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Abst rac t .  In this paper we treat ultrasound image data as a two dimen- 
sional autoregressive (AR) signal. The image is modelled as consisting of 
distinct regions each described by one of a small number of AR models. 
Segmentation is performed by maximising the image likelihood function, 
which takes on a convenient form due to the AR model. Image data 
is presented to the algorithm in complex amplitude form. Results from 
application of this method to a cardiac phantom data set are presented. 

1 Introduct ion 

Ultrasound is a convenient, relatively inexpensive imaging modality. Its portabil- 
ity and real-time capability make it particularly suitable to diagnosis of cardiac 
dysfunction. Medical ultrasound images are visually complex, requiring highly 
trained observers for clinical interpretation. At present, quantitative analysis 
of ultrasound images is a labour intensive process and the measurements used 
in practice do not fully exploit the large amount of image data  available. This 
suggests the use of computer aided analysis. The first step in such a system is 
accurate segmentation. 

Segmentation of image data arising from the use of coherent radiation such 
as ultrasound is complicated by a granular distribution of intensity known as 
speckle. Most algorithms reported in the literature for the purpose of segmen- 
tation of ultrasound amplitude or intensity data do not assume an explicit sta- 
tistical model. To do so would require estimation techniques based on Rayleigh 
or exponential statistics which are not widely used in image processing. A com- 
monly used method for detecting edges in ultrasound and other forms of coherent 
imaging is the Laplacian of Gaussian (LOG). Bovik [4] analysed the performance 
of LoG in detecting edges in speckled images under the assumption of indepen- 
dently distributed intensity data. This is not a good model for ultrasound which 
tends to be strongly correlated. Bovik found the LoG method tended to produce 
many false edges and proposed the Ratio of Averages (RoA) method to improve 
LoG performance. Methods incorporating an explicit statistical model in seg- 
mentation of ultrasound include those of Cohen [6] and Ashton and Parker [i]. 
Cohen modelled both complex and real (bandpass radio-frequency) data using 
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a Gaussian Markov Random Field. Ashton and Parker acknowledged Rayleigh 
statistics as a suitable model for the first order statistics of B-mode ultrasound 
images, but invoked the central limit theorem to justify a Gaussian model for 
locally averaged images. Other authors have treated speckle as multiplieative 
noise and used nonlinear methods such as median or mode filters [8] to increase 
the signal to noise ratio. In this work we investigate the use of a two dimensional 
AR model. AR models have been successful in modelling image texture in several 
image processing applications, for example optical aerial images [12]. We apply 
a two dimensional AR model to complex amplitude data  in order to partition 
the image into regions eharaeterised by distinct second order statistics. 

2 B a c k g r o u n d  

In ultrasound imaging a transducer transmits a short acoustic pulse into the 
medium of interest. The same (or another) transducer then senses the backscat- 
tered signal arising from fluctuations in acoustic impedance within the medium. 
A two dimensional image is constructed by relating the time of arrival to depth 
and sweeping the beam mechanically or electronically. In ultrasound imaging, 
as with other forms of coherent imaging, the signal arriving at the transducer 
may be modelled as the coherent sum of wavelets scattered from sites within the 
resolution cell. The de-phasing introduced by displacement between randomly 
positioned scatterers results in speckle. The statistics of laser speckle patterns 
have been investigated by Goodman [10] while the statistics of speckle in ul- 
trasound have been investigated by Burckhardt [5] and Wagner, Smith, Sandrik 
and Lopez [13]. The problem of finding the first order statistics for the complex 
amplitude can be reduced to the classical problem of a random walk in the com- 
plex plane. When the amplitude and phase of the kth phasor are statistically 
independent of each other and of all other phasors, and the phase is uniformly 
distributed in the interval [0, 27r) the probability density function (PDF) for the 
complex amplitude x = xr + j xi follows from the central limit theorem [10] 

(2 1 xr + x i "~ 
pr#(x~, xi) = 2~a------~exp ~ ) , (1) 

where the variance a 2 is determined by the mean square scattering amplitude 
[10]. Equation 1 is a special case of a complex Ganssian distribution where 
the real and imaginary components are uncorrelated. This form of the complex 
Gaussian distribution is termed circular Gaussian since contours of constant 
probability form circles in the complex plane. The assumptions used in deriving 
Eq. 1 need to be seen in the context of ultrasonic imaging. The assumption of 
a uniform distribution of phase requires that  the average distance between scat- 
terers in the resolution cell be large compared with the wavelength. The number 
of scatterers must also be large in order to apply the central limit theorem. In 
practice the latter will only pose a problem when the scatterer density is very 
low since the limit is reached quite quickly: Wagner et al [13] reported a good 
approximation to circular Gaussian statistics with approximately 38 scatterers 
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per cell. The statistics of speckle for a small number of scatterers have been 
investigated by Jakeman [9]. 

