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Abs t r ac t .  This paper presents a novel block indexing technique (BIT) to 
speed up image fractal encoding. The technique assigns feature vectors to 
image blocks by establishing an analogy between gray level and mass. The 
experiments show that the BIT preserves bit rate and SNR values very close 
to exhaustive search, while providing speedups up to over 100. 

1 I n t r o d u c t i o n  

Image coding techniques based on i terated function systems (IFS) are very effective 
as far as image quality is concerned. In the last few years there has been a vast 
interest on this topic, as shown by the wealth of papers  on the subject [4, 11]. The 
first fully automated  technique based on contract ive functions is presented in [6]. 

The  basic idea of IFs-based coding is tha t  of  exploit ing the similarity among 
differently sized image blocks. Bigger blocks (domains)  are mapped  onto smaller 
blocks (ranges) that  must tile the original image,  so tha t  the Collage theorem ensures 
the convergence of the reconstruction within precise error limits [1]. 

The  main  problem in IFs-based encoding resides in finding the domain that  can 
best be trasformed into a given range. Since a 512 x 512 image has several thousand 
ranges and domains, the p rocess - - tha t  mus t  be carried out  for each (range, domain) 
couple-- is  very expensive computat ional ly .  

This  shortcoming can be part ial ly overcome by several nonexclusive solutions 
including parallel programming [3, 5], lossless acceleration techniques [9] and feature 
extraction schemes. The taxonomy of f~ature extract ion schemes described in [12] 
sorts the schemes into those based on discrete features,  including classification and 
adapt ive clustering, and those based on continous features, such as 1D functional 
methods  and feature vectors. 
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This paper presents a novel block indexing technique (BIT for short) that  proved 
to be very effective in reducing the comput ing  t ime while preserving bit rate and 
SNR values very close to exhaustive search. According to the above taxonomy, the 
BIT falls into the feature vectors category because domains and ranges are assigned 
multidimensional continous features. In the following section, we will examine the 
ideas on which the proposed technique is based; the effectiveness and efficiency of 
the BIT is then assessed by computer  simulation in Section 3. 

2 T h e  B I T  

The primary goal in devising an index_ing s t ra tegy is that  of obtaining necessary 
conditions for similitudes among blocks. Establishing an analogy between gray val- 
ues and weight, if two blocks have the same shape, then they have the same weight 
distribution. Our aim is that  of determining a minimal number of features that are 
sufficiently representative of the weight distribution. 

The first such feature that  comes to mind is the position of the mass center 
(MC), since similar weight distributions have their MCs close to each other. The 
coordinates of the MC for an N × N block B are given by 

1 1 
z ° = ~ 7  Z iB(i , j ) ,  yo ='j'~ Z jS ( i , j ) ,  (1) 

O~l<N O~i<N 
O_<3<N O<j<-~ 

where M = ~ o<,<x B(i, j) is the block's  mass. However, MC proximity is just 
--o<_j<.~r 

a necessary condition for block similarity: the position of the MC alone does not 
adequately describe the block's mass distribution. In order to further characterize 
the mass distribution, we consider the MCs (zk, Yk) of  all the transformed blocks 

B(i , j )  for k = O, 
B(k)(i'J) = (B(k-z)(i , j )  -- I~k_z) ~ for k >_ 1, (2) 

where/Jk = Mk/N 2 is the average mass per pixel in block B(k). 
This operation yields a t ransformation from the space ofpixels to a 2n-dimensional 

space of features. The value n = 3 is a good  choice since higher values of k add more 
overhead than useful information. .as  a result, we obtain a feature vector 

(z0, y0, z l ,  yz, =2, y2) 

that  has an attractively low dimension. 
The blocks in the space of features mus t  now be organized to allow the applica- 

tion of a spatial access method (SAM). Among  the possible choices for a SAM, there 
are tree-based methods (k-d-trees and R.*-trees are the most efficient [13, 2]), linear 
methods, which can be based on qua£itrees [8] or space-filling curves [7], and, finally, 
grid-based methods such as the cell technique [8]. The relatively small dimension 
of feature space suggested that  a grid-based SAM was appropriate. In particular, 
we used a variation of the n-dimensional cell method where the cells are unevenly 
spaced: as shown in Fig. 1, each (xk, yk)-plane is divided into "planecells." The cen- 
tral stripes are thinner as to minimize collisions, since the features are more likely 
to fall near the center. 
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Fig. 1. Subdivision of the (xk, yk)-plane in 9 planecells. The Cartesian product of 
n planecells on different planes yields a cell. 

