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A b s t r a c t .  We present a model for image retrieval in which images axe 
represented both at the form level, as sets of physical features of the 
representing objects, and at the content level, as sets of logical assertions 
about the represented entities as well as about facts of the subject mat- 
ter that are deemed as relevant for retrieval. A uniform and powerful 
query language allows queries to be issued that transparently combine 
features pertaining to form and content. Queries are expressions of a 
fuzzy logical language. While that part of the query that pertains to 
(medium-independent) content is "directly" processed by an inferential 
engine, that part that pertains to (medium-dependent) form is entrusted 
to specialised signal processing procedures linked to the logical language 
by a procedural attachment mechanism. 

1 I n t r o d u c t i o n  

Due to the pervasive role of images in nowadays information systems, a vast 
amount  of research has been carried out in the last few years on methods for 
retrieving images by content from large repositories. This research has produced 
many  theoretical results, on top of which a first generation of image retrieval sys- 
tems (IRSs, for short) have been built [7] and, in some cases, even turned into 
commercial  products  [2, 5]. The distinguishing feature of these systems, and of 
the related research prototypes,  is their total  disregard for a proper representa- 
tion and use of image semantics. 

This s tudy addresses the problem of injecting semantics into image retrieval 
by presenting an image retrieval model in which images are represented both at 
the form level, as sets of physical features of the objects representing a slice of 
the world, and at the content level, as sets of properties of the real-world objects 
being represented. This model is logic-based, in the sense tha t  the representation 
of image content is based on a description logic. Features of images pertaining 
to form are not represented explicitly in the description logic, as they are best 
dealt with outside it, i.e. by means of some digital signal processing technique. 
However, they impact  on logical reasoning through a mechanism of "procedural 

* This work has been carried out in the context of the project FERMI (n. 8134): 
"Formalization and Experimentation in the Retrieval of Multimedia Information", 
funded by the European Union under the ESPRIT Basic Research scheme. 
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at tachments"  [1], which implements the connection between (logical) reasoning 
about  content and (non-logical) reasoning about  form, thus allowing a unified 
query language capable of addressing both dimensions. 

The resulting retrieval capability thus extends tha t  of current IRSs with the 
use of semantic information processing and reasoning about  image content. So 
far, the only a t tempts  in this direction had been based on textual  annotat ions 
to images ("captions": see e.g. [13]) or their regions, in some cases supported by 
the use of thesauri to semantically connect the terms occurring in the text  [8]. 
These models permit  the expression of image contents, but  are weak in exploiting 
them, due to the well-known limitations of keyword-based text  retrieval [14]. 

2 R e p r e s e n t i n g  i m a g e  f o r m  

Let IN be the set of natural  numbers. A region is any subset of 1N 2, i.e. a set 
of points. A region S is aligned if min{x ] (x, y) C S} = 0 and min{y ] (x, y) E 
S} = 0. We assume familiarity with the basic notions of digital geometry, such 
as neighborhood and connectedness (for details, see e.g. [11, Chapter  11]). A 
connected set with no "holes" is called simply connected. 

Given a set of colours C, a layout is a triple i = (A i, 7c i, fi), where A i, the 
domain, is a finite, aligned, rectangular region; 7r i is a part i t ion of A i into non- 
empty  connected regions {T1, ..., Tn}, called atomic regions; f i  is a total  function 
from ~r i to C, assigning a colour to each atomic region (and therefore called the 
colour function) such that  no two neighbour atomic regions have the same colour; 
formally: 

VT, T '  C 7r i, if T is a neighbour of T '  then f i (T)  ~ fi(T~) 

For notational convenience, we make explicit some of the information carried by 
a layout: given the layout i = (A i, 7r i, fi), 

i of i are defined as - the extended regions % 

i {S]  3T1, ..., Tk E ~r i, k _> 1, S U~_lTi, S connected} 7I" e ---- z 

The fact that  we do not require S to be simply connected allows some in- 
teresting visual objects (e.g. the figure of a goalkeeper part ly covered by an 
approaching ball) to be classified as extended regions; 

