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A b s t r a c t .  If we consider edge detection as a classification problem, then 
it seems reasonable that context should play an important role in its 
study. In fact, it is frequent that neighboring pixels exhibit a strong 
inter-dependence. In this paper we propose a recurrent neural network for 
edge detection, which uses a special architecture intended to incorporate 
contextual information during operation. Some experimental results are 
presented, showing its effectiveness. 

1 I n t r o d u c t i o n  

Probably, the most traditional approach to edge detection is based on a filtering 
and differentiation paradigm. It is well known that  edges are characterized by 
abrupt changes in the intensity profiles of images and, therefore, spatial deriva- 
tives of the light intensity can be helpful in detecting and localizing them. How- 
ever, it is also known that  the differentiation of digital images is an ill-conditioned 
problem, requiring regularization [1]. 

A common approach to regularization is to apply low-pass filtering to the 
data. In general, this implies that  the high frequency components of noise are 
attenuated, allowing a more convenient differentiation. Most of the edge detec- 
tion filters can be analyzed under this perspective, i.e., composed of low-pass 
filtering followed by a differentiation operation. 

There are two criticisms that  can be made to the linear filtering approach 
to edge detection. First, although it is true that  low-pass filtering reduces high 
frequency noise, it is also true that  it attenuates edges. Second, these filters were 
designed for specific types of edge profiles (typically, step edges), which may not 
be appropriate for some classes of images. 

In [2, 3] we presented some results on edge detection using neural networks. 
Since these systems are simultaneously nomlinear and adaptable, they are in a 
good position to attack both problems that  we mentioned. In this paper we ex- 
tend that  work. However, instead of regarding the neural networks as non-linear 
filters, as in [2, 3], we study them as pattern recognition devices. An important 
advantage of this approach is that  contextual information can be handled in a 
more convenient way. 
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Next, we introduce some notation and definitions related to images and edge 
maps. Also, we discuss some data pre-processing issues and the topology used 
for the input supports of the neural network edge detectors. 

Defini t ion 1 (Image) We define an image, g, as a mapping CxT~ g ~ I ,  with 
def  d dof {O, I , . . . ,Nc  - 1}, n ao~ {O , l , . . . ,Nn  - 1}, Z = {O , l , . . . ,Nz  - 1}, and 

Nc ,Nvz ,  N I  E 5t. The (c,r) E d xT~ are coordinate pairs in a Cartesian system, 
where c denotes the column and r denotes the row. 

We use a representation of edge maps similar to that of [2, 3], i.e., based 
on the inter-pixel sites (cracks). The next definition describes the set of cracks 
(interstitial mesh) associated with an image. 

Defini t ion 2 ( Inters t i t ia l  mesh)  We define the interstitial mesh, A4, associ- 
ated with image g, as 

A//do~ {(0, c,r) :  (0, c,r) e {- ,  I} x {0, . . . ,Nc -2} x { 0 , . . . , N n - 2 ) U  

{ - } x { N c  - 1 } x { 0 , . . . , N n -  2} U { I } x { 0 , . . . , N c  - 2}x{NT~- 1}} 

where (c, r) denotes the image element that refers to the interstitial mesh element 
(O,c,r), and ~ denotes the orientation of that mesh element: t? = - denotes 
horizontal orientation and ~ = I vertical orientation. 

Defini t ion 3 (Edge map)  Considering g an image and M its interstitial mesh, 

we define an edge map, ~, as a mapping A4 - ~  [-1, 1]. 

Defini t ion 4 (Ideal  edge map)  We define an ideal edge map, ~ ,  as an edge 
map for  which 

• (e,c,r) e {-1,0,1},  V(e,c,r) e M 

where - 1  and 1 represent active edge elements (the sign encodes edge orienta- 
tion) and 0 represents inactive edge elements. 

To ensure invariance to changes in the average intensity of the images, we 
feed the neural network with the first differences calculated using adjacent pixels, 
instead of the intensity values: 

Defini t ion 5 (Initial  edge map)  Considering g an image, we define an ini- 
tial edge map, ~,  as an edge map for which 

= 

g ( c , r ) - g ( c + l , r )  f o r O =  I 
2 5 - 1 

g(c, r) - g(c, r + 1) for 0 = - 
2 5 - 1 

where b denotes the number of bits used in the representation of the intensity 
values, i.e., 2: -- {0, 1, 2 , . . . ,  2 b - 1}. 
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Figure 1 shows the topology of the input supports of order 0, 1 and 2 of the 
neural network edge detectors addressed in this paper. Note that the support of 
order 1 is the same as the one used in [2, 3]. Also note that the construction of 
these supports obey to a quite simple and regular rule, and that the number of 
cracks needed to build a support of order n > 0 is given by N ~ ( n )  = (2n + 1) 2. 
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Fig. 1. Topology of the input supports of order 0, 1 and 2, used by the neural network 
edge detectors addressed in this paper. 

