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Abstract

There is increasing interest in having softwaare systems execute and interoperate over the Internet. Execution anac
interoperation at this scale imply a degree cof loose coupling and heterogeneity among the components from whiccr
such systems will be built. One common appproach to designing distributed, loosely-coupled, heterogeneous softwarz=
systems is a structure based on event geneeration. observation and notification. The technology to support this«
approach is well-developed for local area ~networks, but it 1s ill-suited to networks on the scale of the Internec:
Hence, new technologies are needed to suppoort the construction of large-scale, event-based software systems for thes
Internet. We have begun to design a new faccility for event observation and notification that better serves the neecs:
of Internet-scale applications. In this paper ~we present results from our first step in this design process, in which we=
defined a framework that captures many cof the relevant design dimensions. Our framework comprises seveer
models—an object model, an event model. a naming model. an observation model, a time model, a notificationr:
model, and a resource model. The paper cdiscusses each of these models in detail and illustrates them using iar
example involving an update to a Web page. The paper also evaluates three existing technologies with respect to thes
seven models.
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1 Introduction

There is increasing interest in having software sysistems execute and interoperate over the Internet. Workflow systems
for multi-national corporations, multi-site/muiti:i-organization software development, and real-time investment
analysis across world financial markets are just a 1 few of the many applications that lend themselves to deployment on
an Internet scale. Execution and interoperation act this scale imply a high degree of loose coupling and heterogeneiry
among the components from which such systerms will be built. One common architectural style for distributed.
loosely-coupled, heterogeneous software systezms is a structure based on event generation, observation and
notification. The technology to support this arwchitectural style is well-developed for local area networks (e.g.
Field’s Msg [30], SoftBench’s BMS [13], ToolTaalk [16] and Yeast [19]), but it is ill-suited to networks on the scale
of the Internet. Hence, new technologies are neeeded to support the construction of large-scale, event-based software
systems for the Internet.

We envision event observation and notificanuon as being an explicit facility provided to software components
across the Internet. The facility would have thee ability to observe the occurrence of events in components, 10
recognize patterns among such events, and to ~notify other, interested components about the (patterns of) event
occurrences. This is a fairly simple and intuuitive characterization of its requirements. However, this simple
characterization masks the richness and compmiexity of the issues that must be addressed in the design and
implementation of the facility. For example,

¢ To what extent should the facility supponrt recognition of patterns of non-causally related events?

e What architecture will allow the facility r to efficiently organize and partition its observation task, to handle
notifications to multiple components innterested in the same events, and to characterize events involving
multiple components?

e  Where in the architecture should the facility support event-pattern recognition and event information
filtering?

These and many other questions must be carefullv . addressed in any design and implementation effort.

Recently there have been a small number ot : proposals and initial prototypes for Internet-scale event facilities.
such as the OMG CORBA Event Service [26,277] and the TINA Notification Service [34]. But the definitions of
these facilities address only a limited portion of t:the full problem space. Therefore, we have begun to design a new
facility for event observation and notification that t better serves the needs of Internet-scale applications.

In this paper we present results from our firstt step in this design process, in which we defined a framework that
captures many of the relevant design dimensions. Our framework comprises seven models:

1. an object model, which characterizes the: components that generate events and the components that receive
notifications about events;

2. an event model, which provides a precise z characterization of the phenomenon of an event;

3. a naming model, which defines how ccomponents refer to other components and the events generated by
other components, for the purpose of exppressing interest in event notifications;

4. an observation model, which defines the > mechanisms by which event occurrences are observed and related:
5. atime model, which concerns the temporral and causal relationships between events and notifications;

6. a notification model, which defines the rmechanisms that components use to express interest in and receive
notifications; and

7. a resource model, which defines where= in the Internet the observation and notification computations are
located, and how resources for the compoutations are allocated and accounted.




Each of these models has a number of possible realizations. Taken together, these realizations define a seven-
dimensional design space for Internet-scale event observation and notification facilities. Of course, these dimensions
are not completely independent, because the models are interrelated in various ways. Because of these
interrelationships, only a proper subset of the points in this space will correspond to adequate designs for Internet-
scale facilities.

We describe these models fully in Section 3, but first in Section 2 we define more precisely what we mean by
the notion of “Internet scale”. In Section4 we evaluate three existing technologies with respect to the design
framework, and we conclude in Section 5 with a discussion of our plans for future work.

