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Abstract .  W'e discuss holographic image representations. Arbitrary 
portions of a holographic representation enable reconstruction of the 
whole image, with distortions that decrease gradually with the increase 
of the size of the portions available. Holographic representations enable 
progressive refinement in image communication or retrieval tasks, with 
no restrictions on the order in which the data fragments (sections of the 
representation) are accessed or become available. 

1 Introduction 

From arbitrary portions of optical holograms that  encode a scene, the entire 
scene can be reconstructed. The quality of the view recovered depends on the 
size of the hologram portion used, but  is independent of the place from where 
it was cropped. A small portion of the hologram provides a blurred scene re- 
construction, and as the area of the portion grows, the scene is reconstructed 
with more and more detail. The information on the scene is homogeneously dis- 
t r ibuted in its holographic representation, in such a way that  even small portions 
of the hologram contain a global view, with details missing. Hence an optical 
hologram of a 3-D scene is a representation that  makes possible a successive 
refinement scheme for information retrieval and transmission, insensitive to the 
order in which the portions of the representation become available. 

In this paper we discuss two ways of representing an image holographically. 
These representations do not simulate the process of optical holography, yet they 
achieve the property of distributing the image information "uniformly" in a way 
that  enables successive refinement insensitive to the order in which the data 
portions are made available to the user. 

2 Holographic Fourier Representations 

Suppose I(x, y) is the image to be holographically represented. The idea is to 
regard this positive image as the amplitude of the Fourier Transform of its holo- 
graphic representation H(x, y), defined to yield a spatially uncorrelated random 
phase. Hence 

H(u, v) = J:T -~ {I(x, y)e ¢P(~'~) } 

* On sabbatical from the Technion - I I T  32000, Haifa, ISRAEL. 
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(a) (b) 

(c) (d) 

Fig. 1. (a)-(b) Original test images of size 256 × 256. (c)-(d) Original test images of 
size 512 × 512. (a)-(d) are synthetic, with (a) and (c) having three distinct gray levels, 
while (b) and (d) have continuous tones. 

where P(x,y) is a "random phase" image so that  E[P(x,y)P(2,~)] = 0 for 
(x,y)  ~ (~,~)) and P(x,y) is a random variable uniformly distributed over 
[-Tr, 7r]. Let us analyze why H(u, v) is expected to be a holographic representa- 
tion of I(x, y). Here by holographic representation we mean that  from an image 
portion He(u, v) cropped from the complex image H(u, v) we can, by 2-D Fourier 
Transformation, get a version of I(x, y) so that  the degradation is proportional 
to the size of He(u, v). Clearly if H(u, v) is available we get back I(x, y) as the 
amplitude of its 2D Fourier Transform, and the same image recovery process will 
be applied to cropped parts of H(u, v). 

To see why we expect this idea to work let us look at the one-dimensional 
version of the above proposed holographic representation method. The discrete 
1-D signal {I(k)} for k = 0, 1 , . . . ,  M - 1  (where M is usually 2 n for some positive 
integer n) is transformed to 

M - 1  

H(u)= E I(k)eJ2"P(k)" l'---eJ~k-- 
k=O x/M 

M - 1  
1 ~ I(k)e j-~[uk+MP(k)] 

k=0 

where {P(k)} is a set of independent and identically distributed (i. i. d.) ran- 
dom numbers uniformly distributed over [0, 1]. We shall represent the process of 
cropping a portion of H(u) by multiplying it with a window function W(u) so 
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that  
f 1 for u e [a, a + (L - 1)] 

W ( u ) = [ O f o r u • [ a , a + ( L  1)] 

where a E {0, 1 , . . . ,  M - L} for simplicity. 
Now we ask the question: what can be recovered from He(u) = H(u) .  W(u) 

by the 1-D Fourier Transform? After some algebra, we can obtain 

1 .2, L-I M - 1  - ~ ( r  - Iw(r) = ~ e  -~- (a+- -~- ) r  E I(k)eJZ~[MP(k)+(a+-~-~)k]sin k) 
sin ~ (r - k) 

k=O 

This equation shows that  Iw (r) will be, essentially, a "low-pass filtered" version 
of I(k)e j2~r[P(k)+(a+L-1)k/M]. If the random phase factors were not present here 
the Iw(r) would be simply a "band pass filtered" version of I(k) and the holo- 
graphic property would be lost, since the key low frequency components would 
usually be missing in this case. 