- the extended colour function f~ of a layout i is defined as the function tha t  
assigns to each extended region S a colour distribution f i(S) (i.e. a mapping  

i from C to [0,1] such that  Y~{cec} fi(S)(c) = 1) as follows: Vc C C, VS e 7r e 

such tha t  S = U~=IT j and each Tj is an atomic region: 

f~(S)(c) -- ~ T j @ Z  ITjl 
ISl 

where Z is the set containing all and only the atomic regions Tj in {T1 , . . . ,  Tk} 
tha t  have colour c, i.e. fi(Tj) = c, and IS[ refers to the cardinality of a region 
S viewed as a set of points. 
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In general, a region S is not bound to a particular layout. This binding is realized 
in the notion of grounded region, which we define as a pair (i, S), where i = 
(Ai,~ri,ff) is a layout and S 6 ~r~. 

Let [k] denote the set of the first k natural numbers. Given m, n 6 IN, the 
image space M(m,  n) is given by the set of all possible layouts of domain [m]x [n]. 
The image universe bl = U(i , i )e~2M(i , j  ) is the union of all possible image 
spaces. 

3 R e p r e s e n t i n g  i m a g e  c o n t e n t s  

We take the content of an image to be a scene, i.e. a set of possible situations 
indistinguishable from the visual point of view. The formalism we have chosen 
for representing and reasoning on image contents is a Description Logic (DL), 
namely the logic is A£C [12], a significant representative of the DLs family; how- 
ever, our model is not tied in any way to this particular choice, and any other 
DL would easily fit in it. The language of A£C includes unary and binary pred- 
icate symbols, called primitive concepts (indicated by the metavariable A with 
optional subscripts) and primitive roles (metavariable R), respectively. These are 
the basic constituents by means of which concepts (i.e. "non-primitive predicate 
symbols") are built via concept constructors, according to the following syntactic 
rule: 

C > A I C 1 N C 2  I -~CIVR.C  

A crisp assertion is an expression having one of the following forms: 

- C(a), where a is an individual and C is a concept, means that  a is an instance 
of C; for example, (Musician [7 Teacher )  ( t im)  makes the individual t im 
a Person and a Teacher; 

- R(al, a2), where al and a2 are individuals and R is a role, means that  al is 
related to a2 by means of R (e.g. F r i e n d  ( t  ira, tom)); 

- T _ T' ,  where T and T '  are both concepts or both roles, means that  T is a 
specialization of T' (e.g. P i a n o P l a y e r  E (Musician [7 (3Plays.Keyboard))) .  

The  first two kinds of assertions are called simple assertions, while any instance 
of the last kind is said to be an axiom. In order to deal with the uncertainty 
inherent in similarity-based retrieval, we introduce in the logic fuzzy assertions 
(see e.g. [4]), i.e. expressions of the form <a, n) where ~ is a crisp assertion and 
n 6 [0, 1], meaning that  a is t rue "to degree n".  We will use the terms fuzzy 
simple assertion and fuzzy axiom, with the obvious meaning. 

The semantics of the resulting logic relies on fuzzy interpretations, i.e. pairs 
I -- (A z, (.)z) where A z is a non-empty set (called the domain of discourse) 
including the image universe/4, and (.)z, the interpretation function, maps each 
concept into a function from A I to [0, 1], and each role into a function from 
A z × A z to [0, 1], so that  for all d 6 A z the following conditions are satisfied: 
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(C1 • Ci ) Z ( d) = rnin { ClZ ( d), CiZ ( d) } 
(~C)Z(d) = 1 - CZ(d) 

= mind,   {max{1 - n (d, d'), CZ(d') } } 

A fuzzy interpretation Z is a model of an assertion (C(a),n) ( (R(a l ,a i ) ,n ) ,  
(T E T',  n), respectively) iff CZ(a z) > n (resp. RZ(aa z, a2 z) > n; for all d ¢ 
A s, T'Z(d) > n • TZ(d)), and is a model of a set of fuzzy assertions iff Z is a 
model of all the assertions in the set. A set of fuzzy assertions Z entails a fuzzy 
assertion (c~, n) (written Z ~ /  (c~, n)) iff all models of Z are models of (a, n). 
Given Z and a crisp assertion/3, we define the maximal degree of truth of/3 w.r.t. 
Z (written Maxdeg(Z,  fl)) to be n _> 0 iff Z ~ /  (/3, n) and there is no m > n 
such that  Z ~ /  (Z, m}. 