2 Attributes of Internet Scale

In order to provide an adequate design framework for an Intzrnet-scale event observation and notification facility, we
must first fully explore the ramifications of Internet scale. The primary distinguishing characteristics of an Internet-
scale computer network are the vast numbers of computers in the network and the vast numbers of users of these
computers. As a consequence of this, it would be infeasible to employ many kinds of low-level mechanisms that are
used to support event observation and notification in a local-area network, such as the following:

e caching and history mechanisms, which retain persistent information about event occurrences in the
network;

e broadcast mechanisms, which indiscriminately communicate event occurrences and notifications to all
machines on a local network; and

e vector clocks, which piggyback onto each message exchanged between the communicating processes of an
application a vector timestamp (whose size is linear in the total number of processes in the application), in
order to aid the identification of causally-related events.

There are other characteristics of Internet scale that we can identify, and they are consequences of the vast numbers
of participants.

One important related characteristic is the worldwide geographical dispersion of the computers and their users.
As a consequence of geographical dispersion, it becomes necessary to address relativistic issues in multiple
observations of the same event. For instance, observers of two events occurring on opposite sides of the world may
observer two different orders for those events. Additionally. an application requesting a notification about an event
at roughly the same time, but prior to, the occurrence of the event of interest may or may not be notified about the
event.

At the scale of the Internet, the huge numbers of geographically-dispersed computers and users also have a much
greater degree of autonomy than in local-area networks. Because of this autonomy, issues of resource usage are of
greater concern, such as accounting and monetary charges for resource usage for observation and notification
computations, what kinds of limits are to be placed on resource usage, and means of preventing misuse of resources
or intrusiveness on others’ usage of the resources.

Related to the issue of autonomy is the security of the computers and users. Mechanisms and policies must be
established that will allow Internet-scale event observation and notification to take place in a manner that is
compatible with security mechanisms such as firewalls, and is consistent with the need to enforce access permissions
and other protection mechanisms.

Finally, concerns related to quality of service obtain much greater visibility at the scale of the Internet. Because
of network latencies, outages and other dynamically-varying network phenomena, an Internet-scale event observation
and notification facility will have to cope with decreased reliability of observations and notifications, as well as
decreased stability of the entities to be observed and notified.




3 Design Framework

In this section we present a design framework for an Internet-scale event observation and notification facility. The
framework is organized around the seven models listed in the introduction, each of which focuses on a different
domain of concern in the design. Although the framework is general (in the sense of being independent of any
particular application domain), we impose certain constraints that we feel are required in order for the facility to
support true Internet-scale event observation and notification. And although the framework is quite comprehensive,
there are aspects that it does not yet fully address, including a model of security and a model of quality-of-service;
these are subjects of future work. Note that because the seven models are interrelated, it is necessary to defer the
definitions of some concepts until the sections in which their relevant models are given full treatment.

Implicit in the relationships among the seven models is a timeline of activities involved in event observation and
notification. We can identify seven such activities, which occur in sequence:'

1. expression of interest in an event or pattern of events;

occurrence of each event;

observation of each event that occurred;

relation of the observation to other observations to recognize the event pattern of interest;
notification of an application that its pattern of interest has occurred;

receipt of the notification by the application; and

N e v AW

response of the application to the notification.

We consider the last of these activities to be outside the domain of concern of the event observation and notification
facility.

Looking at these activities from a slightly different perspective, our framework distinguishes three separate but
related aspects of an event:

1. the occurrence of the event itself;
2. the communication of the fact of the occurrence to applications that are interested in the event; and

3. information about the event, some of which is general for all events (such as the time at which the event was
observed), and some of which is specific to the event that occurred.

Two separate but related aspects of the communication include the observation of the occurrence and the notification
of the occurrence. We consider notifications to be independent and unrelated. Any attempt by an application to
relate in some way the different notifications it receives is a duplication of, and may be inconsistent with, the
functionality of the event observation and notification facility.

