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Abstract. This paper presents a bimodal histogram transformation pro- 
cedure where conjugate gradient optimization is used for estimating max- 
imum likelihood parameters of uuivariate Gaussian mixtures. The paper 
only deals with bimodai distributions but extension to mtfltimodal dis- 
tributions is fairly straightforward. The transformation is suggested as a 
preprocessing step that provides a standardized input to e.g. a classifier. 
This approach is used for pixelwise classification in RGB-images of meat. 

1 Introduct ion  

A transformation of image d a t a  dis t r ibut ions  can be used in image en- 
hancement to enhance specific sub levels in the intensity range. It can 
also be used as preprocessing before classification or segmentation. Com- 
mon transformations t ransform the  image d a t a  to more or less predeter- 
mined distributions with fixed parameters .  By using a histogram match 
with predetermined distributions the  h is togram information is totally 
neglected. The bimodal his togram t ransformat ion  described here does 
not remove all the histogram informat ion,  and is therefore interesting as 
standardization algorithm for d a t a  t ha t  is bimodal  by nature. We will 
describe the bimodal  his togram tra_~formation,  which estimates the pa- 
rameters for a bimodal da t a  set using max imum likelihood estimation, 
and only changes some of the  pa ramete r s  to  predetermined fixed val- 
ues. It could as well be a h is togram t ransformat ion  with more than  two 
Gaussian distributions. 
The method is used as a preprocessing step in a classification case study. 
The case s tudy is to classify mea t  images pixel-wise into lean or fat, 
where the meat images are cross-sectional cuts from pork carcasses. The 
images are 8-bit rgb color. The  light exposures vary from image to ira- 
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age. Thus without some kind of s tandard iza t ion  of the da ta  the pixel-wise 
classification of lean and fat will be  deter iorated,  because the light in- 
tensity ranges in the images used as trainlrtg set for the classifications 
model estimation are changing in relat ion to the rest of the da ta  set. We 
therefore apply the bimodal h is togram t ransformat ion to each rgb band. 

When the intensi ty-function of the change in light exposure is unknown, 
and too much change in the  distr ibut ion of an image is undesirable, the 
bimodal histogram t rans format ion  can be one approach to overcome the 
difficulties of light exposure  changes. 

2 Dealing with Varying Light Exposure 
Our approach is to assume tha t  the  image is a mixture of Gaussians. 
We est imate the pa ramete r s  - averages, variances and weights - and only 
change a minimum of pa rame te r s  necessary to get the desired standard- 
ization or enhancement .  
In this actual case s tudy  we will only be dealing with bimodality, but  it 
can easily be ex tended  to a mix ture  of a larger number  of Gaussians. 
When a da ta  set is classified by  means  of supervised models, a training 
set is necessary. The  t raining set is used for est imating parameters in 
the model. A common problem in many  applications is, that  the da ta  
set distributions can vary for different incidents. This means that  the 
training set used for model  es t imat ion will be different from the new 
data  set, and can cause a poor  classification. 
For pixel classification in an image, the light intensities can change over 
the image or from one image to another  over time, dependent of the 
environment and image acquisition applications. In the meat classifica- 
tion case study, the pixels' light intensities are varying from dark and 
under  exposed to light and  over exposed images. Fig. 1 shows two differ- 
ent examples of meat  images. T h e  image intensities are changing in the  
range from dark to over exposed. These  unstable light conditions makes 
a classification on the raw images troublesome. 
One way to overcome this problem is by using features which are invari- 
ant in relation to the intensi ty changes. Features which are invariant to 
linear t ransformations are  e.g. skewness, kurtosis and orthogonal trans- 
formations like canonical  variables and principal components based on 
the correlation matr ix.  
The t ransformation is, however,  of ten nonlinear. Another  approach is to 
t ransform the raw d a t a  to a more  or less fixed histogram distribution. A 
gentle t ransformation where  only some of the distribution parameters are 
fixed can therefore be suitable. This  t ransformation can be an univariate 
color scale calibration for images wi th  bimodal histograms, where only 
the averages have been changed.  
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3 M a x i m u m  L i k e l i h o o d  E s t i m a t i o n  of 
Parameters  for B i m o d a l  D a t a  Sets  
Assuming the da ta  set is a mix ture  of Gaussians, see e.g. [3] the param- 
eters can be  es t imated  and  used  in the  histogram transformation. 
In the univariate case the  likelihood and its derivatives can easily be 
derived, and conjugate  gradient  can be  used for estimating the maximum 
likelihood parameters .  The  mult ivar ia te  case induces difficulties with the 
derivatives. Approximations to m a x i m u m  likelihood est imation like the 
EM algorithm in [2] could be  u sed  in the  mult ivariate case. 