The search strategy is as follows: each range becomes the query point r for the 
domain that will encode it. The search is limited to a hypersphere 7-/~ (r) of radius ~f 
centered in r, comprising all the points x such that  d(x, r) < ~f, where the distance d 
between two feature points v and w is defined by 

d((vo,.. V2n-1),(W0,.. W2n-1)) -- max  Ivl-- w, I. 
• ' " ~ O _ < i < 2 n  

(3) 

All the cells that  have a nonempty intersection with 7/6(r) are then searched for 
the opt imum match. 

The radius ~ obviously influences the search time: when 6 = oo we have ordinary 
exhaustive search, which is very costly but  guarantees the best possible quality for 
a fixed bit rate; when ~ - 0, we have a me thod  that,  according to [12], falls in the 
"classification" category, as only one cell is searched for each range; for 0 < ~f < c~, 
we have a true "feature vectors" technique. 

The BIT has the advantage of being easily combined with other acceleration 
methods, such as the lossless technique described in [9] and [10], that  can provide 
an additional speedup factor. 

3 E x p e r i m e n t a l  R e s u l t s  

A wide variety of experimental tests has been performed on standard 8-bit 512 x 512 
test images, such as lena,  pepper s  and b o a t s .  The experiments, focused on finding 
out how efficiently the BIT can locate a domain  to encode each range with good 
fidelity, consisted in applying the BIT to adaptive 3-level quadtree-based encoding 
with blocks of size 4 x 4, 8 x 8 and 16 x 16. 

The number of block-to-block comparisons is the main measure of the 8IT's 
effectiveness as an acceleration technique, while the quality of the resulting encoding 
can be assessed by the peak signal-to-noise rat io (PSNR) between the original image I 
and the reconstructed image I ,  which in dB is given by 

$IS2. 255 ~ 
PSNR = 101ogt0 ~-'~ o<.<s, (I(i , j)  --~f(i,j))2 (4) 

o<_j<s~ 

for images of size $1 x $2. The bit rates express the length of the encoded image in 
bits per pixel, while the times were taken on an IBM RS/6000 320. The results are 
summarized by Tables 1-3 and Figs. 2-5.  
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In the tables,  the notat ion 7/~ indicates  t h a t  for each range r to be encoded we 
only search inside 7Q(r) ,  while the no t a t i on  C~ denotes  a search in i ts complement, 
i.e., the set of all domains d ~ 7/$(r).  

As can be seen, even for smal l  radi i ,  the  BIT's results  are very close to those 
ob ta ined  by exhaustive search in t e rms  of  bo th  PSNR and bit  rate. This is due 
to the abi l i ty  of this technique in loca t ing  the  blocks tha t  are more similar to 
the  target  range: the 'C~' columns show clear ly  t ha t  when the encoding eng'ine is 
forced to choose outside of  the ne ighborhood  region 7-/,~, the performance is worse 
than  exhaust ive search under all aspects,  even comput ing  t ime,  because the best 
domains  cannot  be utilized since they are in 7Q. It  is interest ing to note how the 
much bigger domain pool C$ provides no signif icant  improvement  over 7Q in terms 
of  encoding quality. 

From the point of view of comput ing  t ime ,  the sl ight  variat ion in PSNR and bit  
ra te  between 7/6-search, C~-search and e.v~haustive search t ranslates  into a dramatic 
improvement- -TQ-search achieves a speedup  of  two orders  of magnitude.  The exe- 
cut ion t ime  of the whole encoding process increases near ly  l inearly with the number 
of  comparisons.  

The  graph in Fig. 2 shows how the n u m b e r  of  comparisons  in 7Q relates to the 
a t t a ined  PSNR. The values are averaged over the  3 test  images and are obtained for 

Table 1. Results of the tests on image lena. 