3.1 Object Model

The object model for an Internet-scale event observation and notification facility incorporates the usual notion of
encapsulation of functionality, which transcend considerations of Internet scale. An object can be a processor,
storage device, network device, or some other hardware component of the network, as well as any logical entity

! The fact that there are seven models and seven activities is purely coincidental.
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Figure 1. An Object Model for Web Page Updates.
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residing on a hardware compoonent, such as a file, a program, a process, a communication packet, and the like.?
Humans also fit into this modet.. in that we assume that they always have computer-based proxy objects working on
their behalf. An object supports s a set of operations, each of which can be invoked by some other object. We refer to
an object whose operation is invvoked as an object of interest, and we refer to the object invoking the operation as the
invoker. An operation may be- invoked directly through some apparatus associated with the object, or it may be
invoked indirectly as a result -of executing some program or software tool. Objects are also the entities that are
recipients of notifications about ( events; we refer to such objects as recipients.

Figure 1 presents a simple - example illustrating the concepts of the object model. The example involves three
objects—a Web page object (thee object of interest), an object that updates the Web page (the invoker), and an object
that receives notifications abouct the update (the recipient). The operation applied to the object of interest in this case
is an update operation, which reeplaces the contents of the Web page with new contents supplied by the invoker.

3.2 Event Model

The event model for an Interrnet-scale event observation and notification facility incorporates a straightforward
notion of event. An evenr is thee instantaneous effect of the (normal or abnormal) termination of an invocation of an
operation on an object, and it . occurs at the location of that object. An event can be uniquely characterized by the
identity of the object of interese: involved in the event, the identity of the operation that was invoked, the identity of
the invoker, and the time of occcurrence of the event.> An event is observable if it is possible for some object other
than the object of interest and i'the invoker to detect the occurrence of the event. We refer to an observing object as
an observer.

A consequence of this mmodel of events is that there is a one-to-one correspondence between operation
invocations and event occurreznces. However, not every event will result in an observation of the event, and not
every observation will result 1n a notification being communicated to some recipient. An event is simply a
phenomenon that occurs regarcdiess of whether or not it is observed. In other words, an event “costs” nothing; any
costs that are incurred result frcom observations and notifications.

Looking again at the Web » page example, Figure 2 depicts the event that is the effect of the termination of the
update of the Web page. This cevent is observable, since a Web browser could be used to load the old version of the
page prior to the occurrence of t the event and the new version after the occurrence.

2 While hardware objects and theirr operations may be of interest to applications such as network managers, in this paper we will
concern ourselves solely with appplications involving software objects and operations.

3 The notion of identity is an aspeect of the naming model, while the notion of the time of an event occurrence is an aspect of the
time model, both of which are diiiscussed below.
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Figure 2. An Event Model for Web Page Updates.

3.3 Naming Mod¢el

Naming is of central importanace in any software system [18], and this is especially true of the naming model for an
Internet-scale event observationn and notification facility. which provides a way of identifying events, as well as the
objects, operations and other innformation associated with events. The naming model is employed for the purpose of
expressing interest in events aand requesting notifications about events. The realization of a naming model will
typically offer a language that ¢ can be used to uniquely identify a specific event and to construct expressions whose
interpretations are sets of evennts. In particular, the language will support the (possibly partial) specification of a
name, for which there may be nmultiple matching event occurrences. We use the term event kind to refer to the set of
event occurrences that can matcch a name.

The designer of an event oobservation and notification facility will have wide latitude in the choice of realization
for the mechanism’s naming nmodel. The two most prevalent classes of naming model are structure-based and
property-based. Structure-bassed naming models typically employ a hierarchical naming scheme that corresponds to
the hierarchical organization ot f the entities of interest. The state-of-the-art in Internet-scale structure-based naming
models is the Universal Rescource Locator (URL), which provides a way of locating and accessing Internet
resources [3]. URLs could be : used as the realization for a mechanism’s naming model, but the URL syntax and
semantics would have to be exxtended to support the naming of additional kinds of objects; work in this direction is
the subject of a draft specificanaon for Uniform Resource Identifiers (URIs) [8].

In a property-based naminng model, the entities to be named are named declaratively with a description of some
property they possess or some : predicate they satisfy. The current state-of-the-art in Internet-scale property-based
naming models is to be found | in Web search engines such as the AltaVista™ Search Service, which supports a
content-based search mechanissm for the location of Web pages.*

Figure 3 returns to the Weeb page example and depicts a possible syntax for naming the update event. A URL is
used to identify the object of ‘interest, while the standard hierarchical Internet domain naming scheme is used to
identify the invoker. As was mmentioned above, because this same name can be used to refer to all future instances of
Web page updates by the invopker, we say that the update of the Web page by the invoker is a particular kind of
event.

