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A b s t r a c t  
A specialized hardware architecture to permit a real time visual navigation is proposed. 
The navigation is performed by a two-stage approach to extract visual features and to 
match them over an image sequence acquired during the mobile robot motion in order 
to estimate motion parameters. The paper describes a hardware implementation of the 
first stage (the burdensome stage) of the method for egomotion parameter computation. 
The hardware performance permits a processing rate of 40 Mhz. 

1. Introduction 

Passive navigation is the ability of an autonomous agent to determine its motion 
respect to the environment. In order to guide a vehicle, some information about its 
motion must be estimated. Though the required information can be obtained using 
odometers and gyros (but with an unbounded incremental error) the task can be 
performed by visual sensors with a lower uncertainty. In [1,2] a two-steps algorithm to 
estimate the heading direction evaluating the displacement vector field on two 
successive images of the scene is shown. In fact, in the context of passive navigation, 
the main goal for recovering egomotion parameters, is efficiently solved by analyzing a 
displacement vector field where the correspondences between 2D features extracted in 
successive images of a sequence and corresponding to the same 3D feature in the space 
are represented. A small number of such displacement vectors on the image plane is 
sufficient to obtain useful information on egomotion parameters. In literature, two 
frameworks seem to approach the matching problem: direct and optimization methods. 
Both frameworks consider a low level stage in which features are extracted from 
images. Then, direct methods use local constraints on features in order to find 
correspondences [3,4,5]. The optimization methods use global constraints on features 
to formulate an energy or cost function and the correspondences are found by 
minimization of that functional, generally, using iterative techniques. 
While, the direct methods are fast but more sensitive to noise; the optimization based 
techniques are more reliable but have the drawback to require a burdensome 
processing. In [2] the authors propose a feature-based approach to solve the 
correspondence problem by minimizing an appropriate energy function where 
constraints on radiometric similarity and projective geometric invariance of coplanar 
points are defined. The method consists of three different steps: 1) a low-level step in 
which features are selected and matched by correlation; 2) a verification step in which 
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matched features are verified by minimizing a cost function; 3) a determination step in 
which egomotion paramete are estimated. 
An analysis of technique performances has shown as most of processing time is lost in 
the first step, so, in this paper we propose a novel specialized hardware to speed-up the 
feature extraction and the correlation stage in order to permit fast mobile robot 
navigation. 
In literature, some other hardware implementation to resolve the matching problem 
can be found [6]. 
In section 2 a detailed description of matching technique is given; in section 3 the 
hardware is described, while in section 4 performance evaluations are shown. 

2. Matching technique overview 

Features correspond to points having a high directional variances in intensity images 
of the scene. We use the interest operator introduced by Moravec to isolate N points 
with minimal autocorrelation values [1]. The variance among neighboring pixels in 
four directions (vertical, horizontal and two diagonal) is computed over a window (the 
smallest value is called the interest operator value). In our implementation windows 
have a size of 7x7 pixels. Points. where the interest measure has local maxima are 
chosen as candidate feature. Each feature consists of a window (6x6 pixels). Initial 
matches for each features are computed maximizing the radiometric similarity 
(correlation) among features in the first image and areas in the second image. 
Matching features by correlation produces unavoidable false match, so matches 
computed by correlation can represent only an initial guess to be improved through an 
optimization approach. We verify the goodness of these matches and correct them 
imposing the cross-ratio invariance constraint. 
Our experimental setup is based on our autonomous vehicle S.AU.RO, a VME 68040 
based system, having a CCD camera COHU 6510 on the top. The TV camera optical 
axis is oriented along the forward motion direction of the vehicle. An ELTEC frame 
grabber digitizes image of 512x512x8 pixels. Two consecutive images acquired during 
the robot motion are used to estimate the heading direction the mobile robot. In fact, 
features are extracted on the first image and matched on the second, in order to 
estimate the heading of the vehicle, using the technique described above. Then, a new 
set of features is extracted on the second image and matched on the next acquired 
image. So, considering for each image (excluding the first and the last) acquired 
during the vehicle motion two stage must be performed: the feature extraction and the 
correlation based matching. The next section described a hardware implementation of 
these steps while the optimization stage is left to future developments. 

3. Hardware architecture description 

Our aim is to complete the feature extraction and correlation processing stages almost 
at the image acquisition rate. In the proposed architecture, these stages, because of 
their independence, work parallely on two different computing blocks. In fig. 1 a 
logical scheme of our architecture is shown. 
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Fig. 1: Functional scheme of the proposed architecture. 

