
Adaptive Logic Networks for Facial Feature Detection

D.O. Gorodnichy , W. W. Armstrong, X. Li

Dept. of Computing Science, University of Alberta, Edmonton, AB, Canada T6G 2H1
Emaih {dmitri,arms,ti}@cs.ualberta.ca

Abst rac t . The task of automatic facial feature detection in frontal-
view, ID-type pictures is considered. Attention is focused on the prob-
lem of eye detection. A neural network approach is tested using adap-
tive logic networks, which are suitable for this problem on account of
their high evaluation speed on serial hardware compared to that of more
common mtfltilayer perceptrons. We present theoretical reasoning and
experimental results. The experiments are carried out with images of
different clarity, scale, lighting, orientation and backgrounds.

1 I n t r o d u c t i o n

Facial feature detection is very important because of its application to 1) videotele-
phony, 2) multimedia databases and of course, 3) automatic face recognition. In
most of these applications this detection must be done in real time. Most con-
ventional approaches such as template matching, contour following, Karhunen-
Loeve expansion, algebraic moments and Hidden Markov Models are quite com-
plex and slow in operation (e.g. see [1, 2]), yet they still do not exhibit high
accuracy and robustness. Problems are observed with images of different clarity,
scale, lighting, orientation and background.

Artificial neural networks (NNs) can be applied where algorithmic methods
are too hard or costly to develop or are not known to exist (e.g. see [3]). NNs
can discover underlying statistical regularities of training patterns. This suggests
that if a NN is given a facial image as a pattern of intensity values, then it may
be able to find the regularities of the face: the eyes, mouth etc.

In the next section we describe the neural network approach in detail. In
Section 3, we introduce Adaptive Logic Networks (ALNs) and show the advan-
tages of ALNs over other networks. In Section 4, we show how ALNs can be
applied to the problem of eye detection, giving data obtained by simulations.
Further steps for improving performance are discussed at the end the paper.

2 N e u r a l N e t w o r k s a n d F a c e R e c o g n i t i o n

A lot of papers have been written about applying NNs to face recognition. Re-
search in this area can be divided into two main categories:
1: using NNs for face recognition, when a whole picture of a face is considered
as a pattern and the objective is to identify the face [4], and

333

2: using NNs for locating facial featm~es, where a facial image is considered as a
set of patterns, each of which contains information about some part of the face,
and the objective is to extract this information, i.e. to recognize those patterns
that contain a feature of interest.

In this paper we consider the second task, the presentation of which follows.
We are given a set of head-and-shoulder images quantized to 256 grey levels.

Some of the images are put into a training set. During the training stage, a
network is provided with both "eye" and "non-eye" patterns. Each pattern is
a vector x E NN, xi E [0,255], obtained by scanning an image using a small
window of size N, called a peephole mask. This is extended with the desired
output value y, which depends on whether the mask is centered on an eye or
not. Eyes are located manually, while "non-eyes" are picked automatically (see
Fig. 1). After training, an image is scanned using the same peephole mask, and
for pixel-pattern x the network produces output y.

Several questions arise:

Q I : How many faces should be used a~s prototypes?
Q2: What should the size N of the peephole mask be? - - It is desirable that it

be as small as possible but large enough to contain all pixels important for
recognition.

Q3: What should the shape of this mask be? - - It is clear that some pixels
around an eye are more informative than others.

Q4: What should the output values be? - - Binary, i.e. y E {0, 1} ({No, Yes}) or
discrete, i.e. y E {Y0, Yl,..., Yk}, where values between 0 and 1 are assigned
to masks close to the centre of an eye?

Q5: How many "non-eye" patterns should be used to for training? - - It is
obvious that using all non-eye patterns is redundant, as many patterns will
be the same, e.g. background, hair.

Q6: Is it worth preprocessing sample patterns before presenting them for train-
ing? - - e . g . by normalizing or resampling?

In order to resolve these questions let us first study the results obtained by
other researchers.