The role of the random phase P(k) added to I(k) when generating H(u) 
is therefore clear: since for any a, the sequences {Pa(k)} = {[P(k) + k ( a  + 
L- l ) ]  rood 1} are i. i. d. uniformly over [0, 1] due to the fact that the P(k) are 2 
uniformly i. i. d. there, all portions of H(u) of length L will yield essentially the 
"same" type information on the whole sequence I(k). 

We should consider the behavior of the coefficients 

1 s i n - ~ ( r - k )  
C L ( r  - k) = 

M sin ~ ( r  - k) 

for k = 0, +1, + 2 , . . . ,  to see what type of an average of I(k) the value of Iw(r) 
is. First of all we see that  when L = M we have 

(--1) M-1)[(r-k)/M] i f r  -- k mod M 
e L ( r - - k ) =  0 i f r ~ k m o d M  

hence In. (r) = I(r)e j~P(r) as expected. As L decreases from M we realize that  
Iw(r) will be a local average of I(k), involving k's around r with various random 
phase factors affecting the averaging. 

Suppose I(k) = Io is constant (for all k, or a suitably large neighborhood of 
r).  Then we have 

M - 1  

Iw(r)  = Io ~ eJ2"P°(k-r)¢L(r - k) 
k = 0  

and 

I~(~)l ~ = Ig ~ ¢~(~ - ~) + ~ ~ e'~E~°(~-~)-~°(~-~)~¢~(~ - k)¢~(r - l) . 
k=O k~l  k,l=O 

The question is: how good an estimate is IIw(r)l for the value Io. We rely on 
the following result, which is proved in [2]. 
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L e m m a l .  Let 00,01,..-,~M--1 be i. i. d. random numbers uniformly chosen 
from [0, 1], and define the random variable Y = E ~  ~ eJ2~°~(k) ,  where {~(k)} 
is a sequence of real numbers (weights). For V we have the following statistics: 

M-1 ~ M--1 
E(V) = 0 ,  E(IV121 = ~ ~2(k), and ~(IVl 2) = ~ ~ ~2(k)~(1) 

k-~O k~l k,l=O 

From the lemma it follows that  

M--1 
: E - k) 

k:0 
and [ M - I 

a[  IIW(r)12] = I 2 ~ E  E ¢2L(r--k)O2L(r--1) " 
k¢l k,l=O 

If L = M we get E[llw(r)l 2] = 13, a[llw(r)l 2] = 0, and if L < M, we get 

If L < (M + 1)/2, 

E [liw(r)12] L 

a[  IIW(r)12] = L ~ f  I 2L2+13LM I3 , 

while if (M + 1)/2 < L < M, we have 

G[ tIW(r)12] = -~-[V1 ~/(M-L)(M2-hML+3M 1 0 L 2 - 1 )  /02 " 

Therefore we have that  for L small in comparison with M, (M/L)l/21Iw(r)l 
is a relatively noisy estimate of I0 with standard deviation proportional to I0, 
as in an exponential distribution. However we have the possibility to further 
improve our estimators by local spatial averaging, and it is exactly this factor 
that intervenes crucially in image representation and recovery. 

