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Abst rac t .  This paper presents a global method to represent objects 
invariantly under Euclidean motions using Lie algebra of perceptional 
vector field of the objects. We focus on the linear Lie sub-algebra of the 
tangent or normal Lie algebra of objects and use pure local information 
in these Lie algebra to represent global shapes. It is shown that this 
simple subalgebra can represent algebraic shapes and a much wider class 
of non-algebralc shapes as well. In this way, an occlusion-robust and fast 
recognition method is derived. 

1 I n t r o d u c t i o n  

Invariant 3D object representation is a fundamental issue in object recognition, 
CAD modeling, computer graphics and recently in object-based image coding. 
Most 3D object representation methods have been proposed so far in order to 
represent free 3D shapes more efficiently than polyhedron representations, based 
on extracting local or semi-local invariant features of objects from their planer 
intensity images or 3D range images for template matching[i][2]. 

A popular approach is to use point-wise differential invariant indexing, e.g. 
curvatures and torsions or the extended Gaussian maps. However, since the 
global shapes are represented as a loose collections of local features, e.g. the 
interpretation table, one has to verify a large number of hypotheses on the in- 
terpretation tree before reaching the correct matching. 

A semi-local representation is to employ algebraic invariants of algebraic 
curves or surfaces, e.g. conics. However, since polynomial approximation is lo- 
cally valid only, i.e., over small neighborhoods, a great deal of patches will often 
be required to represent a sculpted object. Thus, once again exhaustive search 
in a large interpretation table is necessary. 

Thus it seems desirable to have certain global representations for objects. 
Unfortunately, it is unlikely that there could exist any finite-parameter models 
of such representations for arbitrary objects. Approximation models such as 
generalized cylinders or super-quadratics can be used. However, it is usually 
difficult to find the invariant features for such non-algebraic shapes, especially 
to find the complete set of invariants in order to uniquely determine the objects. 
Besides~ a global representation also intends to be vulnerable to occlusion. 
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Tile approaches to define invariants of objects with respect to the transfor- 
mation groups as Lie groups seem attract ive in that  it may  define global dif- 
ferential invariants based oi1 local features[i] [2][3][4]. However, although these 
works take advantage of certain nice properties of the Euclidean1 transformations 
as Lie groups, they do not make any serious use of intrinsic properties of the 
objects themselves. Therefore, in order to obtain invariants for an objects, one 
has to solve a complicated P D E  under each transformations. The task to find 
such general sohltion is in fact so difficult for arbi trary objects that  until now it 
seems hard to obtain explicitly any truly new and nontrivial invariant by these 
approaches. 

In this paper, we address ourselves to 3D objects as 2D smooth surfaces 
which can be represented by Lie groups.In particular, we introduce a structure 
of Lie algebra to the tangent and normal vector fields of the object surfaces, 
then we consider not only the transformation groups as Lie groups, which are 
the classical groups, but the Lie groups which define the objects themselves as 
well. A novel approach is proposed to represent the shapes as Lie groups that  
are generated by the tangential or normal vector fields on surfaces of the objects 
which are their Lie algebras. Then invariance of the objects as Lie groups is 
considered under the action of the classical groups on these Lie algebras. With  
this neat structure, we can make a full use of the powerful relationship between 
Lie groups and Lie algebras, e.g., it is known that  the Lie group which we used to 
represent a global shape can be uniquely determined by purely local information 
in its Lie algebra. 

Even in this case. however, it still seems to be nontrivial for arbi trary Lie 
groups to find a flexible representation whose complete set of invariants can be 
easily calculated . In this paper, we restrict ourselves to a subclasse of the Lie 
algebras that  has simple representations, i.e., the linear Lie algebras, which we 
assume as the tangential or normal Lie algebras of the objects. The complete 
set of invariants can be easily calculated from image data  by solving a system of 
linear equations. Their robustness against noises can be achieved by implemen- 
tation of these recognition algorithms with the Hugh transform and the least 
mean square fitting method. 

Features of the proposed method also include robustness against occlusion 
since theoretically the global shapes can be uniquely determined from more than  
three points in 2D cases and four points in 3D cases on any small par t  of the 
surfaces of the objects. 

Also, these models extend a great deal of descriptive power of existing models 
for free shapes. In spite of the simplicity of these sub-algebras, we can cover 
enough wide classes of shapes, including algebraic shapes and non-algebraic ones. 