Having settled for the tool, we now specify its use for image content represen- 
tation. Let i be a layout uniquely identified, in a way to be made precise later, 
by the individual i .  A content description 5 for i is a set of fuzzy assertions, 
consisting of the union of four component subsets: 

1. the image identification, a set containing only a single fuzzy assertion of the 
form (Ego(i), 1}, whose role is to associate, along with the layout naming 
function nt (see Section 6), a content description with the layout it refers to. 
In particular, in what follows a ( i )  will denote the set of the (possibly many) 
content descriptions whose identification is Ego ( i )  ; 

2. the object anchoring, a set of fuzzy assertions of the form (gep(r,  o), n), 
where r is an individual that  uniquely identifies a grounded region of i and 
o is an individual that  identifies the object depicted by the region; 

3. the scene anchoring, a set of fuzzy assertions of the form (About(i ,  o), n}, 
where i and o are as above. By using these assertions, an indexer can state 
what the whole scene shown in the image is about, and this would typically 
be a situation of which the image shows some salient aspect; 

4. the scene description, a set of fuzzy simple assertions (where neither the 
predicates Ego, Rep and About, nor identifiers pertaining to layout such as 
the i 's  and r ' s  above, occur), describing important  facts shown in the image 
about the individuals identified by assertions of the previous two kinds. 

While the task of components 1 to 3 is that  of binding the form and content 
dimension of the same image, component 4 pertains to the content dimension 
only. Note that  there may be more than one content description for the same 
image i; this is meant to reflect the fact that  there may be multiple viewpoints 
under which an image may be considered. 

Any of components 2 to 4 can be missing in a content description. As an 
example, let us consider a photograph showing a singer, Mary, performing as 
Zerlina in Mozart 's  "Don Giovanni". Part  of a plausible content description for 
this image, named i,  could be (for simplicity, in this example we only use crisp 
assertions): 

{Ego ( i ) ,  About ( i ,  o ) ,  Rep ( r ,  mary) ,  DonGiovanni (o ) ,  P l ays  (mary, z e r l  ina)  } 
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4 Q u e r y i n g  l a y o u t s  

A query addressed to an image base can refer either to the form dimension, in 
which case we call it a visual query, or to the content dimension, in which case we 
call it a conceptual query. These two categories are exhaustive but  not disjoint. 
Visual queries can be partit ioned in: concrete visual queries: these consist of im- 
ages themselves that  are submitted to the system as a way to indicate a request 
to retrieve "similar" images; and abstract visual queries: these are abstractions 
of layouts that  address specific aspects of image similarity via artificially con- 
structed image elements and can be further categorised into: 

1. colour queries: colour distributions that  are used to retrieve images with a 
similar colour distribution; 

2. shape queries: specifications of one or more shapes (closed simple curves in 
the 2D space) and possibly of their spatial relationships, used to retrieve 
images in which the specified shapes occur as contours of significant objects, 
in the specified relationships; 

and other categories, such as spatial and texture queries [6], which will not be 
dealt with in this paper. 