So far we have assumed that  He(u) = H(u) . W(u) is used to recover the 
holographically encoded signal. However we might have also considered recover- 
ing the signal {I(k)} from H(u) for u C [a,a + (L - 1)] by computing the 1-D 
Fourier Transform of the sequence {H(a) ,  H(a + 1 ) , . . . ,  H(a + (L - 1))} directly. 
In this case we can use the so-called "packing theorem" for Fourier Transforms 
[1, p. 369]. If UT{H(a) H(a + 1) --- H(a + (L - 1))} = IT(r) Jr=o,1 ..... L-1 and 

iPT{H(a) H(a + 1 ) . . .  H(a + (L - 1)) 0 0 --- 0} = Iws(v)  I~=o,x ..... M' then for 
M=L 

v = O, L/M, 2L /M, . . . ,  (n - 1)L/M we have 
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But we know that 
Iws(u) = Iw(u)" e-' ~ a~, 

since Iws(v) is a (cyclic) shift of He(u) = H(u). W(u) by a spaces to the right. 
Therefore we have that 

yielding 

M .2~ 

I I T ( ~ ) [ = ~ I w ( ~  M )  f o r~=O,  1 , 2 , . . . , ( L - 1 )  . 

Hence IIT(~)I is a subsampling of (M/L)I/21Iw(r)I at r -~ O,M/L, 2M/L, 
... ,  (L-  1)M/L. Since (M/L)l/21Iw(r)l is an estimator of Io (in case of constant 
{I(k)}), we have that IIT(~)I is readily an estimate of I0 for ~ = 0, 1, 2 , . . . ,  (L - l ) .  
Therefore we can proceed either way: consider that the data provided by {H(u)} 
for u E [a, a + (L - 1)] is a sequence of length L and compute the magnitude of 
its Fourier Transform or pad H(u) with the appropriate number of zeros (to get 
a sequence of length M) and compute the magnitude of its Fourier Transform 
and then multiply resulting sequence by (M/L) 1/2 to get an estimate of I(k). 
The second approach has the apparent advantage of automatically generating 
the interpolation (from the sparse data) for full-sized image reconstruction, at 
the expense of doing larger size transform computations; however, as we shall 
see the interpolation provided by this method is not visually superior to pixel 
replication (see Fig. 2). 

So far we have seen that H(u, v), the complex image associated with I(x, y) 
via the inverse Fourier Transform ~'T -1 {I(x, y)e jP(~'y) }, is a holographic rep- 
resentation of I(x, y). For simplicity, we have made the arguments to prove this 
in the 1D case; however they extend in a straightforward manner to 2D images. 
This representation maps an image matrix I(x, y), encoded usually by 8 bits per 
pixel, with a pair of matrices, the real and imaginary parts of H(u, v), that must 
be quantized with sufficient precision to yield "good quality" glimpses of I(x, y) 
from arbitrary portions of H(u, v) and full recovery of I(x, y) from the complete 
H(u,v). 

We have first tested this idea of holographic encoding of I(x, y) using the 
computer's double precision floating point representation for the real and imag- 
inary parts of H(u, v). For this case the precision of the recovery of I(x, y) from 
the entire H(u, v) via the Fourier Transform was down to the least significant 
bit of the 8-bit representation of I(x, y). A 512 × 512 image with 3 gray levels 
(27-127-227) (see Fig. l(c)) was recovered as having 6 gray levels (26, 27), (126, 
127), (226, 227). When a simple uniform quantization was used to represent 
H(u, v) with a total of 4+4  bits per pixel (4 bits for each the real and imaginary 
parts of H(u, v)), the variance increased to about 20 levels about each of these 
three gray levels. With 6 + 6 bits per pixel the variance was about 10 levels 
and the resulting reconstruction of I(x, y) was visually almost indistinguishable 
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from the original. At 8 + 8 bits per pixel the variance was about 4 levels and 
the reconstruction looked perfect. (Only when histogram equalization was done 
could one see the variability in each region having "constant" gray levels.) At 
each of these quantization levels we also computed the entropy of the result- 
ing histograms for the images ReH(u, v) and ImH(u, v). The histograms had a 
"Gaussian"-like appearance and the entropies were, for example, 5 bits (for the 
6-bit representations), 7 bits (for the 8-bit representations), 9 bits (for the 10- 
bit representations), and 15 bits (for a 20-bit representations). In view of these 
and other experimental findings we concluded that, with optimal quantization 
in the (u, v) domain; the ReH(u, v) and ImH(u, v) images can in fact be as reli- 
ably represented with a total of 8 bits per pixel as their straightforward uniform 
quantization to 8 + 8 bits, (and this was used in all recovery experiments). 

