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Abstract 
The information related with the spatial correlation properties of textured images represents the 
topic of the present paper. The correlation estimate task is addressed, taking into account the 
stability problem when small and irregularly shaped training regions are available, as the case 
of Remote Sensing data of the SAR type. 
In these situations, the classical estimate based on large and rectangular training areas shows a 
large variance and, as a consequence, classification results quality strongly decreases as the 
training area dimensions decrease. 
The proposed approach is based on the simplified assumption of independent and separable 
spatial correlation properties in the slant and azimuth directions, and it takes advantage of one- 
dimensional processing to reduce the computation load. Two one-dimensional correlation 
functions are then easily extracted from small and irregular training areas, and they are 
successively applied for a classification process, on the basis of a maximum likelihood criterion. 
Theoretical and experimental comparisons with the classical two-dimensional approach are 
presented. 
Even though some information is lost in the proposed method, larger spatial neighbourhoods 
can be considered with only a linear increase of computation load. The results achieved on SAR 
test images show a significant increase in classification accuracy, proving that the simplified 
one-dimensional approach correctly takes into account spatial information to the end of the 
classification problem. 

1 Introduction 
The statistical models applied for textural feature extraction in a classification context 
are often too simplified, giving rise to unsatisfactory results. 
For instance, in the case of SAP, images, traditional classification methods, are not 
suitable, due to the presence of  speckle noise, image complexity and limited training 
sets. In fact specialised models have been designed to describe the textual information 
in SAR images [3]. 
The problem of a powerful exploitation of  spatial correlation properties is addressed 
in the present paper with the purpose of  classification. In the current literature, 
methods exploiting such correlation properties can be found. For instance in [5] 
Rignot and Chellappa suggest a model for the estimate of the spatial conditional 
probabilities included in a broader MRF approach. 
The small sample size problem affects the stability of  correlation estimates, mainly as 
deals large correlation lags. This fact, together with the enormous computation load, 
is the main reason why correlation lags larger than one are not usually taken into 
account. 



561 

To face these drawbacks, a method is proposed for the estimate of the spatial 
correlation matrix, which decomposes the bidimensional image data into 
monodimensional signals. 
Two correlation functions are estimated in the slant and azimuth directions, 
respectively, on the basis of the available small training sets. A couple of 2x2 
subcovariance matrixes are then constructed for each considered lag, and a modified 
maximum likelihood discriminant function is derived. 
Some portion of the information contained in the classical spatial correlation matrix is 
lost but the computed coefficients show a lower variance with respect to the 2D case. 
In fact, all samples belonging to the training set are used in this case, and not only a 
rectangular subset of the training area. 
This paper is divided in three sections. In the next session we introduce the 
correlation properties and we present the estimate of  the correlation functions. In the 
third section we develop a modified maximum likelihood classifier which exploits the 
information of the above correlation functions. Finally, in the last section, estimate of  
the correlation functions and classification results as obtained on test images are 
presented. 

2 Estimate of the spatial correlation features for small training 
regions 
The spatial correlation matrix is a significant statistical property of  the second order. 
The use of this measure in the classification task allows to take into account more 
accurate models and to significantly improve classification accuracy. 
In general, the goodness of  an estimator can be measured through two parameters: 
the bias and the variance. An estimator is said consistent if these two parameters tend 
to zero with the increasing of  the observed signal. 
It's possible to choose a biased or an unbiased spatial correlation estimator. The 
variance of the estimator is function of the size of  the training area together with the 
leg of the spatial correlation to be estimated. Only a finite part of a signal is 
considered when the estimate of the spatial correlation of a signal is computed. 
Therefore, the size of the training area is important for the stability of the estimated 
spatial correlation. 
The classical estimate of the spatial correlation matrix is made with the following 
method. 
Under the hypothesis of  a stationary bidimensional process, if the following 
neighbourhood is given: 

XI X2 [ 

X3 
a 3x3 spatial correlation matrix can be estimated as: 

I LR1,3 R2,3 R1AA 



562 

Such a matrix represents the bidimensional correlation values for unitary lags in 
horizontal, vertical, and oblique directions. 
The estimator of  the single clement has the following shape[l] [2] [4]: 