3 M e t h o d  

Autoregressive modelling may be defined in terms of linear prediction. For a one 
dimensional AR sequence, we estimate the signal at a point n as a weighted 
linear sum of P previous signal values, 

X n  = -a~ X n _  1 - -  a 2 X n - 2  , . . . , - - a p  X n - p .  

Setting a0 = 1 the prediction error is 

P 

~ n  -.~ X n  - -  X n  --~ Z a ;  ~ n - - j  . 

j = O  

The form is similar for a two dimensional signal, however the concept of "past" 
is replaced by a support region S, 

E (2) 
i j E S  

In this paper we represent an image of size MxN as a vector, 

X -~- [ X j ]  T = [ X 0 0 ,  . . .  , X 0 ( N _ I ) ,  . . .  , X l 0 ,  . . . ,  X ( M - 1 ) ( N - 1 ) ]  T • 

Hence we define an error image e as the matrix product 

e = A x ,  (3) 

where A is a matrix composed of AR parameters. We note that  Eq. 3 is approx- 
imate as it does not correctly account for data  points on the boundary. 

3.1 Predic t ion  Error Image  

As shown in Section 2 the first order statistics for complex amplitude data. may 
be described by a complex circular Gaussian distribution. We may thus represent 
an ultrasound image in complex amplitude form by a complex Gaussian random 
vector. For an image x of size MxN the PDF has the multivariate form 

px(x) = 7r-MN[Rx[-lexp ( - - x * T R ; l x )  • (4) 

We have assumed zero mean data  so that  the correlation matrix Rx  is equal to 
the covariance matr ix Cx. Given the transform A, the PDF for the prediction 
error image is 

pc(e) = (IA*[]A[) -1 p x ( A - l e )  
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= ~r-MNIR~I-lex p (-e*TR~-le) , ( 5 )  

We note that A is upper diagonal with ones along the diagonal and hence 
IAI = 1. The correlation matrix for the prediction error image R~ is by def- 
inition a diagonal matrix with diagonal elements equal to g{ee*} = a~, the 
prediction error variance. The probability density function for the prediction er- 
ror image is therefore 

?tIN--11CjI2) 
j=O 

( 6 )  

which is just the PDF for a vector of independent zero mean complex Gaussian 
random variables. 

3.2 Appl ica t ion  to Segmenta t ion  

Consider an image in which pixels are divided into two classes, for example fore- 
ground and background. We may represent this image by two sets LF and LB. 
Given the sets LF and LB and representing the image by the data vector x, the 
likelihood function is 

Px (X[LF, LB) = Pxx.~ (XF) Px, (XB), 

= peF(eF)p~B(eB), (7) 

where xF, XB represent data in classes F and B. By rewriting Eq. 7 in terms of 
the prediction error probability density function Eq. 6 we obtain the log likeli- 
hood function 

- -  + . (s) 

We now maximise the image log likelihood given by Eq. 8 (which is the same 
as maximising the likelihood function itself) by choosing a class for each pixel 
using the following decision rule: 

j E LB if hE 2> hB 
j C LF otherwise, where hk = ~ +ln(a2~). (9) 

e k 

Except for the constant - N  ln(rr) which has no affect on the decision rule, Eq. 8 
is the same as that derived for real valued data in [12]. 
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3.3 Implementation 

The implementation of the method described above is best thought of in terms 
of prediction error filtering. For the case of a square quarter plane support region 
of size 2x2, 

~00 
~01 

El0 

e(M-2)(g-2) 

x00 

x01 

___ 

Xl0 

X(M--2)(N--2) 

which may be written compactly as 

X01 Xl0 Xl l  

X02 Xll  X12 rll a01 

a lo  

L a l l  

(10) 

E -- X a .  (11) 

Each row of the data matrix X is generated by stacking data elements under the 
support region row-wise. The AR parameter set a and prediction error variance 
a2can be found by solving the Normal equations [11]. 

1 

MN 
(12) 

3.4 A lgo r i t hm 

1. Select regions F and B representative of foreground class (LF) and back- 
ground class (LB). 

2. Compose data matrices XF and XB. 
3. Compute AR parameters aF, aB and prediction error variances a~v2 ,a~B2. 
4. Filter image using aF and aB to produce prediction error images eF and eB 

respectively. 
5. Apply the decision rule to estimate a class for each pixel. 