Most of the papers consider the multi-layered perceptron with the Back-
Propagation learning rule (BP) as suitable for the task of eye detection [5, 8, 6, 7].
This is because its architecture provides a feedforward association of pixel values
in an input layer and an answer ("eye", "non-eye") in the output layer, which
consists of a single "neuron". This is also the case with an ALN. Some other
types of NNs have also been applied to eyes: Radial Basis Function networks [9]
and Self-Organizing Maps (SOM) [5, 4].

Following the order of questions in Section 3.1, let us describe the observa-
tions and solutions proposed by other researchers. First, experiments have been
carried out with 256x256, 128x128 and 64x64 images, and it has been found
[7] that processing of low resolution images is more robust than that of high-
resolution images, since low resolution eliminates some small regions of "bad"
information, while considerably increasing the calculation rate.

334

The number of images in most works is 60, 16 of which are used for training.
The images are scanned with a peephole mask, the size of which is chosen to
be either 16x16 or 8x8. The window is homogeneous and either full (all points
are used) or sparse (every second or third point is used). This results in a 64-
dimensional input vector. However, the interesting result has been obtained in
[6], that for 64x64 images, a 15-dimensional input vector suffices. This result was
obtained by calculating the fifteen largest eigenvalues of the covariance matr ix
of the original 64-dimensional vector.

In case of BP NNs, both binary and discrete output schemes are used - -
neither appeared to be preferred. Another interesting result [5] is that the nor-
malization of faces does not significantly improve the performance of BP NNs.
The paper [4] observes that preprocessing input vectors does not improve the
performance of SOM. In subsequent sections we will show that this is not the
case for Adaptive Logic Networks.

3 A d a p t i v e L o g i c N e t w o r k s

The Adaptive Logic Network (ALN) [12] can be considered as a tool for ap-
proximation of any continuous real-valued function y = f (x) on N-dimensional
space given a set of its points x m E ~N, ym E ~, m = 1..M. In neural network
terminology these points are usually referred to as labeled sample pattern vectors.

The main difference and advantage of the ALN over other approximation
techniques is that it utilizes piecewise linear surfaces only (see Fig. 2a). Because
only a few pieces are involved in computing a particular output, as may be
determined using a decision tree on the components of the input, a considerable
speed-up in processing is obtained. Control over the weights of the pieces can
also lead to good generalization [12]. The way the pieces are put together is
determined by a tree of maximum and minimum operators (Fig. 2b) acting on
linear functions, which computes a y given x.

The training of an ALN consists of many multiple linear regressions working
in concert with the goal of fitting the training data with low error, where error is
computed by summing the squares of the distances between the approximating
surface and the output values.

3.1 A d v a n t a g e s o f t h e A L N

- It possible to integrate into the training procedure qualitative knowledge about
the desired function; this may aid generalization and prevent a learned function
from having nonsensical properties. It also tends to reduce the amount of train-
ing data required;
- It is easier to understand the function that ALN is computing compared to
other neural networks since it is made up of linear pieces put together in a simple
way. This is especially important for preprocessing input vectors and in design-
ing output values for sample points.
- Generalization can be explicitly controlled using j i t ter , whereby additional

335

training data is generated by adding random amounts to the components of the
x-vector.

- ALNs are very fast in evaluation. In fact, the decision tree approach enables
the system to narrow the computation to about N linear pieces [12], while a BP
NN has to examine all its weights. ALNs are rapidly trained too (see Section 4).

It is clear that ALNs can be applied to any problem where the data have
some regularities, or in other words, are determined by some function. So far
the ALN has been successfully applied in predicting financial events, machine
failure and real-time control including rehabilitation of patients with spinal cord
injury [10, 11].

Let us describe now how these advantages of the ALN can be used in the
problem of eye detection.