In order to query layouts, the following SPSs are introduced: 

- symbols for global matching: in general, there will be a set of such symbols, 
each capturing a specific similarity criterion. Since from the conceptual view- 
point these symbols form a uniform class, we will just include one of them in 
our language, to be understood as the representative of the whole class. Any 
other symbol of the same sort can be added without altering the structure 
and philosophy of the language. So, for global matching we use the SPS 

• SI ( i ,  j ) (standing for S i m i l a r  Image): assesses the similarity between 
two layouts i and j ;  

- symbols for local matching: these come in two sorts. First we have selectors, 
which are SPSs needed to select the entity to match from a layout: 

• HAR(i , r )  (Has Atomic Region): a selector relating the image i to any 
of its grounded atomic regions r; 

• HR( i , r )  (Has _Region): relates i to any of its grounded regions r; 
• HC(r ,c )  (Has Colour):  relates the grounded region r to its colour c; 
• HS ( r ,  s) (_Has Shape): relates the grounded region r to its shape s. 

Second, we have symbols for local matching, assessing similarity between 
local entities. Similarly for what it has been done for global matching, we 
include one symbol for each category of entities to be matched; so we have: 

• SC (c ,  c ' )  (S imi l a r  Colour):  returns the similarity between colour dis- 
tributions c and c ' ;  

• SS ( s ,  t )  (S imi l a r  Shape): gives the similarity between shapes s and t .  

The  semantics of the symbols introduced so far is fixed, and is given by the 
functions that  capture the intended meaning of each symbol, as illustrated above. 
For example, if I is any fuzzy interpretation: 

SI I : /4 × L/-+ [0, 1], assigning to each pair of layouts their degree of similarity. 
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A fuzzy interpretat ion Z is said to be an image interpretation if and only if it 
assigns the correct semantics to the SPSs. From now on, we will use the t e rm 
"interpretation" as short for "image interpretat ion".  

5 T h e  q u e r y  l a n g u a g e  

Below, we present the query language of our model (cpt abbreviates  concept). 

image-q) ::---- (image-cpt) I (image-q) [] (image-q) I (image-q) U (image-q) 
image-cpt) ::= 3SI.{ (layout-name) } [ Shbout.(content-cpt) l 

3HhR.(region-cpt) I ~HR.(bound-region-cpt) 
region-cpt) ::= 3HC.(colour-cpt) [ SHS.(shape-cpt> I 3Rep.(content-cpt) I 

(region-cpt) • (region-cpt) I (region-cpt) U (region-cpt) 
bound-region-cpt) ::= 3Rep.(content-cpt) I (bound-region-cpt> • (region-cpt} I 

( bound-region-cpt) U ( region-cpt) 
colour-cpt) ::= { (colour-name) }13SC.{ (colour-name) } 
shape-name) ::= { (shape-name> }13SS.{ (shape-name} } 

Note tha t  a layout-name, a colour-name and a shape-name are not concepts, 
but  individuals. Queries are thus not concepts of A£C, but of the DL .A£C50, 
which extends A£C with the "singleton" {} operator ,  which given an individual 
i returns a concept {i}. The singleton operator  is necessary in queries because 
it allows the reference to specific individuals. However, this added expressive 
power has no impact  on the complexity of the image retrieval problem. 

Let us reconsider the example introduced in Section 3. The images about  
Don Giovanni are retrieved by the query 3About .DonGiovanni .  Those showing 
the singer Mary are described by 3HR. 3Rep. {mary}. ~ihrning to visual queries, 
the request to retrieve the images similar to a given one, named t h i s ,  is ex- 
pressed by 3SI .  { t h i s } ,  and can be easily combined with any conceptual query, 
e.g. yielding 3SI .  { t h i s }  U 3About.  DonGiovanni,  which would retrieve the im- 
ages that  are either similar to the given one or are about  Don Giovanni. As far 
as local visual queries are concerned, the images in which there is a blue region 
whose contour has a shape similar to a given curve s are denoted by the query 
3HAR. (3HC. {blue} [9 (3HS. 3SS. {s}) ) .  Finally, the user interested in retriev- 
ing the images in which Mary plays Zertina and wears a bluish dress, can use 
the query 3HR. 3Rep. ({mary}R3Plays. {zerlina}) [9 (3HC. 3SC. {blue}). 

