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Abst rac t .  This paper reviews several kinds of 2D shape representa- 
tions by a set of parameters based on labeled points, Fourier descriptors 
and wavelet descriptors, resp.. Shape models are derived by statistical 
analysis of parameters corresponding to a set of example shapes. Each 
model consists of a parameter vector describing mean shape and a set of 
modes of variation for parameters characterizing shape variability. Seven 
shape models, some of them differing in parameter normalization, for 
axial slices of spinal vertebra are compared with respect both to their 
compactness in parameter space and to their scope in corresponding 
space of shapes. A model based method for segmenting 2D gray level 
images is developed by formulating boundary finding as an optimization 
problem with respect to parameters varying according to the modes of 
variation. Our method includes an easy and fast interactive improvement 
of segmentation outcome. 

1 I n t r o d u c t i o n  

Segmentation of objects found in medical images, e.g. organs, parts of organs, 
bones, without or with a small amount of user interaction is an outstanding task 
in medical image analysis. Most segmentation methods use mainly the image 
gray values and derived local properties, e.g. contrast, texture, to apply certain 
local criteria. Those methods most often require a favorable initialization and 
are sensitive to poor image quality. To improve results additional object knowl- 
edge must be incorporated into the segmentation procedure. This can be done 
by human expert  interaction, which is often tedious and time consuming, and by 
appropriately modeling global object information. The overall object shape rep- 
resents a powerful property for separating an object and its surrounding. Since 
global shape is too variable to be adequately represented by a single shape tem- 
plate, statistically based techniques for building shape models, which capture 
the natural shape variation, were developed ([7], [8], [9], [10]). 

Although it is obvious, that  the suitability of a shape model depends on 
its application and on the kind of variability in the shape, we found neither a 
guidance for selecting a model nor a comparison between several models. 

This work aims at representing shape of 2D objects and segmenting 2D ob- 
jects from 2D images, focusing on spinal vertebra in CT (Computer Tomog- 
raphy) images as an example. The vertebra was chosen because of its medical 
importance, e.g. in orthopaedy, and of the diversity of shape samples. 
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2 T h r e e  s t a t i s t i c a l  s h a p e  m o d e l s  

2.1 Represen t ing  shape 

Many contour representations have been developed(J4], [1]). Tayloret at.[9] rep- 
resented geometric entities by sets of distinct, labeled points, which we will call 
key points. Fourier descriptors representing closed contours were used by Staib 
and Duncan[7] and Sz~kelyet al.[8]. Herein, we present a third parameterization 
based on wavelet decomposition of closed contours. 

The use of a set of N labeled contour points (key points) (xo, Yo), (Xl, y~), 
• . . ,  (XN--1, Y N - 1 )  yields the shape describing parameter vector 

P P D M  -~- ( x o , Y o , x l , y l , . . .  , X N - I , Y N - 1 )  T e ]R 2N (1) 

Let the closed curve (x( t ) ,  y(t)), t E [0, 2~r), represent the contour of a simply 
connected object. Using complex notation, r( t)  = x ( t ) + i y ( t ) ,  gives the following 

N - 1  Fourier series expansion restricted to the first N degrees r y ( t )  -= ~-~k=0 cke-~kt,  
where ck C C, k = O, 1 , . . . ,  N - 1, are referred to as Fourier descriptors. Now 
the shape is parameterized by the vector 

P F S M  = (C0,Cl , - . -  , a N - l )  T E ~ N  (2) 

The wavelet transform extracts spatial information in addition to spectral 
information which is also given by Fourier decomposition. The wavelet parame- 
terization of a contour represented by equally sampled points (x0, Y0), (xl, Yl), 
• .. ,  (XN-  1, Y N -  1) is given by the results of separate wavelet representations of x- 
and y-coordinates. In this work we restrict ourselves to the often used Daubechies 
wavelet filter of order 3 ([2],[6]). 

