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A b s t r a c t .  In this paper we study the problem of the occurrence of cy- 
cles in autoassociative neural networks. We call these cycles dynamic 
attractors, show when and why they occur and how they can be identi- 
fied. Of particular interest is the pseudo-inverse network with reduced 
self-connection. We prove that it has dynamic attractors, which occur 
with a probability proportional to the number of prototypes and the de- 
gree of weight reduction. We show how to predict and avoid them. 
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1 I n t r o d u c t i o n  

Autoassociative neural networks, like those introduced by Amari [1], Koho- 
nen [2], Hopfield [3], Personnez [4], are intensively used for pattern recognition 
and low-level computer vision problems [5, 6, 7]. These problems include iden- 
tification and categorization of faces, computation of optical flow, static and 
motion stereo, image restoration, and other ill-posed according to Hadamard [8] 
problems. What  makes these networks attractive is 1) their cooperative com- 
putation, which provides not only massive parallelism but also a great degree 
of robustness, 2) analogy to biological nervous systems and 3) fast learning and 
evaluation. 

The self-organizing feature of these networks is at tr ibuted to their ability 
to converge from an arbitrary state to a stable state, which we will call a static 
attractor. A state can be a vector of pixel intensities or a vector of facial features, 
with faces to be "stored" as static attractors, as in face recognition [9], or it can 
be a vector of possible values of the unknowns of a problem, with attractors 
corresponding to the solutions of this problem, as in computer vision [6]. The 
number of static attractors determines the capacity of the network, which is the 
number of prototypes a network of size N is able to recognize. 

It is known that when the number of attractors exceeds a certain boundary, 
the network may loose the ability to converge to desired attractors. For the 
networks learnt by the Hebbian rule (as in [3]) this boundary is 0.14N and for 
the network learnt by the pseudo-inverse learning rule (as in [4]) it is 0.hN. If 
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other learning rules are used, the network may converge not to a stable state but 
to a cycle of a number  of states. These cycles are referred to as dynamic attrac- 
tors. More specifically, cycles may occur when the network with non-zero self- 
connection (Cii ¢ 0) evolves according to the synchronous update rule [10, 11]. 
This is the case for the networks Zhou and Chelappa [6] use for computer  vision 
problems and this is also the case for the network suggested by Gorodnichy [12], 
which exhibits an improved capacity of up to 0.75N and which is of interest in 
this paper. 

It is important  to be aware of the dynamic at tractors  so that  they can be 
identified and avoided. 

In this paper,  we show first when and why dynamic at tractors  occur in au- 
toassociative networks. Then we focus our attention on the network considered 
in [12, 13], which is the pseudo-inverse network with reduced self-connection. 
We prove that  this network has dynamic at tractors  and show how to predict 
and avoid them. 

2 T h e  N a t u r e  o f  A t t r a c t o r s  

2.1 T h e  M o d e l  

The network consists of N mutually interconnected two-state neurons y~ : Yi E 
{ + 1 , - 1 } .  The evolution of the network in t ime is determined by a synchronous 
update rule 

y (t + 1) = sgn[s (t) - bi] = { s i ( t )  bi, if • ~i ( t )  > b~ 
- ( s i ( t )  - hi), otherwise (1) 

where si (t) = EN=I (:ijYj (t) is a postconnection potential and bi is a threshold of 
a neuron. Cij are interconnection weights, which are assumed to be symmetric,  
i.e. Cij = Cji, with self-connection C--,,, not necessarily being zero. 

In vector form the update  rule can be rewritten as 

Y( t  + 1) = sgn[S(t) - U], S(t) = CY( t ) .  (2) 

Vector Y(t)  is referred to as a state of the network and matr ix  C: N x N  is a 
weight matrix. The weight matrix is calculated from a requirement tha t  a set of 
prototypes V1, ..., V at be static at t ractors  of the network. One way of achieving 
this is to use the Hebbian, outer product,  learning rule: C = -~VV T, where V 
is the matr ix  made of column prototype vectors. 