In what follows, we present a recurrent neural network topology for edge 
detection, intended to incorporate contextual information. Its operation vaguely 
resembles another context incorporation paradigm, known as "probabilistic re- 
laxation'. However, although not discussed here, we argue that the method pro- 
posed in this paper avoids some important drawbacks of probabilistic relaxation, 
and also offers some additional advantages. 

2 A r e c u r r e n t  n e u r a l  n e t w o r k  f o r  e d g e  d e t e c t i o n  

A possible way to address edge detection in a framework of pattern recognition 
is the following. Let x be a feature vector containing relevant information related 
to the problem of finding if a contour crosses the image area from where x was 
obtained. We represent by wc the presence of an active edge element 3, and by wc 
the absence of an active edge element (or presence of an inactive edge element). 
The a pos ter ior i  probability that vector x belongs to class We can be given, for 
example, by Bayes formula [4]. 

One of the most recent techniques that is able to provide direct estimates 
of the a pos ter ior i  probabilities is based on a relatively broad class of artificial 
neural networks. Several authors provided proves showing that, under certain 
conditions, the output values of a neural network are approximations of a pos-  

ter ior i  probabilities or some combination of them (see, for example, [5-9]). 
We denote by H the neural network, and by ~ -- H(x) the estimate of the 

a pos ter ior i  probability that x belongs to class Wc. In this paper we will not go 
further into details of how the neural network edge detector was implemented 
(see [10]). Instead, we will focus on the issue of context incorporation, which is 
more related to the problem of finding an appropriate feature vector. 

An active edge element is an edge element belonging to a contour. 
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Our objective is to increase the amount of information used for the classifica- 
tion of the edge elements, avoiding, at the same time, increasing the size of the 
support  regions and, consequently, increasing the number of parameters of the 
neural network. Let us consider the neural classifier as being made, internally, 
of a pyramid of sub-systems, as displayed in Fig. 2. 

\ I 

Stage 2 Stage 1 • • • Stage N 

= l-I (x) 

Fig. 2. Schematic representation of a neural network classifier built of a pyramid of 
sub-systems. 

Although externally the feature vector is x, from an internal point of view 
each sub-system Hi, i = 1 , . . . ,  P only "sees" part  of it. Therefore, the dimen- 
sionality of the classifier is reduced according to the dimensionality of the sub- 
systems, maintaining, simultaneously, a large input context. 

There are some comments that can be made about the structure depicted 
in Fig. 2. First, its pyramidal shape suggests tha t  the information conveyed by 
x is integrated, stage after stage, until the final decision is performed during 
the final stage. This can be seen, also, as an iterative process, where each stage 
corresponds to an iteration done towards a final classification. Although, in prin- 
ciple, we can have arbitrary sub-systems, the case where they are all equal, i.e. 
Hi -- Yij, Vi, j ,  is particularly interesting. In that  case, the classification process 
is simplified to the iterative use of the same sub-system, as many times as the 
number of stages (N). 

We would like to note that,  by imposing restrictions to the architecture of 
the neural network we may also limit the overall capacity of the classifying 
system. Therefore, there is a trade-off between the minimum dimension of the 
sub-systems and the potential capacity of the structured system to implement 
the classifier. Unfortunately, that  compromise is not easy to determine. 

Figure 3 shows a more detailed example (although quite simple) of the type 
of system that  we used for edge detection. As can be seen, the sub-system Hsub 
has two different kinds of input information. On one hand, it receives information 
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Fig. 3. Schematic representation of an example of a neural classifier based on two 
iterations of the sub-system IISu b. 

from (part of) the feature vector, x, that we will refer to as evidence. On the 
other hand, the sub-system has access to information related with context, given 
by the previous stage (iteration), i.e., y(0, where t denotes the number of the 
stage (iteration). By convenience, we define y(0) ~f x, i.e., the initial contextual 
information coincides with the evidence itself. 

