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The problem considered here is the age discrimination of lamellibranch larvae. Patterns of 
larvae are presented to a multilayer feedforward neural network. Samples are represented by 
shape descriptors calculated on the basis of a normalized arc length parametrization of their 
boundary. After training, the network will classify samples on the basis of their characteristic 
shapes. In neural network applications one often faces the problem of optimal network size, 
which is an implicit function of problem complexity and available amount of data for training. 
This paper presents some possible solutions to cope with this problem. Results obtained are 
compared with previous experiments on feedforward networks. 

1 Introduction 

A large variety of  pattern classification problems have been successfully solved in 
recent years by neural networks (NN). In many cases, however, how to find the 
optimal size of  the network best suited to the given application (e.g. number of  
hidden layers, number of  nodes in each, connections between them, etc.) still remains 
an open problem. These parameters are often determined in a trial-and-error manner. 
In this paper we apply multilayer perceptron neural network (MLP NN) for an age 
discrimination problem. An iterative node pruning algorithm will be introduced. By 
using this method we have the possibility to remove insalient nodes in the network. 
An other optimization method will be presented based on the principle that 
minimizing classification error in a NN is equivalent of  maximizing an objective 
function, called network discrimination function, introduced by Webb and Lowe o). 

The real-life application considered here concerns the growth control and age 
discrimination of lamellibranch larvae. This study is limited to the case of  scallop 
larvae (Pectinacea) which are representatives of the species. Rees (z) has shown that 
natural (i.e. manual) classification of these larvae is possible. In 1990, Ghorbel (3) 
demonstrated an automated method using statistics of calculated pattern descriptors. 
The benefit of  invariant shape descriptors has been shown. Recently, the given age 
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discrimination problem has been effectively solved by the use of  multilayer neural 
networks (4). This paper is organized as follows. In Section 2, feature extraction is 
described in detail. Calculated features have to be invariant with respect to certain 
elementary geometrical operations. Section 3 presents multilayer perceptron neural 
network (MLP NN) classifiers, in general. In Section 4, optimization methods will be 
discussed. Finally, Section 5 outlines structure of  the database and presents 
experimental results. 

2 Scallop Shel l  Contour  Analys is  

In the case of larval phases, the scallop can be described accurately knowing only 
its shape boundaries. In this work we describe the larva by its contour, which can be 
easily extracted by means of sophisticated methods like morphological filters. This 
leads to a considerable simplification of  the feature extraction task. 

2.1 lnvariant Feature Extraction 

For natural shapes which do not contain sharp edges, radial representation of 
curves can provide relatively simple shape descriptors. For applications manipulating 
2D star-shaped contours, radial curve representation with n.a.l.p, is shown to be 
efficient by Bez (5), Ghorbel and Burdin (6). From this particular parametrization, 
features invariant with respect to basic similarity transformations (e.g. translation, 
rotation, expansion, shrinking) are determined. This method uses the Fourier series 
expansion of  log(p(1)) where p(l) measures the length of  the line connecting the 
boundary of the closed curve to its centroid. (Fig. 1). 

~ ) x 

Fig. 1. Radial representation of a star-shaped contour 

The radius function obtained this way is axis invariant. Fourier coefficients can be 
obtained from a clockwise curve description where l is the normalized arc length. 

a,,(y) = t log(9(l)) . exp(-2ninl)  dl (2.1) 
0 

In (2.1), log(p(1)) is used instead of  p(l) to eliminate the unwanted effect of  scale 
factors : log(Kp'(1)) = log(K) + log(p'(l)). Note, that log(K) is constant. 

The magnitude of these coefficients la,(7)l;n=l..N; altogether form a useful set of 

descriptors, since it has the profitable property of invariance. In Table 1 calculated 
descriptors for three different ages of larvae are listed. 



222 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

30 days 11 days 2 days 
0.00789 
0.03077 
0.01568 
0.00303 
0.00547 
0.00356 
0.00243 
0.00258 
0.00240 
0.00204 

0.00640 
0.04606 
0.02535 
0.00762 
0.00510 
0.00266 
0.00102 
0.00109 
0.00144 
0.00133 

0.00969 
0.06782 
0.03261 
0.01805 
0.00804 
0.00556 
0.00228 
0.00196 
0.00134 
0.00152 

Table I. Fourier descriptors of extracted contours for three different age samples 

In general, the first few coefficients (e.g. N=10) characterize well the global shape 
of  the sample, while the remaining part gives the fine details. Consequently, we can 
assume that with neglecting the remaining part we retain majority of  the information 
for classification. 

