
Adaptive Logic Networks for Facial Feature Detection 

D.O. Gorodnichy , W. W. Armstrong, X. Li 

Dept. of Computing Science, University of Alberta, Edmonton, AB, Canada T6G 2H1 
Emaih {dmitri,arms,ti}@cs.ualberta.ca 

Abst rac t .  The task of automatic facial feature detection in frontal- 
view, ID-type pictures is considered. Attention is focused on the prob- 
lem of eye detection. A neural network approach is tested using adap- 
tive logic networks, which are suitable for this problem on account of 
their high evaluation speed on serial hardware compared to that of more 
common mtfltilayer perceptrons. We present theoretical reasoning and 
experimental results. The experiments are carried out with images of 
different clarity, scale, lighting, orientation and backgrounds. 

1 I n t r o d u c t i o n  

Facial feature detection is very important  because of its application to 1) videotele- 
phony, 2) multimedia databases and of course, 3) automatic face recognition. In 
most of these applications this detection must be done in real time. Most con- 
ventional approaches such as template matching, contour following, Karhunen- 
Loeve expansion, algebraic moments and Hidden Markov Models are quite com- 
plex and slow in operation (e.g. see [1, 2]), yet they still do not exhibit high 
accuracy and robustness. Problems are observed with images of different clarity, 
scale, lighting, orientation and background. 

Artificial neural networks (NNs) can be applied where algorithmic methods 
are too hard or costly to develop or are not known to exist (e.g. see [3]). NNs 
can discover underlying statistical regularities of training patterns. This suggests 
that  if a NN is given a facial image as a pattern of intensity values, then it may 
be able to find the regularities of the face: the eyes, mouth etc. 

In the next section we describe the neural network approach in detail. In 
Section 3, we introduce Adaptive Logic Networks (ALNs) and show the advan- 
tages of ALNs over other networks. In Section 4, we show how ALNs can be 
applied to the problem of eye detection, giving data  obtained by simulations. 
Further steps for improving performance are discussed at the end the paper. 

2 N e u r a l  N e t w o r k s  a n d  F a c e  R e c o g n i t i o n  

A lot of papers have been written about applying NNs to face recognition. Re- 
search in this area can be divided into two main categories: 
1: using NNs for face recognition, when a whole picture of a face is considered 
as a pattern and the objective is to identify the face [4], and 
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2: using NNs for locating facial featm~es, where a facial image is considered as a 
set of patterns, each of which contains information about some part of the face, 
and the objective is to extract this information, i.e. to recognize those patterns 
that  contain a feature of interest. 

In this paper we consider the second task, the presentation of which follows. 
We are given a set of head-and-shoulder images quantized to 256 grey levels. 

Some of the images are put into a training set. During the training stage, a 
network is provided with both "eye" and "non-eye" patterns. Each pattern is 
a vector x E NN, xi E [0,255], obtained by scanning an image using a small 
window of size N, called a peephole mask. This is extended with the desired 
output  value y, which depends on whether the mask is centered on an eye or 
not. Eyes are located manually, while "non-eyes" are picked automatically (see 
Fig. 1). After training, an image is scanned using the same peephole mask, and 
for pixel-pattern x the network produces output  y. 

Several questions arise: 

Q I :  How many faces should be used a~s prototypes? 
Q2: What  should the size N of the peephole mask be? - -  It is desirable that  it 

be as small as possible but large enough to contain all pixels important  for 
recognition. 

Q3: What should the shape of this mask be? - -  It is clear that some pixels 
around an eye are more informative than others. 

Q4: What  should the output  values be? - -  Binary, i.e. y E {0, 1} ({No, Yes}) or 
discrete, i.e. y E {Y0, Yl,..., Yk}, where values between 0 and 1 are assigned 
to masks close to the centre of an eye? 

Q5: How many "non-eye" patterns should be used to for training? - -  It is 
obvious that using all non-eye patterns is redundant, as many patterns will 
be the same, e.g. background, hair. 

Q6: Is it worth preprocessing sample patterns before presenting them for train- 
ing? - - e . g .  by normalizing or resampling? 

In order to resolve these questions let us first study the results obtained by 
other researchers. 

Most of the papers consider the multi-layered perceptron with the Back- 
Propagation learning rule (BP) as suitable for the task of eye detection [5, 8, 6, 7]. 
This is because its architecture provides a feedforward association of pixel values 
in an input layer and an answer ("eye", "non-eye") in the output  layer, which 
consists of a single "neuron". This is also the case with an ALN. Some other 
types of NNs have also been applied to eyes: Radial Basis Function networks [9] 
and Self-Organizing Maps (SOM) [5, 4]. 