4 T h e P e r f o r m a n c e o f t h e A L N

In our experiments we used Atree 3.0 ALN Development System (ALN DS) [13].
In training, it takes about 30 sec for ALN DS running on HyperSPARC 90MHz
to calculate all weights, i.e. to build a function F(x) , for the network with 14-
dimensional input and with 500 sample patterns. In evaluation, one 64x64 image
is processed in 0.8-1.2 sec (i.e. the output y = F(x) for each pixel is calculated
in about 0.4 msec).
I m a g e d a t a b a s e The experiments were organized as outlined in Section 2.2.
The set of images consisted of twelve 256x256 images, *our of which were used
in training. We decreased the resolution of the original images using the Multi-
Resolution Pyramid proposed in [7]. Thus, the actual size of processed images
was 64x64. Figure 4 shows these low-resolution images. For the original images,
we simply ascend in the pyramid (see [7]).

Images are picked from the database used in previous experiments [2]. In
evaluation we also used two images {images 9, 10) scanned from blurred out-of-
focus photo and one image (image 11) scanned from a photo not taken in front
of a plain background. The results of the experiments were judged by visually
determining the accuracy of eye detection.
P e e p h o l e m a s k Figure aa shows peephole masks we have used in the experi-
ments. The size of fourteen peepholes was chosen as suggested by [6]. We started
with a homogeneous mask (mask 1) and this resulted in recognizing many "false"
eyes, like corners of the mouth, brows etc. Then, taking into account tha t some
pixels around an eye are more important for making a decision than others,
manually designed masks were tested.

The design of a mask is determined by the desire to distinguish real eyes
from "false" ones, or in other words, by what we humans think defines an eye.
Mask 3 was found to be the best. We consider an eye to be a dark spot (points
1,3,4,5,6), which is usually below another dark spot - the brow (points 7,8), and
which is surrounded by light tones: the cheek (point 2), forehead (points 11,12)
and points 9,10. Points 13 and 14 are added to distinguish the eye from the
corners of the mouth. All the results below were obtained using this mask.

336

S a m p l e p o i n t s In each of four training patterns, two "eye" patterns were
located manually. Besides this, every fourth pi×el was used to obtain a "non-eye"
pattern 1. Then we augmented the training set with manually generated "non-
eye" patterns, such as noses, brows, mouths. In both training and evaluation we
reduced the area of the search to the inner box [~64, (1 - ~)64]x[~64, (1 - ~)64].
Overall the number of sample patterns used was in the range 130-160 per facial
image.
Us ing A L N f e a t u r e s With ALNs we have clear understanding of how func-
tions are represented, in contrast to BP networks, where one cannot say what
the function to be learned will look like. This helps us in choosing appropriate
inputs and outputs.
O u t p u t va lues s c h e m e Three output value schemes were considered: a
binary scheme and two discrete schemes, depicted in Figure 3b. These schemes
were designed with the following idea in mind: those input vectors that are close
in 14-dimensional input space should also have close output values, as this will
make the function to be learned smoother. Indeed, the results obtained with
scheme 1 were much better than those obtained with the binary scheme, while
those obtained with scheme 2 appeared to be the best. In further discussions we
deal with the last output scheme. Sample vectors which are shown in Figure 1
are obtained with mask 3, output scheme 2 and without preprocessing.
P r e p r o c e s s i n g We have considered two preprocessing procedures:
- - shift: instead of the original intensities of the pixels in a mask, the differences
between the intensity of a pixel and the central pixel were used (as in [4]).
- - scale: the input vector was prenormalized by dividing each pixel by the
average intensity of the pixels in a vector (as in [1]).

Both these procedures improved the recognition, with shif t preprocessing
achieving the most noticeable result. The results presented below are obtained
using shif t preprocessing.
E v a l u a t i o n - - p i ck ing " s u g g e s t e d e y e s " During the evaluation, an image
is scanned pixel by pixel using the peephole mask, and for each pattern obtained
x ~ the ALN produces an output value y = F (x ~) . Figure 4 shows outputs
produced by the ALN for each pixel of the image. The figure shows outputs
obtained for all images by the network using mask 3, output scheme 2, and shif t
preprocessing.

