusions are detected by checking the left-right consis- 
tency, and suppressing unfeasible matches accordingly. For each point (x, y) on 
the left image the disparity dt(x,y)  is computed as described in Sect. 2. The 
process is repeated after reversing the two images, in order to compute dr(., .). 
If dt(x ,y)  = - d r ( x  + d l (x , y ) , y )  the point keeps its computed left disparity, 
otherwise it is marked as occluded and a disparity is assigned heuristically: 
following [10], we assume that  occluded areas, occurring between two planes at 
different depth, take the disparity of the deeper plane. 

6 U n c e r t a i n t y  E s t i m a t e s  

Area-based algorithms are likely to fail not only in occluded regions, but also 
in poorly textured regions, which make disparity estimates more uncertain. It is 
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Fig. 1. The nine asymmetric correlation 
windows. The pixet for which disparity is 
computed is highlighted. 
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Fig. 2. Left-right consistency. Point B is 
given C' as a match, but C' matches C # 
B. The pair (B, C') can be suppressed. 

therefore essential to compute confidence measures for disparities, which enables 
one to fill in gaps of the depth maps by fusing multiple views. Several techniques 
are available to estimate uncertainty, most of them based on the shape of the 
SSD error function [1,11,13]. 

In our approach we take advantage of the fact that disparity values computed 
with different windows are sensitive to the signal-to-noise ratio (SNR): as the 
latter decreases, the variance of the disparity values increases (see Fig. 8). Hence, 
we take it as an uncertainty measure for the computed disparity; occluded points 
are assigned infinite uncertainty. 

7 T h e  S M W  A l g o r i t h m  

The SMW algorithm can be implemented in the following steps (disparity is 
assumed to be positive, that is the right view is right-shifted with respect to the 
left view): 

1. Compute disparity values with SSD correlation from left to 
right, using the asymmetric windows, and retain the lowest 
SSD disparity. 

2. Compute uncertainty as the variance of disparity values. 
3. Do Step 1 by reversing left and right images. 
4. Check the left-right consistency and suppress matches ac- 

cordingly. Unmatched pixels are marked as occluded. 
5. Compute subpixel refinement of disparity values. 
6. Set to infinite the uncertainty of occluded pixels and fill 

occluded regions with disparity values from right to left. 

To facilitate reimplementations and experiments with the SMW, the C code 
of the algorithm is available via anonymous ftp at 
taras, dimi. uniud, it/pub/code/smw, t a r .  gz 
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Fig. 3. Square random-dot stereogram. 
The left image of the stereogram is shown 
(left). The right one is computed by warp- 
ing the latter with a given disparity pat- 
tern (right). The square has disparity 10 
pixel, the background 3 pixel. 

Fig. 4. Computed disparity map by SSD 
correlation for the square random-dot 
stereogram in Fig. 5 with 3 x 3 window 
(left) and 7 × 7 window (right); MAE is 
0.240 and 0.144, respectively. 

8 E x p e r i m e n t s  w i t h  S y n t h e t i c  D a t a  

We first performed experiments on uncorrupted random-dot  stereograms (Fig. 3), 
in order to assess the algorithm in a simple, albeit not trivial, case. Dispar- 
ity maps are gray-level encoded (the brighter the closer). Images have been 
equalised to improve readability, subpixel-accuracy values have been computed 
and rounded to integers. The estimated Mean Absolute Error (MAE), that  is 
the mean of the absolute value of differences between computed disparity and 
ground true disparity, was computed. 

Simple SSD correlation applied to random-dot  stereograms shows how most 
of the problems outlined in the previous sections affect the disparity compu- 
tation. Fig. 4 shows the disparity maps computed with the SSD correlation 
algorithm, with fixed 3 x 3 and 7 x 7 windows. In both pictures it is visible 
the effect of disparity jumps (near the left and horizontal borders of the square 
patch) and occlusions (near the right border of the square patch). 