2 Object Representation by Linear Lie algebra of 
tangent and normal vector fields 

A Lie group M is a smooth manifold on which smooth operations (x,y)  ~-~ xy,  

for x , y  E M and x ~ x -1 are defined. It  is known that  a Lie group possesses, 
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as its infinitesimal generator, a Lie algebra of the left-invm~ant tangential vector 
fields on it, which is closed for an operation called Lie bracket and satisfies 
an equation called Jacobi identity. In other words, Lie groups are homogeneous 
spaces or integral flows generated by the Lie algebras, or by the tangential vector 
fields on their surfaces. 

We define the linear Lie subalgebra g with an infinitesimal generator as 

Z Z " £ = (  alix~'"" a"ix~) 0 = v r V  
i = l  i----1 0 - -~  

v =  • : = A = .  

\ an1 ann ] 

This g has a very straightforward representation as a map p : g -+ gin(R) = 
E n d ( R  n) : £ ~ A Thus, we know that  g ~ gin(R), which is the Lie algebra of 
GL,(R). 

Particularly, hereafter we consider the contours of objects of which the tan- 
gent or normal vector fields form linear Lie subalgebras. 

Our interest is in how the infinitesimal generators, instead of the contour M 
itself, change under a rotation. We wish at first to find the complete set of the 
invariants of the representation of g[,,(R) under SO,,(R). 

In the first place, it can be noticed that  when a shape, or equivalently, the 
generator v of its Lie algebra is subjected to a rotational transform R(O), the 
Lie generator becomes 

R(O)v(R -1 (O)x) = R(O)AR -x (O)x 

i.e., the representation of the linear Lie algebra is subjected to a conjugate action. 
In fact, it is known that all automorphisms of s[,~(R) (the Lie algebra of SL,~(R)) 
are adjoint actions or Ad-actions of SL,~(R) 

Qg := gQg-1, g e SL.(R),  Q e a [ . (R)  

Hereafter, we will consider a somewhat nmre general Ad-action, the action of 
the subgroup S 0 . ( R )  on gin(R). 

3 I n v a r i a n t s  o f  2 D  l i n e a r  L i e  s u b a l g e b r a  u n d e r  r o t a t i o n  

We now define a linear subalgebra g generated by the following basis in 2D case. 
Let {el,  e2, e3, e4} as basis generators. 

, e2 ~ X 2 X 1 , e 3  - - ~ x  2 , e 4  --~ OX 2.  

It is easy to check that  the above algebra g is a Lie algebra since it is closed 
under Lie bracket, i.e. Vei, e j  E g, [ei,ej] E g. Thus g ~ 0[2(//) 
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An arbitrary infinitesimal generator in g can be expressed as 

£ = (az l + bx 2,cxl + dz 2) -~r v = Ax  

If we choose another basis of g[2(R) as 

I =  (~01)  , H :  ( ~ _ _ 0 1 ) J =  ( O 1 : ) ,  K =  (0110) 

where I spans the radical part of i~[2 (R) and H, J, K span the semi-simple part. 
Then, an arbitrary representation A of £ splits as, 

a + d  I a - d  b + c  K b - c  
2 + - - ~ H + - - ~  + - - - ~ J .  A _  

T h e o r e m  1. For (oh) 
V A =  c d  Egt2(R) ,  

the orbits of A under Ad-action of SO2(R), O(A) = {g  R(°) I0  e [0,2r)} are 
1D ]oliations of gi2(R), each of them is uniquely specified by three invariants: 

= { ' / ,  7 ,  

AR(s) = 2 + 2 

w h e r e T = b - c , ' r = a + d , g = a d - b c ~ 0  r e [O, ~r ). 

Proof: First, we know that the orbit SO2\g[20 R has dimension dim O(A) = 
dim S02 (R) -  dim(center(SO2(R))) = 1, since center(SO2(R)) is  trivial. 