3.4 Observation "Model

The observation model for ann Internet-scale event observation and notification facility defines the way in which
event occurrences and patternsis of event occurrences are observed for the purpose of notifying interested recipients.
Observation is achieved througizh a set of observer objects, and is implemented according to a number of policies that
are defined as part of the modek!:

e an observation policy, . which defines the mechanism by which observation of an event is achieved;

4 AltaVista is a trademark of Digitatal Equipment Corporation.
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Figure 3. A Naming Model for Web Prages Updates.

e an information policy, which defines how event-specific infcormation is to be requested and observed;

e a pattern abstraction policy, which defines what kinds of zevent patterns can be specified, how observer
objects are configured to recognize event patterns, and hoow event patterns are to be identified for the
purposes of requesting notifications about patterns;

e a partitioning policy, which defines the way in which obserrvation tasks are partitioned among observers;
and

e afilter policy, which defines how event-specific information 115 used to select events for notification.

There are other issues related to event observation that we discuss -pelow as part of the resource model, such as
when, where and how observers are created and destroyed.

As a consequence of Internet scale, it typically will be infeasible : for the realization of the observation model to
maintain histories of observations. Therefore, we expect most obserrvation policies to preclude the persistence of
observations. In other words, under such a policy, it would not be roossible for a recipient to receive a notification
about an event that occurred prior to the expression of interest in that eevent.

There are two classes of observation methods that can be empinoyed for the observation policy: synchronous
observation, in which the fact of an event occurrence is communicareed explicitly to and in synchronization with the
observer, and polling, in which the observer periodically checks :zor the occurrence of an event. Synchronous
observation can be further subdivided according to whether the invckzer communicates with the observer or whether
the object of interest does. In all cases the observer eventually commmunicates a notification synchronously to one or
more recipients and/or one or more observers.

Figure 4 depicts the Web page example with synchronous observvations obtained from the invoker, while Figure
5 depicts synchronous observations from the object of interest. Figwure 6 depicts an observer that uses polling to
check for the Web page update event.

The information policy governs how event-specific informanocon is requested, identified and observed. In
particular, it must reconcile the desire of a recipient to request specinc information about an event occurrence with
the ability of an observer to obtain that information. For instance, 1 the case of the Web page update, a recipient
may desire to obtain both the old contents of the Web page and the ~new contents of the Web page, to enable it to
determine what was changed in the update. Thus, the recipient needs : a way of expressing interest in both pieces of
information so that the observer can take adequate steps to preserve r'the old contents prior to the occurrence of the
update. In general, it will be unreasonable to support unrestrained resquests for access to event-specific information,
so the information policy must define precisely what kinds of request it can accommodate. One approach may be for
recipients to provide the observer with a function or program that czan be used to compute all desired information
from the object of interest.

The pattern abstraction policy contains a definition of a langunage for specifying patterns of event kinds of
interest. There are a number of suitable candidates for this pattern [danguage, including general-purpose languages
and logics such as regular expressions, first-order predicate calculus <-or temporal logic, as well as more specialized
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Figure 5. A Synchronous Observation:: Model for Web
Page Updates (Synchronized with Objwect of Interest).

event-oriented languages such as TSL [22,31]. It is common to suppoort event abstraction in order to provide a way
of naming a pattern of events. Event abstraction is an especiallu. notable feature of process algebras such as
CCS [25]. The pattern abstraction policy may support a notion of evvent abstraction, in which a pattern of observed
events is represented by a single abstract event or by a name that is uased to refer to the pattern. Note that in order to
treat a pattern as a true abstract event, it is necessary for the policy tan establish some way of associating an object of
interest, an operation and an invoker with the abstract event.

The issues associated with the partitioning policy can be framed 1 using Table 1, which is a partial catalog of the
possible cardinality relationships among events, observers, and recipments. For events, we can consider the cases of a
single event, multiple independent events, or a pattern of events. For - observers, we can consider a single observer or
a team of observers working cooperatively. For recipients, we can cconsider either single or multiple recipients.

