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Abs t r ac t .  This paper presents a new approach for 2D object segmen- 
tations using an automatic method applied on images with severe noise 
conditions and locating objects with a very high degree of deformation. 
We use a physically-based shape model to obtain a deformable template, 
which is defined on a canonical ortogonal coordinate system. The pro- 
posed methodology works from a set of samples and from the output of 
an edge detector to segment the objects by using a reformulated Hough 
transform (automatic initialization) together with an optimization pro- 
cedure (on a learned surface of deformation). Results from biomedical 
images are presented. 
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1 I n t r o d u c t i o n  

The problem of automat ic  detection, segmentation, and extraction of objects 
from a given scene is one of the most chMlenging paradigms in image analy- 
sis, taking into account that  it is very important  to obtain global solutions for 
all kinds of images. The methods that  usually appear  in the literature require 
the initial image to present particular conditions to be successful (well defined 
features, adequate and uniform illumination, absence of noise, non-overlapping 
objects,...). In some cases, it is very difficult or impossible to improve the image- 
capturing process, so we need methods to segment object from images obtained 
in conditions very far from optimal. 

We address the problem of locating objects in images tha t  present mainly 
two problematic aspects: noise and deformations. Biomedical images present very 
interesting cases related to problems such as: absence of contrast,  many objects 
in a single scene, low quality, etc. Furthermore, the deformations are a very 
important  problem in biological objects. If  we do not assume a contour model, 
contour extraction in the presence of noise, clutter and occlusion is an ill-posed 
problem [9]. Therefore, in this paper  we propose a supervised method,  based on 
a deformable template  model, to detect and extract  shapes. The object model 
that  we propose is defined from a closed polygonal approximation of the contour 
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and a coordinate system (learned from a set of samples) to handle deformations. 
To implement it, it is necessary to align the shapes ([10]), then, to process the 
obtained deformations in order to obtain the desired deformation axes. Once we 
have this object model, we can use it to initialize and optimize a deformable 
template.  

In this paper,  we study the main components of the proposed methodology. 
In section 2, we discuss the method to process the deformations and to obtain 
an object  model. In sections 3 and 4, we give the algorithms to initialize and op- 
timize the position of the deformable template,  respectively. Finally, in sections 
5 and 6, we present experimental results from some examples and conclusions. 

2 D e f o r m a t i o n  m o d e l  

Let us consider a shape (with null deformation) described by a vector 

X = ( x l , ' " , x n , Y l , ' " , y n )  t (1) 

where (xi,  Yi) are the nodal points along the contour (i.e., may be thought  
of as a polygonal approximation of the shape). Then, a deformed shape may be 
calculated from 

X a  : X + ~ v  (2) 

where v is a 2n x 1 vector and qb is a 2n x 2n matrix,  that  is, composed by 2n 
vectors ~bl • • • ~b2r~ each of them corresponding to an axis of deformation. So, the 
problem is to determine a good set of axes. We use a deformation system based 
on modal analysis, used to simulating the dynamic behavior of an object([2]) 
and proposed by Pentland and Sclaroff to align shapes ([8], [10]). In modal 
analysis, the s tandard FEM computat ions are simplified by posing the dynamic 
equations in terms of the equations' eigenvectors. The eigenmodes (known as the 
object 's  free vibration or deformation modes) of this physical shape are used to 
obtain a canonical, frequency-ordered orthogonal coordinate system. Moreover, 
these coordinate system allow us to separate rigid modes (displacements and 
rotations) from non-rigid modes and may be used to align a set of samples in 
order to process the deformations. 

2.1 F in i t e  E l e m e n t  M e t h o d  

The mathemat ica l  formulation of the proposed model is based on the s tandard  
engineering technique for simulating the dynamic behavior of an object([2]). 
To use FEM, the object  is represented from a set of nodal points as the finite 
element nodes. Then,  stiffness and mass matrices are built and shape functions 
are used to relate the displacement (or others properties) of a single point to the 
relative displacements of all the other nodes of an object,  so these interpolation 
flmctions allow continuous material  properties. The polynomial shape function 
for each element may be written in vector form as: 
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u(x, y) --- H(x,  y)U (3) 

where (x, y) is the point where we want to know the displacement, H is the 
interpolation matrix and U is the vector composed by the displacements of each 
element node. To solve the problem of deforming an elastic body requires solving 
the dynamic equilibrium equation 

MU + D(f  + K U  = R (4) 

where R is the load vector, and M, D, K are the mass, damping, and stiffness 
matrices, respectively. 