Figure 2 compares the recovery of the 256 x 256 test image shown in Fig. l(b) 
from arbitrary portions of H(u, v) of various sizes using either zero padding of 
HC(u, v) to an array of original size followed by taking its Fourier Transform 
or the direct application of the Fourier Transform followed by expansion to 
256 × 256 via straightforward pixel replication. These results show that recovery 
via direct application of the Fourier Transform followed by pixel replication is 
quite good and the interpolations implicitly carried out via the zero padding 
approach clearly does not justify the added computational effort. Subsequent 
experiments with 512 × 512 images hence always used image recovery by direct 
Fourier Transform and pixel replication. 

Figures 3(a) (f) shows reconstruction of the synthetic images of Fig. l(c) 
and (d) from arbitrary portions of H(u, v) of sizes 256 × 256 (1/4 of original), 
128 × 128 (1/16 of original), and 64 × 64 (1/64 of original). The fact that the 
amplitude information of a random phase image is distributed "evenly" in the 
Fourier Domain was previously pointed out in the context of SAR imaging, see 
e. g. [4]; however this idea was never proposed as an effective way to achieve 
distributed image representation. 

3 T h e  H o l o g r a p h i c  S a m p l i n g  M e t h o d  

Another idea for holographic image representation is based on sequential sam- 
pling of the image. The original 2-D array of image pixels is stacked into a se- 
quence so that any portion of this sequence will correspond to a subsampling of 
the image, with samples spatially distributed as uniformly as possible. The best 
results were obtained with a "pseudo-random" uniformly distributed sequence, 
and smoothing the resulting recovered images. For details see [2, 3]. 

4 C o n c l u s i o n s  

There exist many well established types of hierarchical representations of images; 
however it seems to us that the holographic representation as discussed herein 
and others that will probably be developed in the future do have some advantages 
in a "distributed" world. 
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(a) (b) (c) 

(d) (e) (f) 

Fig. 2. Comparison of image recovery by zero padding ((a), (c), (e)) and by using 
Fourier Transform directly ((b), (d), (f)) and expanding the result by pixel replication. 
(a)-(b) 128 x 128 portions. (c)-(d) 64 × 64 portions. (e)-(f) 32 × 32 portions. 

We have presented here two ideas for holographic image representations. One 
can reconstruct a blurred version of the whole image from an arbitrary portion 
of these representations, with the degree of blurriness decreasing as the size of 
the portion increases. Holographic representations enable progressive refinement 
in image communication tasks, with no restrictions whatsoever on the order in 
which the data  are received. 

As we have seen from the experimental results, the pseudo-random holo- 
graphic sampling representation yields better  image quality, especially when 
small portions of the data  are available. For the Fourier Domain representa- 
tion however, the recovery of blurred originals is possible even when the location 
of the cropped portion is unavailable. Both methods are, in our opinion, viable 
if the aim is progressive refinement for preview purposes and the full image 
recovery will be carried out before actually making further use of the images. 
We point out that  holographic representations are by no means compression 
schemes: their use can be in distributing the information evenly among many 
locations in a computer network or in situations when the image is to be broken 
into packets of data  that  may arrive to a user in a random order. For these sit- 
uations the user can have a low resolution preview of the image from whatever 
piece of information is first available. Such holographic representation could also 
be used for sharing image data  in a way that  will make it necessary for all the 
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(a) (b) (c) 

(d) (e) (f) 

Fig.  3. Reconstruction of the 512 x 512 synthetic images of Fig. 3 from arbitrary por- 
tions of H(u, v) of various sizes: (a), (d) size 256 x 256. (b), (e) size 128 x 128. (c), (f) 
size 64 x 64. 

parties involved ( that  own pieces of the holographic representat ion)  to  agree and 
col laborate in order to recover the highest quali ty version of the  image. 
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