In this paper, in Section 3, we consider another rule, called the pseudo-inverse 
learning rule, which exhibits much better  information-retrieval capabil i ty than 
the Hebbian one [1, 4], and which is defined as C = V V  +, where V + is the 
pseudoinverse of matr ix  V.  The iterative formula 1 of this rule is 

-,. ,  , . . , _ ,  - - s 7 )  
('ij = ,.~j + E2 , if > O, (3) 

1 See [14] for the derivation of the formula. 



240 

where E 2 - - I I c r n - - l v  m -- V ~ t l  2 = N - E ~ = I  vi '~'sim and "Srnk = 2N=l  y,rn--l, Jik Via. 
If  E 2 = 0, the weight m a t r i x  remains  unchanged.  

2.2 T h e  D y n a m i c s  

First ,  let us prove the following len~lrna concerning the dynamics  of  the au toas-  
soeiat ive network described in the previous section. 

L e m m a  2.1.  As a result of free evolution, the autoassociative network with sym- 
metric weights and zero threshold may converge to a cycle - dynamic attractor. 
In this case the dynamic attractor consists exactly of  two .states. 

Proof. Consider  the "energy" funct ion 2 defined as 

1 g 
E(t) -- - 1 y T ( t ) [ S ( t -  1) - B] = - ~  E ]s~(t-  1) - b~[. (4) 

2 
i = l  

Using Eq. 2, t ha t  y T s  = s T y  and C = C T we have 

y T ( t )  [S(t - 1) - B] = y T ( t ) C Y ( t  - 1) - y T ( t ) B  = 
v T ( t  -- 1)S(t) - y T ( t ) B  = y T ( t  + 1)IS(t) - B ] -  (5) 
[ y T ( t  + 1) -- Y T ( t  -- 1)] * [S(t) - B] - [ y T ( t )  -- y T ( t - -  1)]B. 

Subs t i tu t ing  this equat ion  into Eq. 4 yields: 

H(t--l,t+l) H(t-l,t) 

E(t) = E(t + 1) + tsh(t)-- bhl+ yh(t)bh, (6) 
h.~ l  h = l  

where H ( t -  1, t +  1) is the n u m b e r  of  such neurons Yh tha t  y h ( t -  l) # yh( t+ 1). 
As can be seen, in the absence of the threshold (i.e. when bi = 0) the 

"energy" f lmction is monoton ica l ly  decreasing,  

E(t  + 1) < E(t)  (7) 

And  since there is a lower bound:  
N N 

1 
i n f (E( t ) )  = - ~  E E ICiJl ' (8) 

i = 1  j = l  

in the long run the network will converge to a s ta te  such tha t  the second t e rm 
of Eq. 6 becomes zero. This  is a~hieved when Y ( t  - 1) = Y ( t  + 1). However,  
this does not  imply  tha t  the subsequent  s t a te  Y( t )  is the s ame  as Y ( t  - 1). 

Thus ,  out  of  all 2 N states ,  in which the network can be, there are some s ta tes  
y s t  which are s ta t ic  a t t rac tors ,  i.e. Y ( t - 2 )  --+ Y ( t - 1 )  = Y ( t )  = y , t ,  and  there 
are also some s ta tes  y a l  yd2  which fo rm a d y n a m m  a t t rac tor ,  i.e. Y ( t  - 2) -+ 
y ~ l  ~ y d 2  ~ y d l  _+ yd2 .  T h a t  is, an a t t r ac to r  of  the au toassoc ia t ive  network 
is ei ther  a s ta t ic  a t t r ac to r  consist ing of one s table  s ta te  or a d y n a m i c  a t t r ac to r  
consist ing of  two states .  [] 

2 Note that  this "energy" function is different from the conventional energy [3, 6] 
defined as E . . . .  (t) - --½YT(t)[S(t) - B]. 
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GenerMly speaking, the fact that  the cycles of autoassociative networks are 
of length 2 has been shown before by Frumkin and Moses [15], but their proof is 
based on the presumption of the deterministic nature of the evolution process. 
Also, it does not show what influences the occurrence of cycles. On the other 
hand, our proof of the Lemma  shows this. In particular,  one can see how the 
threshold influences the dynamics. 

In the case of a non-zero threshold, due to the third term in Eq. 6 one can 
obtain that  1) if bh < 0.51Shl, then the network converges to states Y which 
have components Yi such that  yibi < 0; and 2) if bh >_ 0.5lSh], then the network 
does not converge at all. This allows the increase of the at tract ion radii of 
some at tractors,  which is the basis for the adjustable threshold networks (their 
description can be found in [16]). 