3 The Neural  Network MLP Classifier 

Neural networks are dynamic systems composed of highly interconnected layers of 
simple neuron-like processing elements. In multilayer perceptrons (MLPs), the only 
connections allowed go from layer to layer and from input to output. Loops and 
connections within layers are not allowed. 

In a MLP network, each unit output is computed as the weighted sum of the 
activation levels of all the units connected to unit i. Let this sum be denoted by Si. 
The output is then calculated as a function f(Si), where f represents a kind of 
nonlinearity, being very often the sigmoid function, defined by : 

l+e -si (3.1) 

The input layer receives information carried by the invariant descriptors to be 
classified. In our experiments, elementd (d=1. .10) of the qth observation 
(q = 1..225) is formed as 

the respective magnitudes of  invariant descriptors calculated for each pattern. 
The generalized delta rule of  Rumelhart, et al. is a widely used procedure for 

learning a set of  input patterns. In this method, weight adjustment is performed 
iteratively in the network in order to reduce mean squered system error as rapidly as 
possible. 
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4 Methods for Optimization 

The problem to determine the optimal size of the NN which conforms well the 
classification at hand has motivated numerous authors in research (~' 7, s, 9, ~0). Small 
networks tend to learn fast, but classification errors are often higher than a certain 
tolerance level. On the other hand, unnecessarily large networks demand long training 
periods. These NNs can classify learning samples accurately, but in the case of  test 
samples they often have poor performance. 

4.1 lterative Node Pruning 

Recently, Mao (7) proposed a node-pruning procedure which is capable of 
removing insalient nodes in the network to create a small sized network, which can 
not only approximate faithfully the training set but also generalize well on the test 
patterns. 

According to Mao, the saliency of a node is defined as the amount of increase in 
the error if this node is removed. From Taylor series expansion of  the error function 
with respect to the output of  all nodes, y, and neglecting higher order terms, we have: 

t:7-~k 1 ~ 2 E k  t "~z 
AEk = ~TAY, + 7 ~ Y - 2  "[AY~ (4"11 

where Ek represents the squared error in the network when pattern k is presented at its 
input (k = 1..N). In the above formula, we suppose that only one node is removed at 
once (only the i th component of  the vector y is allowed to change). The saliency of  
this node is then defined as 

N 
Si = ~ AE k (4.2) 

k-I 

Now, in order to evaluate (4.1) we have to compute the first- and second-order 
derivatives of the error function with respect to the output of individual nodes. These 
derivatives can be most easily computed in a back-propagation fashion. 

The node-pruning strategy can briefly be described as follows: 

1. Choose an initial network architecture, larger than necessary; 
2. Train the network a number of  iterations on the input data; 
3. For each pattern in the training set evaluate the first- and second-order derivative 

in the back-propagation fashion; 
4. Compute the saliency of  each input node and hidden node; 
5. Remove the node with the lowest saliency value; 
6. Retrain the network a small number of iterations; 
7. Compute the squared error on both the training and the test data; 
8. Repeat steps 3 - 8 until the stopping criterion is satisfied. 

The stopping criterion is the point where the system error starts to increase. Usually, 
this happens after a critical node has been removed. 
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4.2 Optimization Based On Discriminant Analysis 

An other kind of  optimization technique is based on discriminant analysis. 
Investigations into the nature of  the transformations performed by the MLP NN 
trained by the least mean squares error procedure have revealed interesting 
connections with classical discriminant analysis known from statistical literature (9,10). 
Numerical simulations suggest that a network with non-linear hidden units perform 
more severe feature extraction than linear discriminant analysis, by finding a non- 
linear transformation which returns a larger value of a separability criterion involving 
the scatter matrices of the training vectors. Gallinari et al. 00) has shown that from one 
layer to the next, internal representations tend to be more and more separated, as 
clusters become more and more compact, due to the compression effect of the 
sigmoid function. In 1990, Webb and Lowe 0) demonstrated that minimizing the sum 
of squares error at the network output is in fact equivalent to maximizing a particular 
norm, called network discriminantfunction, under the condition that the output layer 
transfer function is linear. 

Noting n i the a priori probability of class wi, the total and between-class scatter 
matrices can be defined respectively as: 

T = E{(Y-  E{Y})(Y- E{Y})' } (4.3) 

B= ~n,(E{Ylw,}-  E{Y})(E{I~w i }- E{Y})' (4.4) 
l=1 

where E{Y} represents the expected value of random vector Y, and E{Ylwi} the class 
conditional expected value of Y. As usual, t denotes transposition. 

In order to formulate a criterion, we need to convert the scatter matrices into a 
single number. This number must be larger when the between-class scatter is larger or 
the within-class scatter is smaller. Several criteria have been proposed by 
Fukunaga (17). Among all those, the most frequently used one is 

J~ = tr( T-~ B) (4.5) 

In this paper, criterion d 1 will be used. 