Following the order of questions in Section 3.1, let us describe the observa- 
tions and solutions proposed by other researchers. First, experiments have been 
carried out with 256x256, 128x128 and 64x64 images, and it has been found 
[7] that processing of low resolution images is more robust than that  of high- 
resolution images, since low resolution eliminates some small regions of "bad" 
information, while considerably increasing the calculation rate. 
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The number of images in most works is 60, 16 of which are used for training. 
The images are scanned with a peephole mask, the size of which is chosen to 
be either 16x16 or 8x8. The window is homogeneous and either full (all points 
are used) or sparse (every second or third point is used). This results in a 64- 
dimensional input vector. However, the interesting result has been obtained in 
[6], that for 64x64 images, a 15-dimensional input vector suffices. This result was 
obtained by calculating the fifteen largest eigenvalues of the covariance matr ix 
of the original 64-dimensional vector. 

In case of BP NNs, both binary and discrete output  schemes are used - -  
neither appeared to be preferred. Another interesting result [5] is that the nor- 
malization of faces does not significantly improve the performance of BP NNs. 
The paper [4] observes that  preprocessing input vectors does not improve the 
performance of SOM. In subsequent sections we will show that this is not the 
case for Adaptive Logic Networks. 

3 A d a p t i v e  L o g i c  N e t w o r k s  

The Adaptive Logic Network (ALN) [12] can be considered as a tool for ap- 
proximation of any continuous real-valued function y = f (x )  on N-dimensional 
space given a set of its points x m E ~N, ym E ~, m = 1..M. In neural network 
terminology these points are usually referred to as labeled sample pattern vectors. 

The main difference and advantage of the ALN over other approximation 
techniques is that  it utilizes piecewise linear surfaces only (see Fig. 2a). Because 
only a few pieces are involved in computing a particular output,  as may be 
determined using a decision tree on the components of the input, a considerable 
speed-up in processing is obtained. Control over the weights of the pieces can 
also lead to good generalization [12]. The way the pieces are put together is 
determined by a tree of maximum and minimum operators (Fig. 2b) acting on 
linear functions, which computes a y given x. 

The training of an ALN consists of many multiple linear regressions working 
in concert with the goal of fitting the training data with low error, where error is 
computed by summing the squares of the distances between the approximating 
surface and the output  values. 

3.1 A d v a n t a g e s  o f  t h e  A L N  

- It possible to integrate into the training procedure qualitative knowledge about 
the desired function; this may aid generalization and prevent a learned function 
from having nonsensical properties. It also tends to reduce the amount of train- 
ing data  required; 
- It is easier to understand the function that  ALN is computing compared to 
other neural networks since it is made up of linear pieces put  together in a simple 
way. This is especially important  for preprocessing input vectors and in design- 
ing output  values for sample points. 
- Generalization can be explicitly controlled using j i t ter ,  whereby additional 
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training data is generated by adding random amounts to the components of the 
x-vector. 

- ALNs are very fast in evaluation. In fact, the decision tree approach enables 
the system to narrow the computation to about N linear pieces [12], while a BP 
NN has to examine all its weights. ALNs are rapidly trained too (see Section 4). 

It is clear that ALNs can be applied to any problem where the data  have 
some regularities, or in other words, are determined by some function. So far 
the ALN has been successfully applied in predicting financial events, machine 
failure and real-time control including rehabilitation of patients with spinal cord 
injury [10, 11]. 

Let us describe now how these advantages of the ALN can be used in the 
problem of eye detection. 

4 T h e  P e r f o r m a n c e  o f  t h e  A L N  

In our experiments we used Atree 3.0 ALN Development System (ALN DS) [13]. 
In training, it takes about 30 sec for ALN DS running on HyperSPARC 90MHz 
to calculate all weights, i.e. to build a function F(x) ,  for the network with 14- 
dimensional input and with 500 sample patterns. In evaluation, one 64x64 image 
is processed in 0.8-1.2 sec (i.e. the output  y = F(x)  for each pixel is calculated 
in about 0.4 msec). 
I m a g e  d a t a b a s e  The experiments were organized as outlined in Section 2.2. 
The set of images consisted of twelve 256x256 images, *our of which were used 
in training. We decreased the resolution of the original images using the Multi- 
Resolution Pyramid proposed in [7]. Thus, the actual size of processed images 
was 64x64. Figure 4 shows these low-resolution images. For the original images, 
we simply ascend in the pyramid (see [7]). 

Images are picked from the database used in previous experiments [2]. In 
evaluation we also used two images {images 9, 10) scanned from blurred out-of- 
focus photo and one image (image 11) scanned from a photo not taken in front 
of a plain background. The results of the experiments were judged by visually 
determining the accuracy of eye detection. 
P e e p h o l e  m a s k  Figure aa shows peephole masks we have used in the experi- 
ments. The size of fourteen peepholes was chosen as suggested by [6]. We started 
with a homogeneous mask (mask 1) and this resulted in recognizing many "false" 
eyes, like corners of the mouth,  brows etc. Then, taking into account tha t  some 
pixels around an eye are more important  for making a decision than others, 
manually designed masks were tested. 