2.3 U p d a t e  f low t e c h n i q u e  

The  probabil i ty of being trapped by a spurious at tractor,  either dynamic or 
static, increases with the number of prototypes [12, 14]. While the number  of 
prototypes is small (much srnaller than the capacity of the network), dynamic  
at t ractors  may  not be observed, as in [6, 7]. Yet, when the number  of prototypes 
is large, their existence is observed more often (see [12]). In this case, in order to 
prevent infinite iterations, one needs to know the way of identifying them. The 
above lemrna shows an easy way of doing it. All we need to do is to store the 
indices of the updated neurons till the next update. If in the next update  they 
are the same, we are t rapped in a dynamic at tractor.  

Previously, we introduced an update flow technique for updat ing a state of 
a network [17]. It is based on storing a buffer of neurons updated in a current 
iteration rather than a vector of all neurons. This technique is proved to be 
more preferable on account of its high evaluation speed and suitability for par- 
allel implementat ion,  which is due to processing only the da ta  that  has been 
changed since the last iteration. As we can see now, this technique has one more 
advantage - -  it does not need extra processing required for the above suggested 
checking for dynamic attractors.  

3 P s e u d o - I n v e r s e  N e t w o r k  W i t h  R e d u c e d  S e l f - C o n n e c t i o n  

3.1 O c c u r r e n c e  o f  D y n a n l i c  A t t r a c t o r s  

In [4] it has been shown that  the pseudo-inverse network, i.e. the network 
designed with the pseudo-inverse learning rule (Eq. 3), does not have cycles, 
despite the fact that  its weights are symmetr ic  3. Recently in [12, 13], it has 
been shown that  partial reduction of self-connection described as 

• ' = C . .  ( i # j ) ,  (9 )  c;i=D C., (0<D<I); 

'~ In this section we consider the threshold equal to zero. 
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improves significantly the retrieval capability of this network. In particular, 
it increases attraction radii and allows the network to retrieve up to 0.75N 
prototypes. 

However, the deviation from Eq. 3, results in changing the dynamics of the 
network - -  according to the lemma, dynamic attractors may now occur. And 
as our simulations show they do occur, especially for large M (M > 0.6N) and 
small D (D < 0.1). Let us show theoretically why this happens. 

T h e o r e m  3.1. The number of dynamic attractors in the pseudo-inverse net- 
work increases with the number of prototypes M and the degree of weight reduc- 
tion a 2= l -  D. 

Pro@ For {yd l ,  yd2}  to be a dynamic attractor the following conditions must 
be met 

{y41V "N (-~_dl 
z Z.~j----1 "ijYj < 0 

. d2 V "~N ( q  . d2 f o r  Vi E ~,  (10) 
gi ] ~ j = l  ~'ijYj < 0 

where/2 is the set of the indices of oscillating neurons, i.e. D = {i:  ydl = _yd2}. 
Adding one equation to another we get 

N N 

e l , v - ' . , ,  dl " JY) ) = 2Yg 1 '¢sYJ < 0 Y~ t2_., ~ijY~ _ ~ C a d2, C a at 
j = l  j = l  je{/~} 

Summing this equation over all oscillating neurons we have 

(11) 

2 ~ y d l ~ c ,  dl C'  dl dl 

iel2 jeg2 iel~ jeg2 

and using Eq. 9 we obtain 

(12) 

k,ijYj(7, dlydl < (1 -- D) Z Vii. 
i,jEJ~ iE12 

(13) 

Since for the pseudo-inverse learning rule Cii --, M (see [12]) and the right-hand 
side of Eq. 13 is always positive, we obtain that  the probability of { y d l  yd2} 
to be a dynamic attractor is proportional to M and a - 1 - D, q.e.d. [] 