4 R e s u l t s  

In order to assess the segmentation method we used a range-theta (r t~) ultra- 
sound data set reconstructed to baseband (complex amplitude) format• The ra- 
diofrequency (rf) data set is from a 64 element synthetic aperture array (centre 
frequency 3.3 MHz) applied to a cardiac phantom target [3]. The reconstructed 
data set is 512 range elements by 102 lateral elements with an axial (range) 
resolution of 0.35mm per element. An intensity image (Fig. 2a) was generated 
from the complex data set, gamma corrected with V = 3.0. The intensity image 
was then manually traced by a trained observer to provide the "true" segmen- 
tation (Fig. 2b). The manually segmented intensity image is partitioned into 
foreground and background regions, where we have defined the foreground class 
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as those pixels arising from the phantom material and the background class as 
pixels within the phantom eavitys and surrounding the phantom. We next ap- 
plied the AR/ML algorithm to the complex data set. We used a quarter plane 
support mask of size 5x5, and estimated the foreground and background model 
parameters from regions of size 32x32 shown in (Fig. 2b). The AR/ML results 
are shown in Fig. 2d. For comparison, we generated an edge map using a 21x21 
LoG filter with ~ = 3.0. The edge map is shown in Fig. 2c. 

h b (range = 40)  

5o00 

~ e k g m u r ~  _ _ _ 

1 4 4  

0%0 ' 2oo 400 eoo eo.o looo 
Ihata 

h f  ( r ange  = 40)  

2, o 

.~r 20 o background . . . . .  

o 

Fig. 1. Decision function plotted for background (left) and foreground models 
for range = 40 pixels. 

5 Discuss ion and Conclusion 

The AR/ML result shown in Fig. 2d produces a reasonably accurate result com- 
pared with the mamlal segmentation shown in Fig. 2b. Using the latter as the 
"true" hypothesis results in a 10 % Type I error rate (classifying a background 
pixel as foreground) and a 7.5 % Type II error rate (classifying a foreground 
pixel as background). The decision function is shown in Fig. 1 for a range of 
40 pixels. The graph on the left shows the decision function for the background 
hypothesis while the graph on the right is the foreground hypothesis. The "true" 
hypothesis is also indicated on each graph. To interpret these graphs it must be 
noted that the data values in the background are much less then those in the 
foreground so that 

a 2 < a~. 

The graph on the right shows prediction errors (normalised by prediction error 
variance) that are higher in the foreground class then the background. Although 
by itself this would not support the true hypothesis, the ML decision is made 
by comparing the graphs. In this case the decision function follows the true 
hypothesis quite closely. 

We have shown for comparison an edge map produced by the LoG method. 
Although a direct comparison is difficult we note that the LoG tends to produce 
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a) 

b) 

c) 

e) 

Fig. 2. a) intensity image b) manual segmentation c) LoG, standard deviation 
3 pixels d) AR/ML e) AR/ML+median 3x3 

many artifacts within the cavity areas. The AR/ML method also classifys incor- 
rectly within the cavity areas hut these tend to be isolated pixels. The tendency 
to produce a "noisy" result is not surprising since no attempt has been made to 
model spatial correlation in the labelled image. One method of encouraging the 
formation of regions in the segmented image to use a Bayesian approach with 
a Markov process describing the region prior [2],[12],[7]. In our case we simply 
apply a median filter to the segmented image, as shown in Fig. 2e. The median 
filter is eomputationally less demanding then the Bayesian techniques and more 
consistent with the speed of the AR/ML segmentation. 

We have used data in range-theta (r 0) form directly, rather then interpolated 
data. Interpolation does not add to the information present, and may introduce 
artifacts. The use of (r 0) data does however affect the second order statistics. 
Since the lateral distance between resolution cells increases with range we expect 
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the da ta  to become less correlated in the lateral dimension. This effect would 
be offset part ly by the increase in resolution cell size caused by diffraction. One 
way to counter this effect is to process the (r 8) data  in strips of small 5 r, so 
that  the lateral distance between resolution cells is approximately constant.  

In conclusion we have modelled ultrasound da ta  in complex ampli tude form 
as a two dimensional autoregressive random field. Modelled in this way the 
image likelihood function can be expressed conveniently in terms of prediction 
error. A max imum likelihood segmentation method for an image consisting of 
two classes was applied to a cardiac phantom da ta  set. The results show tha t  an 
autoregressive model captures the second order properties of ultrasound well and 
tha t  max imum likelihood estimation of regions based on this model produces a 
segmentation with acceptable Type I and Type I I  errors. 

The authors are grateful to Sriram Krishnan [3] who kindly provided the 
complex ultrasound da ta  set used in this work. 
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