Fig. 1. From top to bottom an over exposed and under exposed image of meat is shown. 
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In the meat image pixel classification application, the histogram is as- 
sumed to be a mixture of two Gaussian distributions. Therefore we will 
only be dealing with bimodality, bu t  the  results can easily be extended 
to mixtures of more than two Gaussian distributions. 
The likelihood is 

L(p1 ,#2 ,0 . t , 0 .2 , a )=  

N 
. I 1 t i - - l i t  2 exp(--7( ~ 1  ) 

i=.l V ~ ' "  ~ * 

1 1 , 1 , t i - - #2~2~  
expt-Tt . ,  (1) 

where N is the number  of observations, and  tl is the value of observation 
number  i. 

The log likelihood is 

N 

In L(p t ,  #2, 0.z, 0.2, a)  = E ln(a  - -  
i----I 

1 1 , l t t i  --/~1 ~2,~ 
~ ' ~  0.1 e x p ( - - 2 t ~  ) ) 

I ti -- P2 2 + ( 1 - c ~ )  1 1 e x p ( - ~ ( ~ )  )) (2) 
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Let the data  set be the pixel values in an image. The number of obser- 
vations is the number  of pixels in the image, and the pixel values are 
integers in the range [0; Maxval]. T h e n  the log likelihood can be writ ten 
as 

Maxval 

In  L(D1,  D2,0.1,0.2,  or) - -  n l  f * ( i ,  DI ,  it2,0"1,0.2, a 0 (3)  

i=o 

where ni is the number  of pixels with  pixel value i, and 

f~t(i,/-~1,/~2,0.1,0"2,0~) --" In(o/  1 I exp(-- 1, i -- , 1 , 2 ,  J 

+ ( l - - a ) ~ e ~ t - - ~ t - - - ~  j )) (4) 

We want to estimate the parameters  ( m ,  ~2, 0.1,0"2, cO as 

arg max  in L ( m ,  .2,0. t ,  0.2, a) .  (5) 

As we are dealing with parameters  belonging to Gaussian distributions, 
we have the following constraints  
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,,'1 > o, (6) 

~-= > o, (7) 

and 
o _< a _< 1. (s) 

Unfortunately the log likelihood has maxima outside the range of the 
constraints. A way to deal  wi th  the  constraints is to let 

~', = ~,~, (9) 
( lO) 0"2 ~ U 2 

c~ = exp ( ), (11) 

and 

f ( i ,  pl,l~2, vl,  v2,a) = 
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Then 

l n L ( m , p 2 , v l ,  v2, a) = 
M a : r v  al 

i=O 

ni f ( i ,  pl,l.~2,Vl,v2,a). (13) 

Now estimating the parameters  (p l ,  p2, vl, v2, a) for the maximum like- 
lihood 

arg max  In L(pl ,  p2, vl, v2, a) (14) 

will satisfy the constraints in 6-8. 
When  we use conjugate gradient  as opt imizat ion algorithm the first par- 
tial derivatives have to be calculated.  We have 

M a z r v a l  
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Where 
d/ 
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A good starting value of the parameters can speed up the conjugate 
gradient algorithm, and make it less likely that the maximum likelihood 
estimation jumps into local maxima caused by noisy data. We obtain 
a starting guess by estimating the parameters on the one-dimensional 
mean filtered histogram. The averages are located as local maxima, the 
alfa by the local minimum in between the averages and the variances by 
the 5% and 95% fractiles. 
Conjugate gradient is used because it is relatively fast and the derivatives 
can be calculated. 
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The bimodal t ransformat ion procedure is as follows 
1 Est imate a s tar t ing guess of the  parameter  values. 
2 Calculate the derivatives of the parameters.  
3 Est imate new paramete r  values with conjugate gradient. 
4 If the parameter-changes are below a pre-set limit, we may proceed, 

otherwise go to s tep  2. 
5 Transform the image histogram to a histogram with the predeter- 

mined parameter  values and the other estimated parameter values. 

