
Verification of Liveness Properties Using

Compositional Reachability Analysis

Shing Chi ~ h e u n g t Dimitra Giannakopoulou* Jeff Kramer*

?Department of Computer Science, Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong.

*Department of Computing, Imperial College of Science, Technology and Medicine,
London S W 7 2BZ, UK.

Email: scc@cs.ust.hk, { d g l , jk} @doc.ic.ac.uk

ABSTRACT

The software architecture of a distributed program can be represented by a hierarchical
composition of subsystems, with interacting processes at the leaves of the hierarchy.
Compositional reachability analysis (CRA) is a promising state reduction technique which can be
automated and used to derive in stages the overall behaviour of a distributed program based on
its architecture. Conventional CRA however has a limitation. The properties available for
analysis after composition and reduction are constrained by the set of actions that remain
globally observable. The liveness properties which involve internal actions of subsystems may
therefore not be analysed. In this paper, we extend compositional reachability analysis to check
liveness properties which may involve actions that are not globally observable. In particular, our
approach permits the hiding of actions independently of the liveness properties that are to be
verified in the final graph. In addition, it supports the simultaneous checking of multiple
properties (both liveness and safety), and identifies those properties that are violated. The
effectiveness of the extended technique is illustrated using a case study of a Reliable Multicast
Transport Protocol (RMTP) with over 96,000 states and 660,000 transitions.

Keywords

Reachability analysis, compositional verification, distributed computing systems, labelled
transition systems, Biichi automata, liveness properties.

1 Introduction
Distributed processing is widely used to provide computing support for diverse
applications. Many of these applications are complex and critical; an error can have
catastrophic consequences. Behaviour analysis is a useful technique that can help
discover defects and check if a program performs as intended.

Static analysis techniques for concurrent and distributed programs can b e used to
verify two classes of property: safety and liveness. A safety property asserts that the
program never enters an undesirable state [I]. For example, mutual exclusion is a safety

This is the Pre-Published Version