1 N-t 
Rjk N n=0 J t¢ 

where N is the number of  the sites in the training area that completely contain the 
neighbouring mask. 
As a consequence, a frame of border pixcls is lost, whose dimensions depend on the 
mask dimension, that is, on the maximum lag. 
Under these conditions, the classical estimate of  the correlation matrix is stable only 
when it is possible to extract large and rectangular sets of  neighbouring pixcls from 
the training regions. 
In the practical applications is quite usual to have training regions with irregular 
shape and made up of very few samples. In this case the classical way of  computing 
the correlation matrix does not give rise to stable results. 
The solution proposed in this paper consists in analysing the information carried by 
the bidimensional signal by means of  successive analysis of  azimuth and slant range 
directions. 
Similarly to the approach followed in the classical textural estimation of run-length 

and cooccurrence matrices, the bidimensional signal is transformed into a 
monodimensional one, by putting the samples which lie in subsequent rows (or 
columns) in a monodimensionat vector. 
Such a vector is then: 

[ xO) [ ....... [ x(n] .... :[ x(n+g[ ......... I x(N) I 

and the spatial correlation information in one dimension, at lags 1,2 ....... n is the 
following: 

f "1 

P=[RI,I RI,2 R1,3 RI,4 RI,5R1,6 RI,7 RI,S RI,9 R1,L+lJ 
The estimator of  the single clement has the following shape[6]: 

1 N - j  

N is the size of  the training area, x(n)  is a sample of  the training area andj  is the lag 
of  the correlation element. 
In this way a stable estimate of each correlation coefficient can be achieved for L 
significant lag value. In addition, it is possible to use training windows with any shape. 
Finally, the number of border samples is reduced. 

3 Discriminant function 
Given the originally proposed approach for the estimation of  the spatial correlation 

features, it is then necessary to modify the parametric structure of  the maximum 
likelihood functions. 
The novel discriminant function is derived from a sum of maximum likelihood terms 
computed on reduced matrices. 
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The proposed idea is to generate, for each considered lag, a couple of covariances 
matrices, of size 2x2, composed by the coefficients estimated in the new way. Their 
shape is the following: 

4 =L~1,5+1-n RI,1-/'ti J 
The decision function, related to the generic class i, changes according to the 
following: 

='z~' (~")=-,s--, l" ss- J~,].L-~,+j- ,-,, J ks-' L=,~+,-,~,g 
with p; index of the current pixel 
To compare the new discriminant function to the traditional 2D one, we consider, for 
simplicity, a E2D of 3x3 size, for which: R23 = R12 
This means that the oblique direction correlation is approximated with the same value 
as the horizontal one. 

In such a case, theinverse matrix is: (zi) -1 =-71 ~fll r2 ii i f 1 2  r4 
Is IL,83 r2 

where: f l l  = RI.1 - Rt ,2  ; f12 = RI,2 R1,3 - RI,I  '83 = R1,2 - R t , 3RIA  ; ,84 = RI,I  - R1,3 

[ ] [ E i l =  R3 2 2 2 . 
1,1 - 2R1,2Rl,I + 2R1,2RI,3  - RI,3RI,1 

In the case of the one-dimensional approach, two correlation matrices corresponding ,[ .] respectively to lag 1 and 2, are: Sl 1 al a3 " = ; 2 2 = , 
a 2  ~Zl a 4  a 3  

R1.1 RI.2 ~l,1 R1,3 
where al = ]"lI-~-~- ~2 =- ":~l ~3 I]r2i ~4 =--z21 ...... 

2 2 i 2 2 2 
with: i~-*l = nl,1 - R1,2 ; ~: = nl,l -/h,3 ; 

Now, the classical M L computation gwe rise to: 

: : ) (11) g2Di(Xl )=-- - -  x fll + x 2 f 1 4  + x 3 f l l  +2XlX2f12 +2x3x2f12 +2XlX3f13 + I n  2 t r .,l 
while in the proposed method, we have: 

glDi(Xl)  =(a~ I o~3)x 2 +(a-, +a3)x22 + 2 ' ' 

While in the 2D approach, the computation of the inverse matrix has an exponential 
growth with the increase of the lag value, with the new method, the exploitation of 
lag up to 2 does not cause an intractable increase of complexity. In fact adding a new 
tag only cause a linear increase of computation. 
As already noticed, if the two methods are applied on the same training region, the 
coefficients of the correlation estimates in the second way are more stable than the 
classical ones. 
As a consequence, a portion of the lost 2D information is recovered trough the 
exploitation of the additional correlation coefficients. 
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Finally, in a small sample size context, the proposed method becomes particularly 
interesting. 

4 Results 
We have divided the results into two sections. In the first part we present the 
estimates of  the correlation functions as computed on SAg images, The behaviour of 
the functions and the variance of  the estimated values are presented and discussed 
through the presentation of some graphics. 
In the second part some classification results obtained with the modified 
discrimination function are reported. The classification is made on the basis of test 
images that contain objects with irregular shape. 