4 Case Study: Pixel-wise Classification of Meat 
Images 

The Danish slaughter-houses est imate the carcass meat  percent by us- 
hag measurements as total  weight, different anatomical lengths and local 
meat and fat measurements  from optical insertion probes. 
By use of vision, we can get alternative features, for estimation of the 
meat percentage, see e.g. [1]. 
The areas of lean and fat in a slice of meat  are intuitively correlated with 
the meat  percent. Therefore,  after the carcass has been divided into front 
part, middle part  and  h a m  as it is usual in a slaughter house, one image 
ha color rgb, has been taken of the cut between front and middle part, 
and a second image has been taken of the cut between middle part and 
ham. Fig. 1 shows an  image of the front (top) and an image of the ham 
(bottom). 
Assuming that  the background has been removed from the image (by 
use of deformable templates  as described in [1]). Our aim on this step is 
to classify the meat  into lean and fat pixel by pixel. 

4 .1  T h e  H i s t o g r a m  T r a n s f o r m a t i o n  

The data  set consists of 572 images. 283 images of the front and 289 
images of the ham. In [4] several different classification methods have 
been used and compared on a subset of the data  set. In the comparison 
a neural network wi thout  hidden layers worked fairly well. The input 
features to the network was the raw rgb bands, the local median filtered 
bands and local s t andard  deviation filtered bands. Therefore we will use 
this classification method .  A representative training set has been selected 
from 12 of the images for model  estimation. 
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Because of the changes in fight exposure over images we apply a bimodal 
histogram transformation to the raw rgb bands before any feature ex- 
traction. Here the averages are changed to predetermined values. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .;i:!,:. , ¸  

Fig .  2. Each image consist of three bands of format byte.From top to bot tom the red, 
green and blue band is shown. 

In Fig. 2 the red, green and blue band of an image from the front is 
shown. The corresponding histograms are shown in Fig. 3. The pLxel 
values are in the range 0-255. The histograms do not look very nice. 

i 

Fig .  3. Histograms in range 0-255 of the red, green and blue band from left to right. 
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They are very spiky, probably due to a preference with regard to the 
least significant bit. Fur thermore  there is a clear difference between the 
green compared to the  red and  blue band recording method. Therefore 
a change in the sample space can be preferable. 

Fig.  4. Histograms in range 0-128 of the red, green and blue band from left to right. 

Fig.  5. Histograms in range 0-64 of the red, green and blue band from left to right. 

In Fig. 4 and 5 the his tograms with sample ranges 0-128 and 0-64 are 
shown. The  corresponding es t imated  density, where the maximum like- 
lihood estimation of paramete rs  is used, is also shown as an overlaid 
graph. The  densities seem to fit the  da ta  set fairly well, though the data  
set is noisy and actllally could look like a mixture of three Gaussians. 
Because the lean can vary in darkness coursed by anatomical differences 
in the muscles, the lean class distr ibution could actually be a mixture of 
two normal distributions. But  these differences are G~y visible in some 
of the images. 
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t, 
Fig. 6. Histograms in range 0-64 of the bimodal histogram transformed red, green and 
blue band from left to right. 

Fig. 7. The red, green and blue band - top to bottom - after bimodal histogram trans- 
formation. 

The result of a bimodal histogram t rans format ion  is shown in Fig. 6 as 
histograms and 7 as images. We have used the  histograms in the range 0- 
64 in Fig. 5 and, as described in Section 3, t ransformed them by changing 
the mean values and  keeping the  variances and  alpha. In this case the 
resulting image has become darker,  and the  classification between lean 
and fat will be improved. 
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F i g .  8. T h e  m e a t  image  classified in to  lean  - b lack - a n d  fa t  - grey - w i t h o u t  a n d  w i t h  

b i m o d a l  h i s t o g r a m  t r a n s f o r m a t i o n  - t o p  to  b o t t o m .  

In Fig. 8 a pixel-wise classification of the meat  from Fig. 2 without - the 
top - and with - the bottom - bimodal histogram transformation is shown. 
It is seen that without the histogram tran.*formation preprocessing, many 
lean pixels are misclassified into fat. Especially on the upper boundary 
of the meat, and inside in the lean area. 

5 Conclusion 

We have described a bimodal histogram transformation procedure where 
conjugate gradient is used for estimating the maximum likelihood param- 
eters. 
The bimodal histogram transformation have been used as a preprocessing 
step in a classification case study, where rgb color images of meat were 
segmented into lean and fat. The  histogram transformation was done in 
order to gain some kind of standardization, which can be needed when 
supervised models are used for classification. 
The bimodal histogram transformation seems to improve the classifi- 
cation, when the image distributions can vary dependent of the en- 
vironment and image acquisitions. When the function of image inten- 
sity changes is unknown, the bimodal histogram transformation is a 
good alternative, because the histogram's parameters are ao~ completely 
changed. 
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