The first row represents the trivial situation of a single observer - assigned to watch for a particular event and to
notify a single recipient. The second row represents the situation in wwhich multiple recipients share the services of a
single observer watching for a particular kind of event; in essence.. the event kind is associated with a dedicated
observer. The third row, which says that there is a team of observerrs watching for the same event on behalf of a
single recipient, makes sense in a context where fault tolerance is .an issue and where redundancy can be used to
alleviate the problem. Rather than going through all the remaining rcows of Table 1, let us just point out some of the
more representative situations that have been captured; the others cann be inferred from the ones discussed here. The
fifth row represents the situation in which a single observer is assigneed the task of watching for multiple independent
events on behalf of a single recipient; here, the observer has been dediiicated to a recipient. The ninth row represents a
situation similar to the first row, but in which there is a single observeer watching for a pattern of events of interest to
a single recipient. Instead of having a single observer watch for a panttern of events, we can have a team of observers
watching for the pattern, as indicated by the eleventh row. This requinres communication and coordination among the
observers before a notification is sent to the recipient, but nonetheleess it may be useful to distribute the observation
task itself. Note that the table is only a partial catalog, in that one cann conceive of further arrangements (such as, for




Recipient
(customer PC)

Invoker
(Web page editor

Figure 6. A Polling Observation Model for Web Page

Updates.
Events Observers Recipients
1 Single Single Single
2 Single Single Multiple
3 Single Team Single
4 Single Team Multiple
5 Multple Single Single
6 Multiple Single Multiple
T Multiple Team Single
8 Multiple Team Multiple
9 Pattern Single Single
10 Pattern Single Multiple
11 Pattern Team Single
12 Pattern Team Multiple

Tabbie 1. Partial Catalog of Possible Cardinality Relationships Among
Events, Observers and Recipients.

example, multiple recipients ;s notified by a single observer watching for both multiple independent events and patterns
of events), but space does noot permit us to discuss the full range of possibilities.

In general, the choice anmong the various observation policies captured in Table 1 will come down to an issue of
performance. Factors such :as the rate at which events of a particular kind occur or the number and (physical or
administrative) distance of rrecipients, must be understood before the “correct” policy can be chosen. Therefore, an
event observation and notification facility should allow flexibility and dynamicity in how the observation task is
partitioned.

Once a pattern of interessting events has been observed, a notification must be sent to the recipient. Whether that
notification actually takes ptuace depends on whether the information associated with the events can pass through any
filter that has been establisheed between the observer and the recipient. Notice that we are drawing here an important
distinction between event fifzizers, which are predicates on the content of associated information, and event patterns,
which are predicates on the rrelationships among event occurrences. The filter policy is concerned with the language
for expressing filter predicantes, and where those predicates get evaluated, either at the observer or at the recipient.
For instance, in the Web-pagge example, a recipient might be interested in only being notified of changes that involve
more than 30% of the Webn page. A predicate such as this highlights the fact that there is a general dependency
between the associated inforrmation that is available and the filter predicate that can be expressed. In the example, the
percentage of change must bee somehow derivable from the information associated with the event.



3.5 Time Modeil

The problems of associating times with events in distributed systems and synchronizing clocks across distributed
systems are well known (e.z., see Lamport [20]). But as a practical matter, the full ramifications of these issues are
yet to be fully understood focr networks of Internet scale. As we observe in Section 1, relativistic issues may preclude
the use of any determunisuc. techmiques for associating times and causal relationships with events. Internet-scale
applications may therefore have to accommodate approximate representations of time, such as assuming the
existence of a global clock even though such an assumption may result in inconsistent observations in different
frames of reference.

Such issues are the conccerns of the ime model. An additional choice that must be made in the realization of the
time model is the point or pooints at which times are to be associated with the activities involved in event observation
and notification. With a synachronous observation model, either the invoker, the object of interest, or the observer of
an event could have the ressponsibility of associating a time with the event. With a polling observation model, the
observer would most naturaally associate a time with the event; by necessity, this time would be approximate unless
the time of occurrence can toe derived from information about the event itself or the object of interest. For patterns
of events, it may or may noct be desirable to associate a time of occurrence; the time could be the time at which the
first event was matched to thoe pattern or at which the last event was matched.

For the Web page exanmple, the file system of the object of interest will associate a modification time with the
new version of the Web pagee. It should be possible to use this modification time as the time of occurrence for the
event.

3.6 Notificatiom Model

The notification model for- an Internet-scale event observation and notification facility is concerned with the
communication between oboservers and interested recipients, which was illustrated for the Web page example in
Figure 4, Figure 5 and Figunre 6. In fact, this communication is bi-directional, since it involves, first, the expression
of interest by a recipient in : a particular pattern of events and, second, the communication of the notification along
with any associated informanuon that was requested.