4.1 Estimate of the correlation function on real SAR data 
We have estimated the correlation function in the azimuth and in the slant range 

direction on a few SAg images. 
The images used for this test belong to the Maestro I campaign (fig, 4. I)[7]. 
The behaviour of the correlation functions of the five classes in the azimuth direction 
is shown in Fig. 1 for lag up to 10. 
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Fig. 1 Correlation functions for the five classes present in the Feltwell site image. 

One can observe that the value of the correlation function, even though small, is not 
zero also for a lag of six or nine samples, and varies for each class, thus representing 
a possible discriminant feature. 
Moreover, the behaviour of the correlation function confirms the results theorised by 
Rignot and Ulaby [3],[5]. In fact, in their works they proved that the spatial 
correlation has a shape similar to a sinc or to a sinc 2, which is not so different from 
the present results. 
The training areas used for the estimate of  the correlation function have been taken 
with different sizes as reported in Table 1. 

Tab. I Size of the training areas used for the estimate of the correlation function. 
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The variance o f  an estimated correlation function depends on the size o f  the training 
area as well as on the absolute value o f  the estimated correlation function itsel£ The 
behaviour o f  such variances can be seen in Fig. 2. 

0,005 / 
0,0045 ~, 

0,004 ~ , 
0,0035 I\~', 

t o, tx.ref \ - ~ , ~ . = - - - . ~ . _ - - - - . ~ _  .4" 

! o, I " , V  . . . . .  
J 
0,0005 

0 
i 1 2 3 4 5 6 7 8 9 10 
t 

Sugar beets; 
- - -- Stubble 

. . . . . .  Bare Soil 

. . . .  Potatoes 

. . . .  Carrots 

Fig. 2 Variance of the correlation functions of Fig 2. 

One can observe that the variance is low when the training area is large but it 
increases when the size is because o f  the increased lag value. 

4.2 Comparison of classification results. 
We have carried out some classification trials on different kinds of images to test the 
theoretical models explained in the previous sections. 
At first we have considered three test images generated from SAR data presenting 
two different classes (Fig.3), The first image has a very large background (second 
class) and a thin object class (first class) with a regular shape, On the contrary, the 
second and the third images have the second object class with an irregular shape. 

•%, 

Fig. 3 Test images used for the classification tests. 
We have used large training sets on the first image (over 1500 samples), and a 
classification process was computed with the classical and the proposed method. In 
this case, we have obtained better results with the classical maximum likelihood as can 
be seen in Table2. 
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Tab. 2 Classification accuracy achieved 
on the first image for the twomethods. 

This behaviour is due to the information loss of the proposed method and by the size 
of  the training area which is large enough also for the classical approach. In this case, 
in fact, the advantages of  the proposed methods are not significant as the training set 
is not small or irregular. 
On the contrary, we have used a small training area (16 samples) to estimate the 
features of  the irregular first class, in the second image. The results can be seen in 
Table 3. 
Now the results we have obtained are better for the proposed method because the 
correlation matrix estimated with the classical method is not stable enough. 

Tab. 3Classification accuracy achieved 
on the second image for the two methods. 

It is easy to notice that the monodimensional method works better than the classical 
one if the goal is the recognition of patterns which do not allow the classical method 
to have large regular training areas. This difference of quality is more evident in the 
pixels near the border. If we compute the accuracy in the areas close to the border of 
class 1 (red colour) we find (Table 4) in those places, the accuracy achieved with the 
classical method is very poor: 

Tab. 4 Classification accuracy for the 
Two methods close to the border. 

This result is due to the fact that in the new method we have computed ten elements 
of  the correlation. 
Finally the results obtained from the third image can be seen in Fig. 4.1 and in Fig. 
4.2. We can observe (Table 5) that the accuracies are better for the modified 
classifier. 

Tab. 5 Classification accuracy achieved 
on the second image for the two methods. 

On the contrary, the classical method achieves better results for the background 
object because is available a large and regular region. In conclusion the new proposed 
method is more robust in border areas. 
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Fig. 4.1 Classification map of tile third 
image as obtained by the classical method. 
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P~g. 4.2 Classification map of the third 
image as obtained by the proposed method. 

5 Conclusions 
The experimental data colzfirm that the spatial correlation is an important statistical 
property. 
By exploiting this information during features extraction it is possible to achieve an 
improvement in the accuracy quality of the classification results because the models 
are more complete. 
Finally, the method for the monodimensional estimate of the correlation and the 
method for the modified computation of the maximum likelihood are effective in 
those situations where the recognition of thin and not regular shaped objects does not 
allow the classical estimate methods to achieve satisfactory results because of the 
instability of the estimates. 
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