2.2 Building the shape model  

We are given a training set of n shape examples. Let pi E ]R 2N be the parame- 
terization of the ith example. The mean parameter vector ~ is calculated using 

1 n ~ n ~ i = 1  Pi. Since the parameter vector uniquely determines a shape, ~ repre- 
sents a mean shape. Notice, that both the mean shape and the concentration of 
overall variability on certain parameter elements depend on the kind of param- 
eterization as illustrated in section 5 (Fig. 2 and Fig. 3). A principal component 

1 n analysis of the empirical covariance matrix S = ~ )-~i=1 (pi - p) (Pi - ~))T yields 
the eigenvalues A~ _> A2 _> . . .  _> ),2N _> 0 and the corresponding eigenvectors 
qi, i = 1,2, . . .  ,2N. The eigenvectors corresponding to the largest eigenvalues 
describe the most significant modes of variation in the parameter space. A large 
amount of variation is probably explained by a small number of modes, say by 
the first m eigenvectors. They represent together with the mean parameter vec- 
tor ~ the shape model. We will denote the shape models as point dis tr ibut ion  
mode l  (PDM), Fourier shape model  (FSM) and wavelet  shape  mode l  (WSM) 
depending on whether the shape parameterization is based on coordinates of a 
set of labeled points, on Fourier descriptors or on wavelet descriptors, resp.. 
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The shape model allows to generate new shape samples by first adding a 
weighted sum of modes to the mean parameter vector, i.e. p = T9 + Qb with 
Q = (ql,q2, . . .  ,qm) the matrix of the first m modes and b = (bl,b2,.. . ,bin) 
the weight vector, and than deriving the corresponding shape for p. Any shape 
parameterized by p can be approximated by calculating the corresponding weight 
vector using b = QT(p _~).  Due to the modal analysis the training set of shapes 
gives empirical covariances between bi and bj, i ~ j ,  which are equal to zero, and 
empirical variances )~i of bi. Hence, varying weight vector b within an ellipsoid 
described by 

z=C (a) 
i = l  

for some constant C produces shapes similar to those found in the training set. 
D(b) is called Mahalanobis distance of b (from 0 E ]Rm). 

We trained spinal vertebra models on 45 manually segmented example shapes 
according to distinct slices of a 3D CT data set. We refer to section 5 for illus- 
trations of the resulting shape models. 

3 I n t e r a c t i v e  s e g m e n t a t i o n  u s i n g  s h a p e  m o d e l s  

We formulate segmenting as a minimization problem with respect to the weights 
for the extracted modes of variation, in order to force the segmentation procedure 
to explore shapes that 1) fit the image, 2) are consistent with the model, and 3) 
include of interactively marked points to the segmented contour. 

We assume, that we can find some contrast between the object and its back- 
ground in the image, at least for a large portion of the object boundary. So we 
apply differential edge detection based on Roberts cross operator[4] to the image. 

For a given vector of weights b = (bl, b2, . . . ,  bin), the parameter vector p(b) = 
~+ Qb is computed, p(b) determines a set of points (x{, y{)(b), i = 0, 1 , . . . ,  N - 1, 
that represent a shape sample. In the j th ,  j > 1, iteration step, point (Sj, ~j) is 
marked by the user as a point that should belong to the boundary of the shape. 
To guide the segmentation procedure, we define a cost function M(b) by 

N-1 j 
M(b) = - ~ E((x~,yi)(b)) + c. D(b) + d. ~ e ( (~ ,~ i ) ,  {(xl,yt)(b)}t=o ..... N - l )  

i~-0 i = l  =:~ei 

for constants c,d E ]R +, where E((x ,y) )  denotes the result of edge detection 
at point (x,y), D(b) is defined by (3), and ei denotes the smallest Euclidean 
distance between (5i, yi) and the points (x~, yz)(b), I = 0 , . . . ,  N - 1. 