At the i th step of a sequence an image (DIMxDIM) pixels is acquired. The processing, 
at the same time, performs: 
• extraction of N features to be matched over the (i+ 1)th image (to be acquired) 
• detection of the corresponding points for each extracted feature over the (i-l) th 

image. 
The Computing Blocks performing these operations are respectively: the "Interest  
Block" and the "Correspondence Block" (fig. I). 
The image pixels, provided by an external frame grabber, flow into a pair of 
interleaved frame memories, passing across a pipe of 7 Shift Registers (because 7x7 is 
the size of area for feature extraction).The frame memories store, allternatively, 
images for next processing phases (correspondence stage). 
The Interest  Block computes the variances among neighboring pixets in four 
directions (vertical, horizontal and two diagonal) over a window of 7x7 pixels (stored 
in the 7 Shift Registers). The lowest variance is setected as interest value and it is 
associated to the pixel in the middle of  the window (fig 2.a). 

, ~ , i i ' h ' ~ i ~ ; " 6 " " ~ ~  Shift Register 1 . . . . . . . . . .  Input data to a 1 

a) b) 

Fig.2. a) the cells that are considered as input in the Interest Block. b) the cells that 
are considered as input to a Correspondence Block. 
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The final aim of the Interest block is to estimated N features (as described in sect. 2) 
so, the input image is partitioned in N regions (DIMxDIM/N pixels). For each region 
is estimated the local maximum among all Interest values computed on the region and 
the address of this maximum is stored in register Vi where i cam be 0 or 1 depending 
on the current reference frame memory. 
The Correspondence Block computes the sum of absolute errors between the 6x6 
window relative to the extracted feature and the data currently into the Shift Registers 
(fig. 2.b). At each shifting a new sum is evaluated and compared with the current 
minimum. When all shifts are performed (mean that the whole image has been 
acquired) the current minimum represents the best match. This value is the output of 
each Correspondence Block. 

3.1 Correspondence block 

In order to reduce the computational load and the hardware complexity, the image has 
been quantized at 5 bits. This assumption does not reduce the capability of the 
hardware because the features, being points having high directional variances, do not 
change when the image dynamic decrease. 
Furthermore, environmental influences (like lightning changes or occlusions) can be 
considered negligible when images are processed at TV acquisition rate (50Hz), so 
simple correspondence operators can be adopted. 
Finally, in order to reduce the number of clock pulses needed by each phase of the pipe, 
the Residue Number System representation [13] has been used. 
The correspondence measurement used to implement the Correspondence Block is the 
least absolute error. So, the N Correspondence Blocks (one for each feature to be 
matched) have to compute the least absolute error over a 6x6 pixets window centered 
on the feature. 
* An example of these Blocks is shown in fig. 3 and, mainly, it is composed by: 

two kernels: the first one represents the input data, extracted from the shift 
registers and the second one is centered on the feature i whose address is stored in 
register Vj (j=0,1 depending on the current frame memory). 

* an array computing the absolute error between the two kernels, defined as: 

e . = l , r ; - i k [  (k--O ..... 3x) 

In (1) k in range [0..32] depends on an implementation choice to use a kernel 6x6 
pixels without the four comer elements. 

a tree computing : 
31 

LSE= E Ek 
k=O 

(2) 

a terminal block comparing the current LSE result with the current minimum 
valued (stored in register MIN (fig. 3)) in order to find the smallest one, and 
consequently the resulting match for the processed feature. 
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Fig. 3: the Correspondence Block. 

The nodes at first level (fig. 3) operate on 5-bits data (raw image intensities), so they 
can be implemented using a Ik-word Look Up Table. 
The nodes at next levels have to sum the previous 5-bit values (data dynamic is D 
=32" 31=992) so, they can be implemented by LUTs using RNS [13]. 
The final LSE needs to be compared with the current minimum LSE stored in MIN, in 
order to find the match. The "<" block, is detailed in [13]. 

3.2 Interest block 

A functional description of the Interest Block is shown in fig. 4. 
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Fig. 4: Interest Block. 
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The more significative components of this block are: 
• a kernel (on the left side) coming from the rows of the Shift Registers; 
• V, H, DI and D2 computing respectively the vertical, horizontal and two diagonal 

variances; 
• a module of comparison C (see fig. 5a), where the variances are compared in order 

to find the smallest value (the Interest value) and the candidate feature is selected 
(">-Block"). 
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Fig. 5: a) tree of comparison: it is used to detect the Interest value and to find the 
maximum value identifying the feature to be extracted; b) Vertical, Horizontal and 
Diagonal variance computation. 

V, H, D1 and D2 are four similar modules (from a computational point of view (fig. 
5b) whose architectures are similar to hardware described in sect. 3.1. Each of them 

5 

computes the sum Xlt -,.,I w . =  , ,  aoO I . ,  = , w o . = t  p,xo,. 
j=0 

the same direction (vertical, horizontal or diagonal). 
Furthermore, a tree estimating the minimum value among the four results of V, H, D1 
and D2 trees needs to be implemented (see fig. 5a), The "<" and ">" blocks are the 
same of the similar block described in sect. 3.1. 