Tile SMW algorithm was applied to the square random-dot stereograms of 
Fig. 3 and to a circular random-dot stereogram, not shown here. Fig. 5 and Fig. 6 
show the disparity maps computed by SMW and the estimated uncertainty maps 
(the darker the lower) in both cases. The estimated MAE is negligible and may 
be ascribed to the subpixel accuracy only. The occluded points, shown in white 
in the uncertainty maps are recovered with 100% accuracy, in both cases. The 
circle random-dot stereogram shows that  the algorithm is not biased toward 
square disparity patterns, as it may seem due to the shape of the windows. The 
reader may compare the present results to those reported in [2]. 

As for efficiency, running on a SUN SparcStation 4 - l l 0MHz under SunOS 
5.5, the SMW algorithm takes 8 seconds, on the average, to compute the depth 
maps on 128x 128 input images. Although accuracy results are comparable to 
those of closely related techniques, such as [9], the efficiency of SMW is clearly 
superior. 
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Further experiments with noisy random-dot  stereograms show a graceful 
degradation when noise increases, Gaussian noise wi th  zero mean and increas- 
ing variance was added independently to both images of the square random-dot  
stereogram. Fig. 7 shows the MAE v s  noise standard deviation for SMW and 
SSD correlation. Each point depicts the average result of  20 independent trials. 

In order to  assess the uncertainty map produced by SMW, the average un- 
certainty computed  over a square patch of uniform disparity was plotted against 
the SNR (Fig. 8). The plot shows that the computed uncertainty consistently 
increases as the SNR decreases. 

Fig. 5. Computed disparity map (left) by 
SMW for the square random-dot stere- 
ogram and its uncertainty (right). MAE 
is 0.019. 

Fig. 6. Computed disparity map (left) by 
SMW for the circle random-dot stere- 
ogram and its uncertainty (right). MAE 
is 0.026. 
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Fig. 7. MAE vs noise standard deviation 
for the square random-dot stereogram. 
Window size is 7×7. 

Fig. 8. Mean uncertainty vs SNR for a 
constant disparity region of the square 
random-dot stereogram. 
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9 Experiments  with Real Data  

We performed experiments on standard image pairs from the JISCT (JPL- 
INRIA-SRI-CMU-TELEOS) stereo test set. Only the "Parking meter" (Fig 9) 
is reported here for reason of space. 

Small values cannot be appreciated in spite of histogram equalisation, due 
to the large difference between high-uncertainty occlusion points and the rest of 
the image. Although a quantitative comparison with published results was not 
possible with real images, the quality of SMW results seems perfectly comparable 
to that  of results reported, for example, in [14,2]. 

Running on the same hw/sw platform, our current implementation takes 50 
seconds, on the average, to compute depth maps from 256x256 pairs, and a 
disparity range of 10 pixels. 

Fig. 9. The "Parking meter" stereo pair; the disparity (left) and uncertainty maps 
(right). 

10  C o n c l u s i o n s  

We have introduced SMW, a new, efficient algorithm for stereo reconstruction, 
based on a multi-window approach, and taking advantage of left-right consis- 
tency. Our tests have shown the advantages offered by SMW. The adaptive, 
multi-window scheme yields robust disparity estimates in the presence of occlu- 
sions, and clearly outperforms fixed-window schemes. 

The left-right consistency check proves very effective in eliminating false 
matches and identifying occluded regions (notice that  this can be regarded as 
a segmentation method in itself). In addition, disparity is assigned to occluded 
points heuristically, thereby achieving reasonable depth maps even in occluded 
areas. Uncertainty maps are also computed, allowing the use of SMW as a mod- 
ule within more complex data fusion frameworks [13]. Areas of lower SNR are 
consistently marked with higher uncertainty. 

The main disadvantage is that  the window size remains a free parameter; 
we are considering a multi-resolution extension to the SMW algorithm, where 
correlation is performed with a 3 x 3 window at different resolution levels. 

Work is in progress also to embed the SMW module in a dynamic stereo 
fusion system. 
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