As we know, R E S02(R) is spanned by I and J, R(O) = cos0 I + sin0 J E 
{I, J}.  The subalgebra spanned by both I and J,  therefore {I, J} are Aa- 
invariant. Thus, we have (~-I + 7J )  as the rotationally invariant component. 
While H and K are not Aa-invariant, the submodule {H, K} is closed under the 
Aa-action. i.e. H R(~) : R(20)H, K R(°) = R(20)K 

~" "/ a ~ b+ CK~ Thus, A R(o) = ~ I  + ~ J  + R(20)( H + T j 

b+cf( E O2(R). (In fact, skew-symmetric subalgebra Note that P := -e~-AH + 2 - -  
{I, J}  and symmetric submodule {H, K} are the two disconnected components 
of O2(R).) There exists a 80 e [0, 21r) such that 

R(20)P = v/'r2 + ,/2 _ 45R(20 + 00)g. 
2 

From the above equation, 80 is only a constant translation on the orbit, so we 
can take a new variable 0 r = 0 + 0o/2, which proves the theorem. QED 
R e m a r k  1: The relative Euler angle 0 r between the observed object and the 
standard one in database can be easily calculated and used for pose estimation. 
R e m a r k  2: Theorem 1 and 2 below can be easily extended to Affine Lie algebras 
to accomodate translations. 
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4 Invariants of 3D linear Lie subalgebra under rotation 

Now we proceed to consider 3D objects or spatial curves and surfaces under 
action of a 3D rotation. For spatial curves, we assume that  their tangential or 
normal Lie algebra is the linear subalgebra 9. For spatial surfaces, we can also 
consider their tangential Lie algebras or tangent vector field, which are planar 
or 2D subalgebra. More conveniently, we may instead look at the normal vector 
fields of their tangent spaces, which are 1D subalgebras. Thus, we assume also 

,xi  o : : 1,2,3} that the linear subalgebra g is generated by following basis. 1 b-~7~*, :t = 
The above algebra g can be checked to be closed under Lie bracket. Then an 
arbitrary infinitesimal generator in g can be expressed as 

/~ = ?3Tv, V = A~e A e g [3(R)  

g has representation as a map p : g --~ g[3(R) = E n d ( R  3) : £ ~-~ ,4. 

T h e o r e m 2 .  ForVA e g[3(R), its orbit under the Ad action of S 0 3 ( R )  is a 3D 
/oliation o/ g~3(R), 

O(A) = {A R} = {R'AR°(R') T [ VR e S03(R)}  
here SO3(R) ~ n ° = n ° ( 0 ° , ¢ ° , ¢  °) = VU  T, 

S03(R) D R' = R'(0' ,¢' ,¢')  = UR T 

where U, V and A = diag{)tl, )t2, )~3} denotes the singular decomposition of A R = 
UT AV  with signs of the singular-values adjusted such that U, V e SOd(R) .  Here 
0° ,¢ ° , ¢  ° are Euler's angles of R ° = V U  T e SOd(R) .  Each orbit is determined 
uniquely by the complete set of invariants: 

inv(A R) = {A1, ~2, ~3, 0 °, ¢0, ¢0}. 

Proof: A generic orbit of S03 (R)\g[3 (R) has dimension dim O(A) = dim S03  (R)- 
dim(center(SO3(R)))=3. Or one can obtain the dimension of the orbit (.9(A) 
by calculation of the dimension of the tangent space of the orbit TAO(A) = 
{[A,B]IVB E ~03}. Thus, the orbits of the adjoint action of SOd(R)  are 3D 
foliation of 9D space of g[3(R), thus each of them is uniquely specified by 6 
invariants.(See Fig.l) 

For VA E g[~(R), we have the singular decomposition A = UTAV, where 
{hi} are A's singular values with signs adjusted such that  U, V are in SOn(R) .  
Thus, the representation of the considered Lie algebra under R E SOn(R)  be- 
comes A R = R U T A V R  T = (Rr)TKR~Here, K = A V U  T. Since the singular 
decomposition of any points on the orbit A R = ( UI) T A V ~ = RUT A V R T, where 
U' = URT,  V ' = V R  T. It is easy to see that R ( 0 ° , ¢ ° , ¢  °) = VU  T = V'(U')  T 
thus K is invariant on the whole orbit of A in g[3(R). 

Since such K uniquely determines the orbit and is 6 dimension, the set 
{A1, A2, A3, 0°, ¢o, ¢o} is the complete set of invariants of the foliations. QED 
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5 Comparison with algebraic shapes 

Weconsider the normal Lie algebra of a 3D algebraic surface defined by the fol- 
lowing polynomials. (2D curves can be dealt with similarly.) The normal algebras 
of 3D algebraic curves can also be obtained in the same way. 