Looking closer at the finrst direction of communication, we can see that there are essentially two ways in which it
can be viewed. One way is i 10 conceive of a pre-existing observer and a request being sent from the recipient to that
observer. Another way is to 1 treat the observer as the instantiation of an expression of interest.

Notifications themselvess should be seen as independent communications between observers and recipients. This
becomes particularly impoortant when there are multiple independent observers involved. Attempts to relate
notifications duplicate the joob of the event observation mechanism, which is responsible for recognizing patterns of
events.

A final issue related to rnotification is the lifetime of a recipient’s expression of interest. The realization of the
notification model must givee a recipient the flexibility to specify whether it wants to be notified only upon the first
occurrence of events matcching its pattern of interest, upon every occurrence, or according to more complex
characterizations such as eveery Nth occurrence.

Note that we could geneeralize our notification model somewhat to identify a separate requester or broker object,
which establishes a relatioonship between an observer and a recipient. In other words, event observation and
notification need not be innmitiated by the recipient. This model would accommodate applications that may be
interested in forcing notificzations to be sent to recipients, such as a software company wanting to notify customer
PCs about product updates. ~The familiar publish/subscribe paradigm would be a degenerate case in which the object
of interest and the observer ti1ogether form the publisher, while the broker and recipient together form the subscriber.

3.7 Resource Miodel

An intriguing way to vieww an Internet-scale event observation and notification facility is that it is a particular
architectural style for distribbuted computation in a wide-area network. Given that view, one can study the facility in
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terms of how resources in the network are allocated to carry out its computation. . 1n our design framework this is the
domain of the resource model.

The first consideration has to do with the specific architecture chosen within vthe style. The primary issue here is
the computational independence of observers: are observation and notification: simply part of the computation
associated with invokers, objects of interest, or even recipients, or are they indecpendent computations in their own
right? A design that incorporates observation and notification with one of tee other computations provides a
straightforward answer to the question of which participant incurs the costs of obsexrvation and notification, but raises
other questions, such as how to share observation and notification tasks. In conmtrast, if observers are independent
computations, then there is greater potential for sharing. This independence, howwever, raises the question of where
those computations take place and which participants are charged for those compuuzrations.

Related to the issue of architecture is the issue of managing the initiation anad termination of the computations.
Of course, invokers, objects of interest, and recipients all exist even in the abseence of any event observation and
notification tasks. So the resource model is specifically concerned with initianoon and termination of observers. If
observers are dependent computations, then clearly their lifetimes are tied to the oobjects within which they operate. If
observers are independent computations, then a realization of the event observantion and notification facility must
provide some form of management mechanism.

3.8 Discussion

Considerations of Internet scale have influenced the formulation of each of our sevren models to varying degrees. For
instance, consider our event model, which may appear somewhat restrictive since : its characterization in terms of an
operation invocation implicitly limits an event to one invoker. Some events. such as meetings, may be more
naturally characterized in terms of multiple invokers. But our formulation arises i Trom Internet-scale considerations,
since in general it would be infeasible to support the observation of an event involving multiple, Internet-wide
invokers. Instead, events involving multiple invokers can be accommodatesd through event patterns in the
observation model. Similarly, in the naming model, property-based naming mzay work well on an Internet-scale
because it may be difficult or impossible to structurally name all events of interest. ~ As we gain more experience with
the design of our own facility, we expect to refine our models to incorporate additiuonal constraints reflecting further
considerations of Internet scale.

4 Evaluation of Existing TechnologZies

This section examines the space of existing technologies to determine the extent ta » which some of these technologies
could serve as (the basis for) an Internet-scale event observation and notification raacility, as well as to show how the
design framework defined in Section 3 can be used to evaluate a candidate technoology. A number of technologies
are relevant to Internet-scale event observation and notification, and we can classitry them as follows:

1. theoretical models of distributed clocks [20], vector timestamps [9,24] anad partial orders of events [28];

2. low-level event managers for operating systems and windowing systems. . such as the XView Notifier [15]
and the Macintosh™ Toolbox Event Manager (6]

3. the implicit invocation design model [10];

4. languages and systems for event-based specification, analysis and debuggging of software, including Instant
Replay [21], Event-Based Behavioral Abstraction [2], TSL [22,31] and Riapide [23];

5. software buses, such as Polylith [29], OLE/ActiveX [5] and CORBA [33F;;
6. tool integration frameworks, including Field [30], SoftBench™ [13] and TToolTalk™ [l6];‘5

3 Macintosh is a trademark of Apple Computer, Inc.
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7. communication and collaboration systems, such as electronic mail, elecoronic bulletin boards, network news
services [17], Lotus Notes®, and Corona [14];7

8. software agent technology (e.g., see Genesereth and Ketchpel [12]):
9. active database systems, such as AP5 (7] and Ode [11]; and

10. event-action systems, such as Yeast [19] and Amadeus [32].