The design of a mask is determined by the desire to distinguish real eyes 
from "false" ones, or in other words, by what we humans think defines an eye. 
Mask 3 was found to be the best. We consider an eye to be a dark spot (points 
1,3,4,5,6), which is usually below another dark spot - the brow (points 7,8), and 
which is surrounded by light tones: the cheek (point 2), forehead (points 11,12) 
and points 9,10. Points 13 and 14 are added to distinguish the eye from the 
corners of the mouth. All the results below were obtained using this mask. 
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S a m p l e  p o i n t s  In each of four training patterns, two "eye" patterns were 
located manually. Besides this, every fourth pi×el was used to obtain a "non-eye"  
pattern 1. Then we augmented the training set with manually generated "non- 
eye" patterns, such as noses, brows, mouths. In both training and evaluation we 
reduced the area of the search to the inner box [~64, ( 1 -  ~)64]x[~64, (1 - ~)64]. 
Overall the number of sample patterns used was in the range 130-160 per facial 
image. 
Us ing  A L N  f e a t u r e s  With ALNs we have clear understanding of how func- 
tions are represented, in contrast to BP networks, where one cannot say what 
the function to be learned will look like. This helps us in choosing appropriate 
inputs and outputs. 
O u t p u t  va lues  s c h e m e  Three output  value schemes were considered: a 
binary scheme and two discrete schemes, depicted in Figure 3b. These schemes 
were designed with the following idea in mind: those input vectors that  are close 
in 14-dimensional input space should also have close output  values, as this will 
make the function to be learned smoother. Indeed, the results obtained with 
scheme 1 were much better than those obtained with the binary scheme, while 
those obtained with scheme 2 appeared to be the best. In further discussions we 
deal with the last output  scheme. Sample vectors which are shown in Figure 1 
are obtained with mask 3, output  scheme 2 and without preprocessing. 
P r e p r o c e s s i n g  We have considered two preprocessing procedures: 
- -  shift: instead of the original intensities of the pixels in a mask, the differences 
between the intensity of a pixel and the central pixel were used (as in [4]). 
- -  scale: the input vector was prenormalized by dividing each pixel by the 
average intensity of the pixels in a vector (as in [1]). 

Both these procedures improved the recognition, with shif t  preprocessing 
achieving the most noticeable result. The results presented below are obtained 
using shif t  preprocessing. 
E v a l u a t i o n  - -  p i ck ing  " s u g g e s t e d  e y e s "  During the evaluation,  an image 
is scanned pixel by pixel using the peephole mask, and for each pattern obtained 
x ~ the ALN produces an output  value y = F ( x ~ ) .  Figure 4 shows outputs 
produced by the ALN for each pixel of the image. The figure shows outputs 
obtained for all images by the network using mask 3, output  scheme 2, and shif t  
preprocessing. 

It has been observed that  the greatest outputs of the ALN don't  always 
correspond to eyes. Because of this, more than two pixels with the greatest 
outputs were picked 2. These pixels are referred to as "suggested eyes"  and they 
can be processed further if required. 

The result of evaluation of the best network is shown in Figure 4, with "sug- 
gested eyes" superimposed. As can be seen, in most cases eyes are detected 
correctly (although sometimes along with spurious eyes). This result is notice- 
able, providing that  it is achieved in real-time mode and with images of different 
quality. 

I Using every third pixel does not appear to yield a significant difference. 
In our experiments we pick more than four and fewer than eight pixels. 
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F i g u r e  1 .  Obtaining sample patterns for training. 

5 D i s c u s s i o n  

In this paper we showed how to build an ALN, which is one of fastest neural 
networks, for the problem of eye detection in frontal-view, ID-type pictures. 
We highlighted those features of ALNs that  make them more attractive than 
other networks. In particular, we showed that  ALNs can benefit from using 
preprocessed input vectors and appropriately designed output  value schemes. 
We also presented techniques to improve tile performance of the network, such 
as designing a peephole mask and creating a training set. 

Further possible steps for improvement of performance follow: l) Use more 
facial images for training. 2) Augment the training set with more manually 
shown non-eyes. Here we may make use of the geometrical appearance of out- 
puts produced by the ALN (like those in Figure 4). 3) The output  scheme 
can be elaborated to make the function to be learned smoother. An analyti- 
cal approach can be used for understanding which pixels lie close to each other 
in N-dimensional input space. 4) Other peephole masks can be tried. Study- 
ing psychological expects of human perception of eyes will be helpful. 5) Other 
heuristics should be used to pick real eyes from the limited number of "suggested 
eyes"; e.g. pick only those pixels which lie approximately on the same row in 
the image; or ignore isolated "eyes". 6) Instead of picking a predefined num- 
ber of "suggested by ALN eyes" we may use an adjustable threshold for picking 
them: pixels with output  greater then a threshold are picked, the threshold being 
decreased until a pair of eyes is found. 

So, there are quite a few ways to improve the performance of the approach 
on eyes. Similarly, ALNs can be used for recognition of the mouth, brows etc. 
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Key idea: 
Approximating a function using 

piecewise linear surfaces 
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Figure 4. The result of evaluation: Outputs produced by the ALN are shown along 
with the images having"suggested eyes" superimposed in white. The first four images 
are used in training. 