6 I m a g e  b a s e s  a n d  i m a g e  r e t r i e v a l  

We define an image base as a 5-tuple IB  = (L, nl, nr,  Z c ,  ZD} where: (a) L is a 
finite set of layouts; (b) nt is an injective layout naming function, mapping  each 
layout i in L into an individual i ,  which therefore acts as a unique name for it. 
Note that ,  indirectly, nt also associates i with the set of descriptions a(nl(i)) = 
{51, . . . ,5n} ,  whose elements are the content descriptions of the image whose 
layout is i; (c) n r is an injective region naming function, mapping each grounded 
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region (i, S) of each layout i in L into an individual r ,  which therefore acts as a 
unique name for it; (d) Z c  is a finite set of content descriptions, such that  each 
layout in L has at least one associated description (i.e. Vi 6 L, la(nz(i))l > 1). 
"Uninterpreted" images will have a single content description containing just 
the image identification; (e) ~D is a set of fuzzy assertions representing domain 
knowledge. 

Our image retrieval model is based on the idea that,  in response to a query 
Q addressed to an image base I B  = (L, nt,nr, Zc ,  ~D>, the layout named i is 
at tr ibuted a degree of relevance n iff: 

n = max{5¢c~(i)}{n j = Maxdeg(Sj U ZD, Q(i))} 

Let us consider an image base containing two layouts i and j ,  such that: 

{(Ego(i), 1), (About(i, o), 0.8), (DonGiovanni(o), 1)} 
{(Ego(j ), 1), (About(j, o), 0.7), (WestSideStory(o), I>} 

are in ZI. Moreover, ~c contains the following axioms: 

(DonGiovanni E_ European0pera, I> (WestSideStory E_ American0pera, I) 
(European0pera E 0pera [7 (3ConductedBy.European), 0.9) 
(American0pera E Opera ['I (3ConductedBy.European), 0.8> 

Suppose we are interested in those images that are about an opera conducted 
by a European director. To this end, we can use the query 3About.(0pera 
3ConductedBy.European). It can be verified that the degree of relevance at- 
tributed to i is 0.8, whereas that of j is 0.7. 

We close with some implementation considerations. In order to effectively 
perform image retrieval as prescribed by the model defined so far, we envisage 
an IRS consisting of the following components: (1) a global matching engine for 
each global similarity predicate, responsible of implementing a specific kind of 
image global matching; to this end, each such engine will make use of the fea- 
ture vectors for the layouts in the image base, stored in an apposite database, 
the global matching database; (2) a local matching engine for each local simi- 
larity predicate, using the feature vectors stored in local matching databases, of 
which there exists one for each considered image feature (colour, shape, etc.); 
(3) a DL theorem prover, which will handle the semantic information process- 
ing, collecting the assertions contained in the Z c  and ~D components of the 
image base and appropriately using them in reasoning about image content; (4) 
a query processor, responsible of decomposing each query into abstract, con- 
crete, and conceptual sub-queries, demanding the evaluation of each sub-query 
to the appropriate component, and then properly combining the results in order 
to obtain the final ranked list of images. For its operation, the query processor 
uses a database, called the image structure database, which stores the semantics 
of selectors as well as naxning functions. The details of these components are 
outside the scope of this paper. We only remark, at this point, that  they are 
well within reach of the current technology. In particular, we have developed a 
theorem prover for a significant extension of the DL we use here [10]. 
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7 C o n c l u s i o n s  

We have presented an image da ta  model providing a retrieval capabil i ty en- 
compassing current similarity-based techniques and, in addition, making full 
and proper use of image semantics. Because the representations handled by the 
model have a clean semantics, further extensions to the model are possible. For 
instance, image retrieval by spatial similarity can be added to our model with 
modera te  effort: at the form level, effective spatial similarity algorithms (e.g. [6]) 
can be embedded in the model via procedural a t tachment ,  while significant spa- 
tial relationships can be included in content descriptions by drawing from the 
many  formalisms developed within the qualitative spatial reasoning research 
community  [3]. Analogously, the model can be enhanced with the t rea tment  of 
texture-based similarity retrieval. 
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