It has been observed that the greatest outputs of the ALN don't always
correspond to eyes. Because of this, more than two pixels with the greatest
outputs were picked 2. These pixels are referred to as "suggested eyes" and they
can be processed further if required.

The result of evaluation of the best network is shown in Figure 4, with "sug-
gested eyes" superimposed. As can be seen, in most cases eyes are detected
correctly (although sometimes along with spurious eyes). This result is notice-
able, providing that it is achieved in real-time mode and with images of different
quality.

I Using every third pixel does not appear to yield a significant difference.
In our experiments we pick more than four and fewer than eight pixels.

337

~ "'~/:: ']]i. Xl X2 X3 X4 X5 X6 X7 X8 X9 Xl0 Xil X12 X13 g14 Y

%~;. i . " " 8S 102 111 181 118 174 123 244 212 203 197 73 221 241 10
~ . ' = " i - ' : ; 111 88 123 185 142 102 163 237 218 214 171 74 243 234 7
~ ~ . < ' : . : ' 102 174 85 199 117 214 111 245 199 186 163 75 199 251 7
~ ~ , ~ _ - . 118 117 142 85 212 172 157 181 149 188 170 144 214 228 4
~ i } ! ~ , . . . - 1 8 1 1 9 9 1 8 5 2 4 4 8 5 2 2 4 1 7 9 2 5 4 1 1 8 1 9 3 2 2 1 1 4 9 2 1 8 2 4 9 4
~ : ~ E I I I m ; 142 118 157 111 218 117 180 185 159 211 129 117 235 227 2
~ ~ i f ~ ' 117 172 118 102 199 211 142 199 129 187 180 173 195 231 2
~ ~ ~ . 1 8 5 9 1 8 1 1 7 9 2 3 7 1 1 1 1 9 9 t 9 4 2 5 4 1 4 2 2 1 7 2 0 0 1 5 9 2 5 3 2 4 0 2

..":.~-:.~.~iii~ / .~", ! 1 9 2 2 4 1 8 1 2 4 S I 0 2 2 1 7 1 8 5 2 8 1 1 1 7 1 9 1 1 9 4 1 2 9 1 9 8 2 5 5 2
" V ~ ~ - : - - : 7 1 4 7 2 0 5 5 5 1 4 4 1 3 5 2 3 4 1 6 3 1 3 7 1 1 1 2 5 1 2 0 1 7 4 2 4 9 1 9 7 0

F i g u r e 1 . Obtaining sample patterns for training.

5 D i s c u s s i o n

In this paper we showed how to build an ALN, which is one of fastest neural
networks, for the problem of eye detection in frontal-view, ID-type pictures.
We highlighted those features of ALNs that make them more attractive than
other networks. In particular, we showed that ALNs can benefit from using
preprocessed input vectors and appropriately designed output value schemes.
We also presented techniques to improve tile performance of the network, such
as designing a peephole mask and creating a training set.

Further possible steps for improvement of performance follow: l) Use more
facial images for training. 2) Augment the training set with more manually
shown non-eyes. Here we may make use of the geometrical appearance of out-
puts produced by the ALN (like those in Figure 4). 3) The output scheme
can be elaborated to make the function to be learned smoother. An analyti-
cal approach can be used for understanding which pixels lie close to each other
in N-dimensional input space. 4) Other peephole masks can be tried. Study-
ing psychological expects of human perception of eyes will be helpful. 5) Other
heuristics should be used to pick real eyes from the limited number of "suggested
eyes"; e.g. pick only those pixels which lie approximately on the same row in
the image; or ignore isolated "eyes". 6) Instead of picking a predefined num-
ber of "suggested by ALN eyes" we may use an adjustable threshold for picking
them: pixels with output greater then a threshold are picked, the threshold being
decreased until a pair of eyes is found.

So, there are quite a few ways to improve the performance of the approach
on eyes. Similarly, ALNs can be used for recognition of the mouth, brows etc.