2.2 Modal  analysis 

A technique to improve the solution of equations (4) is the change of basis to 
modal generalized displacements, that is, to transform the equilibrium equa- 
tions into a more effective form for direct integration. The FEM governing equa- 
tions can be decoupled by posing the equations in a basis defined by the M- 
orthogonalized eigenvectors of/4.  These eigenvectors (with respective eigenval- 
ues) are the solution to the generalized eigenproblem: 

K ¢  = w2 M ¢  (5) 

which will determine an optimal transformation basis set. There are 2n eigen- 
solutions 

2 
(W2,  ¢ 2 )  " " " (W2n, ¢ 2 n )  ( 6 )  

where all the eigenvectors are M-orthonormalized, i.e. 

¢~MCj = ~ 1Si i =  j (7) 
( 0 Si i ~ j 

and 0 ~ w~ _< -.- <_ w~n 
The eigenvector ¢i is called the ith mode's shape vector and wi is the cor- 

responding frequency of vibration. These vectors establish a very good basis to 
represent the deformations ([10]), separating the rigid body modes (displace- 
ments and rotations) from the non-rigid modes and providing a globM-to-local 
ordering of shape deformations. 

2.3 Pr inc ipa l  componen t s  analysis 

Once the deformations have been expressed using the free vibration modes, we 
have to select the principal components in order to get a coordinate system as 
simple as possible. Directly, we are able to select the main components from this 
basis, that is, we can take out the last modes (the highest frequency modes), 
which correspond to local shape variations (the ones most sensitive to noise) 
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and so, we avoid the excessive number of dimensions caused by an oversampled 
contour. In spite of this, an easier way to select the principal components may 
be used, i.e. via the Karhunen-Loeve transform. 

Let us suppose a set of samples Ei (1 _< i < m) corresponding to m de- 
formations from a template T (obviously, of null deibrmation). The process of 
calculating principal components of this set of samples is: 

To align each shape with the template T, processing both the rigid trans- 
formation and non-rigid deformation to obtain m aligned samples Xi (A very 
efficient method based on modal analysis is described in [10]). Once we have got 
the aligned samples, each of them with n nodal points (see eq. (1)), we are able 
to calculate the rn vectors Ui as 

u i  = x i  - T (S)  

then, the transformation to modal coordinates is 

gi = ~ - l  ui = ~t Mb~ (9) 

where ~)il ,Ui~ Y [?i3 are null because of the previous alignment. Thus, we are 
able to apply principal component analysis on the set of vectors: 

= (Ui4,'", (7i2~) t (10) 

3 In i t i a l i za t ion  

In the literature we can find many works using defornlable models but not an 
automatic initialization stage taking into account a very high degree of detbrma- 
tion, bearing in mind the overlapping objects or the generality of the solution, 
that  is, to be able to apply the solutions to others applications. In this section 
we address the problem of initializing deformable templates of known objects in 
images with problems like many objects in a single scene, overlapping objects, 
partial information and noise. 

Let us suppose the curve C(t) = (f~(t), fv(t)) where 0 < t < L and 

L L 

fO fz(t)dt= ffo fy(t)dt=O (11) 

Let us suppose also a set of deformation axes 

D = {ex, ey, er, edl , '" ,  eg~ } (12) 

where (ex,ey,e~.) are the axes of translation and rotation. The next axes 
correspond to non-rigid deformations. Then the set of possible location of the 
curve C is determined by (3 + n)-tuples. Thus, our goal is to find a set of 
parameters defining the location of the objects, that  is, to obtain a tuple that  
determines the object location 

(Ax, Ay, At ,  Adl, . . . ,  Adn) 
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Because of the kind of problems in our images, a powerful technique to use is 
the Hough transform ([1], [6]). The Hough transform uses a parameter space of 
dimension 3 + n, sampling each axis to build a discrete parameter space E where 
the evidences in the images will be accumulated. The location with the highest 
level of evidences will be obtained looking for the maximun in this accumulator. 
However, it is impossible to directly apply it because, on the one hand, edges 
may be displaced due to a smoothing operation, to noise or to local deformations. 
The calculated position to update the accumulator wilt be not correct. On the 
other hand, the algorithm needs a lot of time and space to perform the location. 
The parameter  space size is too large, so too much memory is needed to store 
the accumulator. In addition, each detected evidence in the image will need a 
lot of time (we will have to update a subset of positions in the accumulator). 