Whether or not the network will be trapped in a dynamic attractor mentioned 
by the Theorem, depends upon the number of states the network passes through 
during the evolution, i.e. the number of iterations. The further the initial state 
of the network is from its final state (i.e. the greater initial noise of a pattern to 
be retrieved), the more iterations it takes to reach this state. This explains why 
the number of cycle occurrences increases not only with M and a but also with 
the value of initial noise. 
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E x p e r i m e n t s  Figure 1 shows the probabi l i ty  of occurrence of dynamic  a t t rac-  
tors as a funct ion of D and initial noise H0,  as observed in s imulat ions - -  in the 
area below the lines, they occur with a probabi l i ty  not greater than 1%. The  
s imulat ions were carried out with a network of  100 neurons. M r a n d o m  vectors 
(M = 20, 40, 60), in which 40 out of 100 neurons were clipped r andomly  to be 
in the " + l "  state and the rest of neurons were in the " - 1 "  state,  were used as 
prototypes .  The  initial state was obtained by r andomly  inverting H0  neurons of  
a prototype.  The  figure presents da t a  averaged over l0 different p ro to type  sets 
and 10 different noise implementa t ions  for each value of  noise H0.  As it can be 
seen, cycles are indeed observed more  often for large values of  M,  small values 
of  D and large values of  noise H0. 

O 
"1"  

30 

20 

10 

Dsafe=f( M, HO) 

1 I I 1 . . . .  

0 0.1 0.2 0.3 0.4 0.5 
D 

Figu re  1. The likelihood of occurrence o] dynamic attractors as a function of D and 
initial noise HO. In the area below the lines they occur with a probability not greater 
than 1 ~. 

3.2 P r e d i c t i n g  D y n a m i c  A t t r a c t o r s  

Simulat ions show that  when a cycle occurs, the number  of oscillating neurons 
in mos t  cases equals two 4. From Eq. 13 in the proof  of  the Theorem we can 
find for which D this happens.  For the set ~2 consisting of  two indices i and j 
(a9 = { i , / } )  f rom Eq. 13 we have 

2ICijl > D(Cii  + Cj j ) .  (14) 

Using est imates  of Cij and (7~i obtained in [12]: 

., M ,2 M ( N  - M )  (15) 
(Jii ~ 5 '  ( ' i j  N 3  

4 To be more exact, the number of oscillating neurons can vary from one to Mmost N, 
although two neurons are observed in most eases except when D = 0. 
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~ 2  

N - - M  For N = 100 and M = 0.5, for example, we we have for D: D 2 < ¢:~, -- NM • 

obtain that  a cycle will most  likely occur when D < 0.1, which is in agreement 
with the experimentM observations. But  occurrence of cycles also depends upon 
the initial noise, as was mentioned above. 

In many  applications the value of the initial noise, i.e. the distance from the 
initial state Y to the main at tractors V 1, . . . ,V M, is not known a-priori. Then 
in order to predict a cycle, we may use the Euclidian distance E between the 
vector Y and the subspace spanned by prototype vectors, which can be found 
(see [4]) as 

N 
E 2---" I I C Y - Y l l  2 = N - - y T s  = N - E y i s i .  (16) 

i--1 

The value of E 2 ranges f rom 0 to N and its calculation does not require a lot of 
processing time. If E 2 appears to be large, meaning that  the initial noise is large, 
than additional measures to handle cycles, like that  mentioned in Section 2, can 
be undertaken. 

Other methods to prevent cycles may include 1) using asynchronous dynamics 
which, although being slow, does not produce cycles [3, 10] or 2) using the 
parallel dynamics with memory  terms suggested in [18], where instead of Eq. 1 
the following synchronous update  rule is used: 

y (t + 1) 1 1 = sgn[~si(t)  + -~si(t -- 1)]. (17) 

For this rule, according to [18], cycles are very rare. 

4 C o n c l u s i o n s  

In this paper we have considered autoassociative neural networks, which are 
intensively used for pat tern  recognition and low-level computer  vision problems, 
and studied the occurrence of cycles, which is an impor tant  problem concerning 
these networks. These cycles are referred to as dynamic attractors.  We have 
shown theoretically when and why dynamic at tractors  occur. In particular, we 
proved a l emma that  if a dynamic at t ractor  occurs, then it consists of exactly 
two states. This led us to a technique which allows us to identify them. 

We have also shown that  there exist dynamic at t ractors  in the pseudo-inverse 
network with reduced self-connection and that  they occur with a probabili ty 
proportional to the number of prototypes M and the degree of weight reduction 
a = 1 - D. We demonstrated how to est imate a coefficient of self-connection 
reduction D which can lead to the occurrence of cycles and suggested an addi- 
tional criteria, based on the distance between an initial s tate and the prototypes,  
which can be used to predict the occurrence of cycles. 
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