Figure 1 shows an example gray level image, the initialization by the mean 
shape, and the result of the minimization procedure (downhill simplex method 
[6]) with underlying Fourier shape mode/(FSM) with N = 64 and using the 
largest m = 12 modes of variation. The automatic segmentation algorithm (j=0) 
did not find the lower vertebra process in this case, but it is included into the 
segmented object by a small amount of user interaction. 
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Fig. 1. Segmentation (~xamplc. The first row shows the gray vahie image, the initial- 
iz;~tion, and tim result of automatic segmentation, followed by interme.diate results of 
intera(:tivc s('gmentation (~a(;h in(ti(;;~ting the intera(:tively marked point. 

4 I n v a r i a n t  s h a p e  m o d e l s  

Shape description should t)e invariant to transformations resulting fiom change 
in position, orientation, and scale. Herein, we assume that  image format  and 
resolution are standardized. Hence, natural  changes in scale are incorporated 
into the shape, model. It turns out, that  the performance of the models depends 
strongly on the kind of normalization being incorporated. 
I n v a r i a n t  p a r a m e t e r i z a t i o n  b a s e d  on  key  p o i n t s :  ax ia l  s y m m e t r i c  o u t -  
l ines  ( P D M 1 ) .  Since vertebrae in the images of interest are approximately 
axial symmetric,  we determine a coordinate system dependent on the key point 
set by the center of gravity of key points as origin and the or thonormal  eigenvec- 
tors of the momentum matr ix  of key points as basis vectors. A binning procedure 
is used to select among the two eigenvectors that  one which corresponds to the 
symmetry  axis of the outline. 
Invariant parameter izat ion  based on key points:  general  out l ines  
( P D M 2 ) .  In order to achieve invariance with respect to translation and rotat ion 
Dryden and Mardia [3] premultiply the N x 2 matr ix  of the N key points by 
matr ix  H ,  where H is the N x N Helmert matr ix  without the first row, and 
than perform a QR decomposition of the resulting matrix.  
Parameter iza t ion  based on  Fourier descriptors: invariance w i th  re- 
spect  to trans lat ion  and ro ta t ion  for axial symmetr i c  out l ines  (FSM1) .  
The Fourier descriptor co is set equal to zero. The sum 

_ i  2~ k -- i  2rC k • 
a l e  N q- a N - - 1  e - i ~ - ( g - 1 ) k  = C l e  N q- e g _ l e ~ a ' ~  k 
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with k = 0, 1 , . . . ,  N -  1 gives points that lie on an ellipse. We rotate the principal 
axes of this ellipse into canonical position, where that axis becomes y-axis, which 
is closest to the symmetry axis of the outline. 

P a r ame te r i z a t i on  based on Fourier  descriptors:  invariance wi th  re- 
spect  to  t rans la t ion ,  ro ta t ion ,  s ta r t ing  point ,  and scaling (FSM2).  
Pavlidis[5] does the following: Co is set equal to zero and all other Fourier de- 
scriptors ci, i = 1 . . . .  , N - 1, are multiplied by a factor s • e i°+b, where scale 
parameter s, rotation parameter 0 and starting point parameter b are chosen 
such that ci and CN-1 become purely imaginary numbers and their sum has 
modulus 1. 

The derived invariant shape models we refer to as PDM1, PDM2, FSM1, and 
FSM2, resp.. 

5 C o m p a r i n g  s h a p e  m o d e l s  

In order to compare the seven shape models we represent each contour by a fixed 
number N -- 64 of equally spaced points, that are key points in the representa- 
tion (1) for PDM and its normalized versions PDM1 and PDM2, and that are 
sample points for the parameterization (2) for FSM, its modifications for FSM1 
and FSM2, and for shape description by wavelet representation as in WSM. 

5.1 Modes  of  var ia t ion 

In Figure 2 the influence of the first four modes of variation in the parameter 
vector to the derived shapes are visualized for each of the seven shape mod- 
els. The rows correspond to PDM, PDM1, PDM2, FSM, FSM1, FSM2, WSM, 
resp..The displayed shapes were generated by varying the first four weights for 
the modes separately, while keeping all other weights zero. The weight values 
were -1.Sx/~i (dark line), 0 and 1.5v~i(bright line), i=1,2,3,4, resp. (lst, 2rid, 
3rd, and 4th column, resp.). 