4. Hardware Performance Evaluat ion 

In order to evaluate hardware performance and the necessary resources, we mainly 
examine the characteristics of each Computing Block. 

Tab. 1 and tab. 2 resume LUTs required by a Correspondence Block and by the Interest 
Block. 

.Quantr 
32 
32 
62 
31 
2 
1 
1 

T~,pe Function, Collocation 
1 K-word. 5-bit/word absolute error, first level 
32-word. 7-bit/word Binm'y->S* conversion, second level 

sum~ other levels (two parallel layers) 
i sum, other levels (a third layer) 

subtraction (comparison) 
subtraction (comparison) 
S*->sign conversion (comparison) 

1 K-word, 5-bit/word 
16-word, 2-bit/word 
I K-word, 5-bil/word 
16-word, 2-biffword 
4K-word, l-bit/word 

Tab. 1: Quantity, type, function and collocation of the LUTs required by a 
Correspondence Block. 

Quant. T~,pe 
,,,,,, ,  

6*4 1 K-word, 5-bit/word absolute error, first level 
6*4 32-word, 4-bit/word .... Binary->S' conversion, second level 

Function, Collocation 
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5*4 1 K-word, 5-bit/word 
5*4 256-word, 4-bit/word 
3+ 1 1 K-word, 5-bit/word 
3+ 1 "' 256-word, 4-bit/word 
3+1 512-word, 1-bit/word 

sum, other levels (first layer) 
sum, other levels (second layers) 
subtraction (tree of comparison) 
subtraction (tree of comparison) 
S'-> sign conversion (comparison) 

Tab. 2: Quantity, type, function and collocation of the LUTs required in the Interest 
Block. 

These LUTs have been compiled as ROM in 0.7 mm CMOS technology (ES2 Standard 
Cells Library) and the data sheets are reported in tab. 3. and in tab. 4. 

# Type tacc tcye 
{ns] Ins] 

96 1K-word,5-hit/word 12.40 24.75 
32 32-word,7-b!t/word 12.17 22.32 
32 16-word,2-bit/word 11.93 21.79 
1 4K-word, 1-bit/word 13.95 24.40 

s~e(mm) area 

0.77*0.58 0.443 
0.52*0.37 0.196 
0.43*0.36 0.154 
0.69*0.58 0.399 

Total Area 
Max.Freq. [Mhz] 

#*area 

42.528 
6.272 
4.928 
0.399 

54.127~ 
40.4i 

Tab. 3: Data sheets of the LUTs required in the Correspondence Block. They have been 
compiled as ROM in 0.7 mm CMOS technology (ES2 Standard Cells Library). 

# Type tacc tcyc 
[as] [ns] 

48 1K-word,5-bit/word 12.40 24.75 
24 32-wordi4-bit/word 12.09 22.07 
24 256-word,4-bit/word 12.86 23.01 
4 512-word, l-bit/word 12.42 22.52 

size 
mm*mm 

area #*area 

0.77*0.58 0.443 
0.47"0.37 0.174 
0.54*0.46 0.250 
0.54*0.40 0.218 

Total Area 
Max .Freq. [Mhz] 

21.264 
4.176 
6.000 
0.872 
32,312 

40.4 

Tab. 4: data sheets of the LUTs required in the Interest Block. They have been 
compiled as ROM in 0.7 mm CMOS technology (ES2 Standard Cells Library). 

Because of the pipe structure, the highest operating frequency of the structure is the 
same of the slowest LUT: so the whole architecture may process an image having a 
pixel frequency of about 40 MHz. 
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5. Conclusions 

A VLSI architecture abfes to select and to match a set of features over a time varying 
sequence of images is described. Both, extraction and matching steps are performed, 
independently, on each acquired frame. 
Our architecture can process images at a rate of about 40Mpixel per second (a 512"512 
TV frame at 50 Hz has a rate of 13M pixel per second). This computing power has 
been reached, mainly, by mean of Look Up Tables (LUTs) whose sizes were optimized 
by using Residue Number System (RNS). 
A medium size chip is sufficient to integrate in 0.7 mm CMOS technology (ES2 
Standard Cells Library) the LUTs that are required both by the Interest Block 
(performing the extraction of the features) and by the Correspondence Block (finding 
the correct matches for the extracted features). 
The study and the design of the described hardware start from the need of realtime 
image processing for passive navigation tasks of our mobile robot SAURO. As soon as, 
hardware will be available it will be test on SAURO architecture. 
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