Below we examine three particular technologies in detail—the Yeast Event-Aaction Syvsiem. the CORBA Event
Service, and the Network News Transfer Protocol. A more exhaustive evaluation « of exising technologies will be the
subject of future work.

4.1 Yeast
Yeast (Yet another Event-Action Specification Tool) is a client-server system inn which distributed clients register
event-action specifications with a centralized server, which performs evvent cton and specification

management [19]. Each specification submitted by a client defines a pattern of eveents that is of interest to the client's
application, plus an action that is to be executed in response to an occurrence of t'ine event pattern. The Yeast server
triggers the action of a specification once it has detected an occurrence of the asscociated event pattern. Higher-level
applications are built as collections of Yeast specifications. These applicanuons range from simple deadline
notifications to comprehensive automation of activities in a software process.

Yeast’s object model includes support for predefined object classes and uscer-defined object classes to Yeast.
Yeast views an event as being a change to the value of an attribute of an object beelonging to some object class. An
event is named in Yeast's specification language by specifying the object class, < object and attribute involved in the
event, as well as an expression that the attribute must satisfy as an indication of - the occurrence of the event. Yeast
employs a hybrid observation model, using polling to identify occurrences of cevents involving predefined object
classes, and a synchronous announcement mechanism to receive indications of occcurrences of events involving user-
defined object classes; the observations and specifications handled by one Yeast : server are completely independent
of those handled by any other Yeast server. For its time model, Yeast assumes the= existence of a global clock, and it
performs time zone conversions when the client and server are located in differecnt time zones. Yeast's notification
mechanism is the KornShell [4]. Communication from client to server is achieveed through a number of Yeast client
commands, while notification from server to client is achieved by executing the sequence of shell commands
specified as the action of a specification. By default, any output produced by the : commands of the action is sent by
electronic mail to the user who submitted the specification. The Yeast server runns as a single UNIX® process and
therefore has all of the computational privileges of the user that spawned the proceess.?

Because Yeast uses the TCP/IP protocol to implement all communicanoon between client and server, it
technically qualifies as an Internet-scale event observation and notification meccnanism. However, the ability of a
Yeast server to poll for events is limited to objects it can access in its local area rnetwork. typically via network file
system services. Network transparency is also limited to a local area network, ssince at a minimum the client must
specify the local network domain of the server with which it wishes to commmunicate. And although Yeast was
designed as a general-purpose event-action system, existing implementations are : suited primarily to observation of
operating system-level events in networks of machines.

¢ SoftBench is a trademark of Hewlett-Packard Company. ToolTalk is a trademark of Sunn Microsystems, Inc. See Barrett et al.
for a recent study of event-based integration [1].

7 Notes is a registered trademark of Lotus Development Corporation.
8 UNIX is a registered trademark in the United States and other countries, exclusively licernised throngh X/OPEN Company, Ltd.
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4.2 The CORBA Event Service

The Common Object Request Broker Architecture (CORBA) is a general-purpose, Internet-scale software
architecture for component-based construction of distributed systems using the object-oriented paradigm [26,33].
The CORBA specification includes specifications for a number of Common Object Services, one of which is the
CORBA Event Service [27]. The CORBA Event Service defines a set of interfaces that provide a way for objects to
synchronously communicate event messages to each other. The interfaces support a pull style of communication (in
which the consumer requests event messages from the supplier of the message) and a push style of communication
(in which the supplier initiates the communication). Additional interfaces define channels, which act as buffers and
multicast distribution points between suppliers and consumers. The TINA Notification Service is a similar service
defined on top of the CORBA Event Service [34].