Comparisons xl0 ~ Bit race (bpp) PsNR (dB) Time (sec) 
7i6 C6 7/6 C 6  7/6 C 6  7/6 C6 

0 5.27 577.40 0.411 0.409 32.896 33.339 190 19874 
1 11.03 621.20 0.401 0.442 33.066 33.071 391 21508 
2 16.37 631.00 0.394 0.452 33.180 33.062 614 22726 
3 21.64 631.11 0.391 0.454 33.243 32.954 843 23415 
4 27.28 631.30 0.387 0.460 33.321 32.886 1112 24901 
oo 540.79 - -  0.382 - -  33.419 - -  21220 - -  

Table  2. Results of the tests on image peppers.  

cf Comparisons × 106 Bit race (bpp) PSNR (dB) Time (sec) 
7/~ C6 7i6 C6 7i6 C 6  7i6 C6 

0 6.81 741.14 0,532 0.514 31.712 31.991 246 25933 
1 13.05 765.65 0.513 0.534 31.844 31.820 449 26379 
2 20.20 768.26 0.506 0.541 31.939 31.758 712 27528 
3 28.14 770.29 0.502 0.548 31.973 31.734 1021 28752 
4 35.55 776.63 0.500 0.558 31.984 31.672 1350 29750 
oo 704.13 - -  0.487 - -  32.060 - -  26760 

& varying between 0 and 6 (the values of  8 are  shown beside the d a t a  points in the 
plot) .  The  plot ted PSNR values are bounded  by  the m a x i m u m  value obtained by 
exhaust ive search. This  value, which would correspond to 8 --  c~, is plotted as a 
horizontal  asymptote.  
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Figure 3 illustrates the speedups obta ined for the same values of 5. In this case, 
too, the results are averaged over the 3 test images. 

As a last remark about  the encoding quality, Fig. 4 shows the bit rates obtained 
by 7-t~-search and g~-search as the radius 5 varies. As can be seen, 7Q-search has 
decreasing bit rates, while the opposite holds for C~-search. This behavior can be 
explained by the fact that,  as the hypersphere 7Q(r)  grows bigger, it is more likely 
to find good similarities between the range r and a candidate  domain in 7Q(r). As a 
consequence, it is less likely that  we have to descend the quadtree by subdividing r. 

Finally, Fig. 5 shows an example of the BIT in action, depicting both the query 
range r and the domains found by the search. The  picture also shows how mul- 
t idimensional features help in th inn ing  out  the number  of candidate domains, il- 
lustrat ing the additional domains tha t  would be found for smaller values of the 
hem|dimension n. 

Table  3. Results of the tests on image boats.  

5 Comparisons ×10 ~ Bit rate (bpp) PSNR (dB) Time (sec) 

0 6.74 950.18 0.687 0.647 32.100 32.537 237 32933 
1 15.38 979.68 0.658 0.671 32.301 32.263 511 33478 
2 25.03 985.74 0.643 0.682 32.438 32.232 866 34664 
3 34.03 984.25 0.639 0.687 32.513 32.221 1224 35357 
4 42.12 987.11 0.628 0.692 32.586 32.206 1582 38172 
co 911.15 - -  0.618 - -  32.661 - -  35798 - -  
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Fig.  2. PSNR as a function of the number of block-to-block comparisons. The horizontal 
asymptote corresponds to 718.69-10 ~ comparisons. The resul~ are averaged over the three 
test images. 
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Fig. 3. The speedups obtained as a flmction of the hypersphere radius 8. The results are 
averaged over the three test images. 

4 C o n c l u s i o n  

This paper introduced a new block indexing technique for fast fractal encoding (BIT) 
that is meant to reduce the search space. The BIT characterizes a block's gray-level 
distribution by exploiting the concept of center of mass. 

The indexing technique is very attractive: computer simulation has shown that 
the SIT provides a speedup that reaches two orders of magnitude, while preserving 
the SNR and bit rate statistics nearly intact. 

The computational cost for indexing itself is rather low, especially when com- 
pared with state-of-the-art techniques. 
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Fig. 4. Bit rates obtained by 7/a-search and Ca-search as a function of the radius 5. The 
results are averaged over the three test images. 
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F i g .  5.  A sample  query  pe r fo rmed  wi th  radius  ~ = 0 and  hemid imens ion  n = 3. Given r 
as  a query  point ,  the  search  r e tu rns  the  set  D3 conta in ing  the  8 domains  in the  s ame  cell 
as  r.  For  n = 2 a n d  n = 1, the  search  would r e tu rn  respect ively  D3 u D2 a n d  D3 u D2 U DI.  