References

I. R. Brunelli and T.Poggio Face recognition: Features versus templates, IEE]~ Trans~ on Pattern
Analysis and Machine Intelligence, 15(10), pp. 1042-1052, 1993

2. N. Roeder and X. Li, "Accuracy analysis for facial feature detection", Pattern Recognition,
Vol 29, No.l, pp.143-157, 1996.

3. D. O. Gorodnichy, A Way to Improve Error Correction Capability of Hopfield Associative Mem-
ory in the Case Of Saturation, HELNET 94-95 International Workshop on Neural Networks
P r o c e e d i n g s , Vol. I / l I , V U Unive r s i ty P ress , A m s t e r d a m , pp .198-212 , 1996

4. S. L a w r e n c e , C. L. Giles, A. C. Tsoi , A. D. Back . Face R e c o g n i t i o n : A H y b r i d N e u r a l N e t w o r k
A p p r o a c h , I E E E Trans . on Neura l Ne tworks , spec ia l issue on P a t t e r n R e c o g n i t i o n , a c c e p t e d for
pub l i ca t i on .

338

Key idea:
Approximating a function using

piecewise linear surfaces

I y i, %
a) C"~" "' -. D

x new x • R ~

• - sample points

How this is achieved:

D
[~ is a linear function

F i g u r e 2. Main idea behind the ALN.

o o
o I o[0 2 4 2 2 4 614 2

a3~ h: --,,,,na,~ 0 10' 0 s c h e m e 10 7 10 7 0 s c h e m e 2 3 si lo] 8 3
s c h e m e

4

0 0 0 2 4 2 2 4 61 4 2
0 0

[] []

b)
3 2

V, , [] []
4 S

m a s k 1 m a s k 2 m a s k 3
[]

F i g u r e 3, Peephole masks (a) used to obtain a l$-dimensional input vector and output
value schemes (b) with the numbers inside boxes indicating output values associated with
the pixels.

5. R. Hutchinson, W. Welsh. Comparison of Neural Networks and Conventiona} Technoques for
Feature Locationin Facial Images, Proc. First IEE International Conference on ANN, pp.201-
205, October 1989.

6. J. B. Waite, Training Multi-Layered Perceptron for facial feature location: a case of study, in
Neural networks for vision, speech, and natural language. 1st ed. BT telecommunications series;
1, London: Chapman &; Hall, 1992.

7. C C Hand, Artificial Neural Networks feature detector using Multi resolution Pyramid, ibid.
8. J. M. Vincent, Image Feature Location in Multi-Resolution Images~ ibid.
9. R. M. Debenham, The detection of eyes in facial Images Using Radial Basis Fuctions, ibid.
10. W.W. Armstrong, C. Chu, M. M. Thomas, "Using Adaptive Logic Networks to Predict Machine

Failure" in Proc. of the 1995 Workshop on Environmental and Energy Applications of Neural
Networks", World Scientific, Richland, USA, pp. 97"-107, 1995.

11. W. W. Armstrong, A. Kostov, R. B. Stein, M. M. Thomas, Adaptive Logic Networks in Reha-
bilitation of Persons With Incomplete Spinal Cord Injury, pp. 154-171, ibid.

12. W.W Armstrong, M.M.Thomas, Adaptive Logic Networks, sect. in C1.8 in Handbook of Neural
Computation, E. Fiesler, R. Beale eds, Institute of Physics Publishing and Oxford University
Press - USA, 1996, ISBN 0-7503-0312-3 (looseleaf)

13. W. W Armstrong, M. Thomas et al, The Atree 3.0 Educational Kit with User Guide available
via anonymous ftp from ftp.cs.ualberta.ca [129.128.4.241] in pub/atree/atree3/att~ee3ek.exe.

339

" ~::e!!!!!i!{ii ~

Figure 4. The result of evaluation: Outputs produced by the ALN are shown along
with the images having"suggested eyes" superimposed in white. The first four images
are used in training.