The CORBA Event Service lacks support for many aspects of event observation and notification defined in
Section 3. The object model is the object model of CORBA, and an event is simply a message that one object
communicates to another object as a parameter of some interface method. The specification of the CORBA Event
Service does not define the content of an event message, so objects must be pre-programmed with “knowledge”
about the particular event message structure that is to be shared between communicating suppliers and consumers.
Given this view of events, a naming mechanism is unnecessary, as is an observation mechanism, and any attempt to
identify patterns of events is the responsibility of the consumers of event messages. Timestamps can be associated
with events, but the meaning of such timestamps is at the discretion of the objects exchanging the event messages.
Being a message, an event is its own notification. The computational aspects of events are subsumed by those of
CORBA as a whole.

In summary, an event as defined by the CORBA Event Service really has no special semantics that distinguish it
from any other method call in CORBA. We hope that future refinements of the CORBA specification will address
more fully the phenomenon of event occurrences within CORBA applications.

4.3 The Network News Transfer Protocol

The Network News Transfer Protocol (NNTP) is the protocol used to distribute Usenet news articles (NetNews)
across the Internet [17]. NetNews is organized into a collection of newsgroups, each one being set up to support
ongoing discussion of a particular topic. Users express interest in a newsgroup by subscribing to it. A user can post
an article to one or more newsgroups, whereby the article is distributed across a geographical reach specified by the
user (although distribution of the articles posted to a newsgroup can be restricted according to policies established by
the administrator of the newsgroup). As users post replies to articles they read, a thread is formed among a stream
of related articles. At some point an article eventually expires.

One could reasonably view the newsgroups, the articles posted to the newsgroups, and the users who post the
articles as being the objects recognized by NNTP. One could also view the reading of articles as being the key
events, since responding to articles is the primary means by which new articles are generated. NNTP employs a
simple hierarchical model for naming newsgroups, with articles numbered sequentially within a newsgroup and users
identified by their electronic mail addresses. Except for the distribution specified at the time an article is posted,
articles are broadcast indiscriminately across the Internet, making observation simply a matter of retaining unexpired
articles of a newsgroup for any users who have subscribed to the newsgroup, and with threading being the sole
pattern recognition task of the protocol. NetNews does not really require a notion of time except for the expiration
of articles, and it suffices to assume the existence of a global clock for such a purpose. Users are notified about new
articles by periodically running a news reading program, which will make available all new articles that have been
posted to subscribed newsgroups. Computational limits are placed on the use of NetNews by system administrators,
who may block access to or distribution of certain newsgroups and may establish expiration policies and storage
limits for articles.

NNTP does an excellent job supporting an Internet-scale publish/subscribe model of communication. Several
elements of NNTP do not quite correspond with our notion of event observation and notification.
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5 Conclusion

We have described a design framework for an Internet-scale event observation and notification facility, to support
construction of Internet-scale event-based distributed software applications. The framework comprises seven models
that address seven different aspects of the design of the facility. We used this framework to evaluate three event
observation and notification technologies representative of the state of the art.

We have several plans for future research on this problem. First, our design framework must better address
security and quality-of-service issues, which could naturally be the subject of additional models in the framework.
As we gain more experience in designing and constructing an Internet-scale event observation and notification
facility, we will refine the models to incorporate lessons learned from our experience. A number of these refinements
will likely be made to the observation and notification models, whose realizations will require careful engineering to
ensure efficient and reliable operation on an Internet scale. Such refinements might involve the definition of a
formal calculus of event operations that would support systematic optimization of the configuration of a network of
observers, much in the same way that optimizations are applied to relational database queries in query languages
such as SQL. Some operations that the calculus could support include generation, filtration, observation,
notification, advertising, publication, subscription and reception.

Another key issue that must be addressed is the formal definition of the semantics of events that are of interest to
applications. It is one thing to declare that a new kind of event that is to be observed, but in order to ensure that all
occurrences of the event kind are generated uniformly, it will be necessary to provide a way of formally describing
the semantics of the event kind and enforcing the semantics on objects to which they apply. Finally, it is clear that
humans will play different roles in the use of an event observation and notification facility, but it is not yet clear how
that role should be embodied in a user interface. The user interface will have to provide some scripting language or
graphical means for the declaration of event kinds, the specification of event patterns of interest, and the generation
of notifications. An important question to investigate, therefore, is whether the design of the user interface affects
the design of all aspects of the facility itself, or whether it can instead be treated simply as just another application
built on top of the facility.
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