Notice, that the invariant parameterizations on the one hand remove trans- 
lation influence and on the other hand may introduce artificial variability as 
for PDM1 and FSM1 due to the delicate symmetry axis finding procedure and 
for FSM2 due to the normalization procedure that selects non-corresponding 
starting points for Fourier parameterization. This results in artificial scaling ex- 
pressed by the first mode of variation. The lack of correspondence between the 
parameter sets of distinct shapes, e.g. due to non-corresponding points selected 
as starting points in FSM2, deteriorates the statistical model. 

5.2 Recons t ruc t ion  of  shape samples 

For a fixed number of modes we determined the relative approximation error 
for each shape in the training set and computed the average value. As expected, 
using all modes of variation for the approximation allows correct reconstruction 
of shape samples as shown in Figure 3. Moreover, it turns out, that all shape 
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F ig .  2. Shapes  generated by varying the  first four weights for modes  separately.  
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models, except for FSM2, are similar with respect to reconstruction performance, 
whereas FSM and WSM are capable to approximate  the training shapes with 
the least number  of modes. 
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Fig. 3. Comparison of shape models. Left: Mean relative approximation error depen- 
dent on a fixed number of modes. Right: Portion of the k parameter elements with 
largest standard deviations, k E {1, 2 , . . . ,  2N}, with respect to the overall standard 
deviation. 

5.3 S c o p e  o f  the  mode l s  

In order to examine the scope of the shape models, we approximated with all 
n - 1 modes of variation a set of 50 new shape examples of vertebra derived 
from another 3D data  set. For each resulting weight vector b we determined the 
Mahalanobis distances D(b) according to (3). The value D(b)/vrn - 1 can be 
interpreted as tha t  factor to scale the smallest ellipsoid with, which contains 
all weights of the training set, in order to derive an (variability) ellipsoid tha t  
contains the new weight vector b. We obtained the following mean scaling factors 
and corresponding s tandard deviations depending on the shape model: 

model P D M  PDM1 PDM2 FSM FSM1 FSM2 WSM 
mean 2.1641 1.8247 1.7468 1.9118 1.7282 1.6403 1.7837 

std.dev. 0.5621 0.6194 0.3682 0.3410 0.9155 0.5577 0.3435 

A small mean scaling factor combined with a small s tandard deviation indicates 
a model tha t  is sufficiently general to capture the whole set of new ver tebra  
shapes. With respect to this point of view the model PDM2 is the best one. 
PDM1, FSM1, and FSM2 yield very different values for model consistency of 
the new samples due to the sensitive normalization procedure. 
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6 C o n c l u s i o n  

Statistical shape models allow a concise and powerful representation of global 
shape information. In this work seven statistical shape models were built for 
2D axial slices of spinal vertebrae based on shape representation by a set of 
labeled points, Fourier descriptors, or wavelet descriptors. For the first two pa- 
rameterizations we developed normalization procedures that  yield invariance 
with respect to translation and rotation and are dedicated to symmetric con- 
tours. Furthermore, we investigated two normalization methods proposed in the 
literature([3],[5]). Our experiments showed that  the kind of normalization is 
crucial, since one method resulted in strong artificial shape variations (FSM2), 
whereas we found also one suitable normalization method (PDM2). The shape 
model based on the latter normalized shape parameterization also turned out to 
be most capable to capture new shape samples. 

We applied exemplary the shape model based on Fourier descriptors to a 
segmentation procedure that  makes iterative interactive improvement of the re- 
sult possible by balancing between the image fit, model consistency and fit to 
the interactively marked points. The procedure was found to be relatively in- 
sensitive with respect to blurred boundaries and spurious edges. Though we got 
promising segmentation results, we still need to spend effort into an improved 
minimization procedure. 

Future work will include incorporating non-linear dependencies between the 
parameters by using higher order moments or appropriate probability distribu- 
tions and the investigation of shape models for 3D objects. 
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