F ( x , y , z )  = ax 2 + by 2 + cz ~ + dxy  + exz  + f y z  + gx + hy + iz  + j = 0 

V F  = 2b + = A x  + b 

f 2c 

Thus, one can see that  algebraic shapes can be represented by Affine Lie algebras. 
Notice that  using normal algebras, we always have the representation with a 
symmetric matr ix  A. 

In table 1, we take a comparison between the method using algebraic invari- 
ants and the proposed method. The linear Lie subalgebra, even as a simple kind 
of subalgebra, is able to represent all quadratic algebraic shapes, and far more 
rich classes of nonalgebraic or nonpolynomial curves and surfaces as well. 

Dimension of Shapes Algebraic shapes Linear Lie algebra 
2D 2 3 
3D 3 6 

Table 1 . Comparison of number of Invariants 

6 Implementation and Simulation 

The implementation of the proposed scheme is also easy in practice, by solving 
linear equations using the observed data of three (in 2D case ) and four (in 3D 
case) or more points on the object surface. 

Here we only show a recognition procedure of 3D objects. 
S t e p  1. Take normal unit vectors of 3D contour of the object from more than 
three points. 

{ ( x k , y k , z k ) ,  (ak,/3k,Tk)}, k = l , ' " , 4  

S t e p  2. We assume also dilation invariance so that  a can be fixed to 1. Then 
build matr ix  equations in elements of a representation A. 

flk = )~k d e Yk 
7k g h \ zk ] 

where Ak'S are scaling coefficients as before. 
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S t e p  3. Delete Ak from the above simultaneous equation to obtain linear equa- 
tions: 

IfllXl ~ --fllYl /~IZl alXl alYl alZl 0 0 0 I b \ 1 
}~2X2 --f12Y2 f12Z2 a2X2 o~2Y2 ~2Z2 0 0 0 C I 
f13Z3 --}~3Y3 ~3Z3 a3X3 ~3Y3 a3Z3 0 0 0 ~d 
f14X4 ---- --~4Y4 1~4Z40t4:g4 o~4Y40t4Z4 0 0 0 e 
~/IXl --71Yl --71Zl 0 0 0 OLIX I OZlYl OtlZ 1 

')'2x2 --"f2Y2 --72z2 0 0 0 ~2x2 a2y2 c~2z2 
"/3X3 --"/3Y3 --')'3Z3 0 0 0 Ot3X3 a3Y30t3Z3 

k 'Y4X4 j --')'4Y4 --'T4Z4 0 0 0 Ot4X 4 o~4y 4 a4z  4 \ i ' 

Solve the equations to estimate the representation A. 
S t e p  4. Use theorem 2 to calculate the set of invariants from derived in S t e p  
3, and do feature matching. 
R e m a r k  1 The two or three points on the 2D or 3D contours can be choosed 
almost arbitrarily, e.g., from some small or observable part  of the object under 
occlusion. As an advantage of the method, the global shape can still be recognized 
from these local and partial  features. 
R e m a r k  2: In order to gain numerical stability, one may use Hugh transforma- 
tion to estimate normal vectors and the least square fitting in solving the linear 
equations. 
R e m a r k  3: The shape represention by the linear Lie algebra can also be used as 
patches for more complicated objects. In that  case, the number of patches can 
be reduced and segmentation is also easy. One can divide the shape into seg- 
mentations within which the variations of invariants are under certain prechosen 
threshold. 
R e m a r k  4: Another problems remained is to investigate the class of shapes 
which are representable by the linear Lie algebras among all 2D and 3D shapes. 
It  seems to be theoretically difficult. So we tried this by simulation. Fig. 2 ,,, 9 
shown a par t  of the results for 3D case. When A is symmetric,  one will obtain 
algebraic surfaces such as ellipsoid in Fig.2, hyperboloid in Fig.3 and elliptic 
cone in Fig.4 etc. For nonsymmetric A, a large variety of non-algebraic surfaces 
can be derived e.g. as shown in Fig. 5~,, 9. 
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Fig. 1. Invariant space Fig. 2. Ellipsoid 

VA 
Fig. 3. Hyperboloid 

¢% 
Fig. 4. Elliptic cone Fig. 5. Nonalgebrahc shapel Fig. 6. Nonalgebraic shape2 

Fig. 7. NonMgebraic shape3 Fig. 8. Nonalgebra~c shape4 Fig. 9. NonaJgebraic shape5 