Let us analyze more in detail the example of Fig. 3, assuming that it corre- 
sponds to the problem of classifying edge elements. The initial aim is to classify 
the edge element characterized by feature vector x2. Observing the output stage, 
and ignoring the presence of the input y~l), then IIsub could be used to perform 
that classification. On the other hand, we want to use more available evidence 
without compromising, at the same time, the dimensionality of the problem. Let 
us admit that Xl and xs are feature vectors of two spatially neighboring edge 
elements, in relation to the one we are classifying. Then, assuming that the out- 
put of the first stage (i.e., y~l)) is a rough classification of those three elements, 
we can regard the second (and last stage) as the classification of the central edge 
element, improved by the previous provisional assignment of classes. Therefore, 
although indirectly, the whole feature vector x is used in the classification. 

The amount of context that is introduced can be easily controlled by the 
number of stages (iterations). Since the system presents a pyramidal structure, 
each stage that is added implies the enlargement of the context, i.e., the increase 
of the dimension of x. The advantage of this solution is that the dimensionality 
of the classifier, which is determined by the dimension of the vectors x /and  y~0, 
is, generally, small. 

For the experimental results that we present in this paper, we chose a sub- 
system characterized by an input evidence with the topology of a support of order 
1, and also the same configuration for the contextual input. This means that the 
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Fig. 4. Architecture of the sub-system that we used, which contains a block (Hctx) 
that processes contextual information, and a block (IIEvd) that processes information 
obtained from evidence. 

neural network sub-system has 18 inputs and one output,  and an architecture 
identical to that  shown in Fig. 4. Blocks IIctx and HEvd are two arbitrary neural 
networks, connected by one output unit. Note that ,  by separating the two blocks, 
we are able to better control their individual capacity. 

Both xi and y~t) have the structure of a support region of order 1, obtained 
from the initial edge map, (I), and the edge map under construction, ~(t) re- 
spectively. The output value of tile sub-system IISub corresponds to the element 
of the region of support associated with yl t+l), having coordinates (0, 0, 0), i.e., 
the central element. 

Figure 4 displays a recurrent system characterized by a discrete and syn- 
chronous temporal evolution. After appropriate training, it is used to process an 
image in the same way as a convolution filter, as many times as the number of 
iterations for which it was designed. It is not difficult to see that  a convenient 
algorithm to perform the training is back-propagation through time [11, 12]. In 
fact, the unfolding of the recurrent system that  we used in Figs. 2 and 3, to ex- 
plain how it works, is also the principle used by the back-propagation through 
time training algorithm. 

3 E x p e r i m e n t a l  r e s u l t s  a n d  c o n c l u s i o n s  

In this section we present some results of edge detection obtained with the system 
that  we just described. In this paper, we are most interested in showing tha t  the 
iterative method proposed improves the classification, when compared to a non- 
iterative approach. In other words, our aim is to show that,  indeed, it is able to 
incorporate context. 

Training was performed using 25 000 randomly extracted examples from the 
image displayed in Fig. 5(a). This (256 × 256 pixels, 8 bits per pixel) image is 
built of circles and triangles with gray levels obtained from sampling of sloped 
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Fig. 5. (a) Synthetic image used for training. (b) Synthetic image used for testing the 
neural network and (c) its ideal edge map. 

planes. Also, some Ganssian blurring and random noise were added. Another 
image with similar characteristics was used for testing (see Fig. 5). 

We trained recurrent neural networks for one, two and three iterations. The 
one-iteration network is, in fact, non-recurrent, and it serves as comparison. For 
all the sub-systems (see Fig. 4) we used neural networks with four units in the 
hidden layer to implement the IIEv d module, and with two units in the hidden 
layer to implement the Hctx module. 

Figure 6 shows edge maps obtained with the neural network edge detectors. 
It is not difficult to observe from those maps that  recurrence improves, in fact, 
the quality of the edges detected. Going from the non-recurrent (one iteration) 
network to the neural network designed to perform three iterations we can ob- 
serve that ,  in general, multiple responses are reduced (i.e., the edges are thinner) 
and some gaps are filled (i.e., connectivity improves). 

We can conclude, therefore, that  the recurrent system that  we propose in this 
paper successfully uses the context that  becomes available, iteration after itera- 
tion. It  is important  to note that  we did not need to make any assumptions about  
the statistics of the data. Apart  from the architecture of the neural network, all 
other information is collected from the training data, during training. 
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