Thus, we have to reformulate the GHT. The solution that  we propose is: 

- The results from GHT may be erroneous because the input information (for 
example, point along the contour from an edge detector) is very noisy. A 
solution is to use more stable information, i.e. a higher semantic level or 
several kinds of information (points, corners, segments, regions, etc). In this 
work straight segments have been used. 

- If we want to use a method like GHT, we have to decrease the parameter  
space size. We propose that  the method sacrifices accurate solution (i.e., 
accurate location), in order to be able to apply the reformulated GHT. 

We reduce the accumulator size by selecting some axes (the dimension of 
the parameter space is reduced). In this sense, the coordinate system proposed 
in previous section allows us to take out a set of axes corresponding to local 
deformations, that  is, we can select principal axes. Moreover, the selected axes 
are able to be sampled (the size of the parameter space is reduced). The result 
is a dictionary of shapes. Of course, it is possible to find an object in the image 
which is not included in the dictionary but there will be a similar contour, that  
is, an approximation. Using this reduced parameter space, the Hough transform 
does not work because the detected evidence votes in a position which may 
be displaced. To solve it, the parameter  space is updated not only on a single 
position but  on a uncertainty region (the set of positions where the location may 
be displaced due to local deformations). The result from this algorithm is only an 
approximation of the solution, however, this problem will be solved considering 
an optimization stage. 

4 O p t i m i z a t i o n  

Once we have an approximation of the solution, we have to optimize it. This 
stage may be accomplished by using a proper energy function and a proper 
algorithm to obtain the optimum. This global energy function is composed by 
an external energy function (which contributes with information from the image) 
and an internal energy function (which contributes with information from the 
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object model). In order to design a robust method, we have used the learned 
surface of deformation, on which the functions have been defined. 

To define the internal energy function, we have selected the simplest method; 
that  is, we have delimited the admissible space of deformations from the learning 
samples (using the axes calculated from the given principal component analisys), 
although we can use more complex methods to include other a priori knowledge. 
On the other hand, the external energy function has been defined as follows: 

Let, us suppose the curve C and the image G(x, y). We are able to use a 
function P(x, y, O) in order to define the following expression 

1 i l L  z e x , , ( c )  = -£ (13) 

where O(t) is defined as the angle between the vectors 

VG(f~(t),fu(t)) and (_dfY_d~s (t), ~ ( t ) )  (14) 

thus, it allows to use both, magnitude and direction of the gradient. The 
selected function P has been defined as the distance to the nearest edgepoint 
(with gradiente direction in according to the curve direction). The learned surface 
of deformation together with this energy function produces a robust method to 
optimize the initial location of the solution. Therefore, we can use a simple 
optimization algorithm (steepest descent method has been used). 

5 E x p e r i m e n t a l  results  

In this section we present the results on several images. We have considered 
two types of images: nematodes and hands. The uncertainty region is a circle 
(radius=10 pixels). The paremeter space sizes (non-rigid deformations) have 
been reduced to 4 non-rigid axes for nematodes (sampling 7, 3, 3, 3 respectively) 
and 3 non-rigid axes for hands (sampling 5, 4, 3 respectively). 

Moreover, the rotation axis has been reduced to 36, that  is, the result is 
equivalent to add an axis with size 18.9 and 6 (respectively) to handle non-rigid 
deformations. In figure 2 we present the final results after optimization (results 
from the hands that  we have not drawn are similar). 

6 C o n c l u s i o n s  

In this paper we have described a new approach for 2D object segmentations 
using an automatic method applied on images with problems as partial informa- 
tion, overlapping objects, many objects in a single scene, severe noise conditions 
and locating objects with a very high degree of deformation. We have illustrated 
the problem of segmenting images using different examples. 

In this paper, tha t  the Hough transform may be used to fit the initial po- 
sition of a template has been demostrated by reformulating a new algorithm, 
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Fig. I. Initialization. 

in which the precision has been decreased to keep the required time and space 
under practical limits. Both, the initialization (using the reformulated H.T.) and 
optimization (using the proposed external energy function) method, make up a 
completely automatic algorithm independent of the object to be located, so this 
approach holds considerable promise not only as a technique to segment images 
but also, as a first work to design new and better algorithms. 
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B 
Fig. 2. Final results. 
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