5 Experimental  Results  

Three set of larva samples of ages 2, 11, and 30 days, respectively, have been 
chosen for classification. Contour of the shell have been extracted in the way 
described in Section 2. For each of these contour, Fourier Descriptors are calculated. 
Because of the simple shape of the larvae the decomposition is reduced to 10 
significant components, which altogether form input database for the classification. 

In this work, two-layer feedforward neural networks have been trained by the well 
known backpropagation (bp) learning rule. Size of the input layer was fixed by the 
dimension of the feature space (i.e. 10), while output of the network consisted of 
three nodes. Fig. 2 illustrates such an architecture. 
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Fig. 2. Architecture of the network 

In a classical MLP layout, choice of  neurons for hidden layer is up to the network 
designer. In this sense, an optimal architecture can be found as the smallest sized 
network still performing well on training and test data, respectively. Different 
approaches are possible towards this end. First, one can proceed manually by doing 
experiments on a collection of  networks having different number of  hidden layer 
neurons and keeping track of classification results for each. Among all these 
architectures the optimal one can be easily selected. 

In a second phase of  experiments we can accept a more automated algorithm in 
that a relatively large network is set up at the beginning and an iterative node pruning 
process is allowed to eliminate less significant nodes (see description in Section 4.1). 
During this procedure both input and hidden layer neurons were eliminated until an 
optimal architecture is reached. In this state of  the NN, removal of  a node results in 
no additional gain in overall system error. Results of  these experiments are 
summarized in Table 2. It is interesting to remark that these results are in good 
accordance with those found by the simple step by step approach. For instance, a 
simple eigenvalue- eigenvector analysis can show that majority of  discriminatory 
information tends to be concentrated in the first few descriptors. Thus, neglecting, 
say, three of  them, and keeping only the first seven descriptors, 94.5 % of the overall 
information content can be retained. As a result, three corresponding input nodes can 
be eliminated from the network, which justifies the results found by the node pruning 
procedure (see Table 2). 

Original 
network 

structures 

10- 15 -3 
10-11-3 
10-8-3 
10-5-3 

Optimal structure 
detected 

(after pruning) 

7 -2 -3  
7 -2 -3 
7 -2 -3 
7 -2 -3  

Number of 
iterations 
needed 

360 
365 
374 
357 

Learning file 
recognition 

rates 

1.00 

1.00 

1.00 

1.00 

Test file 
recognition 

rates 

0~847 
0~847 
0.847 
0,847 

Table 2. Results obtained by node pruning. Different initial network sizes have been 
considered; training has been stopped after system error decreased below 0.0001 . 
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The third approach is based on the revealed relationship between statistical 
discriminant analysis and error minimization performed by the NN (see Section 4.2 
for details). According to this approach, internal separability of data during 
successive iterations increases in parallel with the decreasing tendency of overall 
system error. This phenomenon could be clearly observed during our experiments. In 
Fig. 3a, separability criterion (equ. 4.5) together with the squared system error have 
been represented for a network with two hidden neurons. Fig. 3b. depicts the same 
quantities for a network with three hidden neurons. In fact, observing the separability 
criterion in case of different architectures allows to inspect NN performance in a 
global scale and makes it easier to select among all the explored architectures the best 
possible one in terms of optimal data separation. The training process can be then 
stopped after a suitable amount of separability in the data is achieved. Indeed, 
possibly high data separability is of primal importance in order to have good final 
classification rates. This method can, thus, facilitate the optimal choice of network. 
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(b) 
Fig 3. Internal separability of data and normalized system error vs. number of iterations. 

(a) network with 2 hidden neurons (b) network with 3 hidden neurons 

5 Conclusions 

Recent research has shown that neural networks can be remarkably well applied to 
various pattern classification problems. In a good deal of applications, however, one 
can hardly find direct relationships between network dimensions and problem 
complexity. Particularly, the number of hidden neurons chosen for the network can 
have direct influences to classification performance. 

This experimental study concerns the age discrimination of lamellibranch larvae 
using a two-layer feedforward neural network trained by the backpropagation 
learning rule. In the preprocessing p al~e, boundary of the patterns are described using 
a radial curve parametrization techn!que. 

In this study, we present different techniques to achieve optimal performance for 
the classifier. First, an iterative node pruning algorithm is used to reduce the network 
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to a reasonable size. Results are compared to conventional methods. An interesting 
phenomenon is also displayed, in that input layer neurons are eliminated in order to 
increase NN performance. In the second phase, by taking advantage of discriminant 
analysis techniques, we test different network architectures and show how to select, 
among all these architectures, the one which assures the highest data separability and 
results in the best classification rates. 
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