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Abstract. Formal specification languages are often criticized for be- 
ing difficult to understand, difficult to use, and unacceptable by soft- 
ware practitioners. Notations based on state machines, such as, State- 
charts, Requirements State Machine Language (RSML), and SCR, are 
suitable for modeling of embedded systems and eliminate many of the 
main drawbacks of formal specification languages. Although a specifi- 
cation language can help eliminate accidental complexity, the inherent 
complexity of many of today’s systems inevitably leads to large and com- 
plex specifications. Thus, there is a need for mechanisms to simplify a 
formal specification and present information to analysts and reviewers 
in digestible chunks. 
In this paper, we present a two tiered approach to slicing (or simpli- 
fication) of hierarchical finite state machines. We allow an analyst to 
simplify a specification based on a scenario. The remaining behavior, 
called an interpretation of the specification, can then be sliced to extract 
the information effecting selected variables and transitions. 
To evaluate the effectiveness and utility of slicing in hierarchical state 
machines, we have implemented a prototype tool and applied our slicing 
approach to parts of a specification of a large avionics system called 
TCAS II (Traffic alert and Collision Avoidance System II). 

1 Introduction 

Formal specification languages are often criticized for being difficult to under- 
stand, difficult to use, and unacceptable by software practitioners. Notations 
based on state machines, such as, Statecharts [2-4], Requirements State Ma- 
chine Language (RSML) [12,13], and SCR [&lo], are suitable for modeling of 
embedded systems and eliminate many of the main drawbacks of formal spec- 
ification languages, State-based languages are based on familiar concepts, have 
intuitive syntax and semantics, and help in reducing the perceived complexity of 
a formal specification. A suitable language syntax and semantics alone, however, 
cannot overcome the problems caused by inherent system complexity. Although 
a specification language can help eliminate accidental complexity, the inherent 
complexity of many of today’s systems inevitably leads to large and complex 
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specifications. Thus, there is a need for mechanisms to simplify a formal speci- 
fication and present information to analysts and reviewers in digestible chunks. 

In this paper, we present a two tiered approach to slicing (or simplification) of 
hierarchical finite state machines. We allow an analyst to simplify a specification 
based on a scenario. The remaining behavior, called an interpretation of the 
specification, can then be sliced to extract the information effecting selected 
variables and transitions. The simplified model has the same behavior as the 
original specification for the reduced input domain defined by the scenario. The 
objective is for the reduced specification to be significantly smaller than the 
original specification and to help analysts and domain experts to understand 
and validate the model. 

To evaluate the effectiveness and utility of slicing in hierarchical state ma- 
chines, we have implemented a prototype tool and applied our slicing approach 
to a specification of a large avionics system called TCAS II (‘YDafFic alert and 
Collision Avoidance System II). We used our slicing tool to help clarify a set 
of questions we have asked ourselves during previous investigations. In this case 
study, the reduction results were very helpful and slicing of RSML specifications 
seems to have great potential. 

1.1 Background 

In a previous investigation, the Irvine Safety Research Group, under the lead- 
ership of Dr. Nancy Leveson, developed a requirements specification language 
called the Requirements State Machine Language (RSML) suitable for the spec- 
ification of safety-critical embedded control systems [12,13]. To make RSML 
suitable as a requirements specification language usable by all stakeholders in 
a specification effort, the syntax and semantics of RSML were developed with 
readability, understandability, and ease of use in mind. The usefulness of the lan- 
guage was demonstrated through the successful development of a requirements 
specification for a large commercial avionics system called TCAS II (Trafhc alert 
and Collision Avoidance System II) [12,13]. Furthermore, we have developed a 
collection of automated analysis procedures that check an RSML speciflcation 
for desirable properties such as completeness, consistency, and determinism [7] 
and we have explored the possibility of provably correct code generation from 
RSML specifications [ll]. 

However, even if requirements specifications are readable, understandable, 
and can be shown to be complete and consistent, the sheer size and complexity 
of many systems make the specifications difficult to understand and review. For 
example, a table in an SCR specification typically spans multiple pages and 
table sizes of 14 pages or more are not uncommon [S]. In RSML, tables are 
used differently and the table sizes are kept much smaller so that tables always 
fit on one single page [13]. Nevertheless, a specification for a complex system 
will, due to inherent system complexity, inevitably grow large and through its 
size hinder readability. Since manual inspection is an effective way of validating 
a specification to the customers real needs, readability, understandability, and 
clarity of a specification document are of utmost importance. Therefore, tools 
and techniques to help reduce the complexity of a large specification are needed. 

To aid in the review and inspection of specifications based on hierarchical 
state machines we are currently investigating the feasibility of specification slicing 
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as a tool for specification understanding. We have focused on hierarchical state 
machines since they, in our opinion, are the most viable formalism for the class 
of systems we are interested in, namely reactive embedded control systems. 

1.2 Program Slicing 

Weiser introduced the concept of slicing as a means of simplifying programs to 
aid in debugging and identification of program fragments suitable for parallel 
execution [17]. A program slice is a projection of a program, which is smaller 
and potentially more comprehensible than the original program. Traditionally, 
program slicing is based on variables and statements. A slice consists of the 
statements that potentially effect the.value of a particular variable at a given 
statement. Today, program slicing is used to reduce the complexity of a pro- 
gram and is successfully used in debugging, program comparison, testing, and 
maintenance. 

Formal specifications provide a concise, mathematically well defined descrip- 
tion that details the intended behavior of a system. Yet formal specifications 
often contain so much information that they overwhelm a reader and make the 
specifications less useful. Oda and Akari [14], and Chang and Richardson [l] 
have extended slicing to formal specifications expressed in Z. Their techniques 
were designed to help alleviate the readability problems in Z specifications. Both 
techniques are based on a traditional definition of slicing and calculates slices 
based on the use of a variable in a Z schema post-condition. 

Slicing high-level specifications is in some aspects quite different from slicing 
programs. First, in state-based models variables are not the only entity we want 
to use as a basis for calculating a slice. Meaningful state-based specifications 
without variables are quite common during the early stages of the specifications 
effort. For example, if the focus of the specification effort is on the modal aspects 
of a system, input and output variables may not be defined until later in a 
project. IIn this case, the transitions between states are the focus of attention 
and we should be able to construct a slice containing the parts of the specification 
that effect a specific transition (or set of transitions). 

Second, in the early stages of development, specifications are often incom- 
plete and inconsistent. For example, the ‘events and actions in a state-based 
specification may not be fully defined, and the specification may be internally 
inconsistent. Thus, a slicing approach must be able to work with incomplete and 
inconsistent models. 

Sloane and Holdsworth extended the concept of slicing to a generalized marlc- 
ing of a program’s abstract syntax tree [15]. This generalization allows (1) slicing 
of programs without statements and variables, and (2) slicing based on criteria 
other than the use of a variable at a given statement. Their approach enables 
slicing based on, for example, call graphs, object structure, and type dependen- 
cies. We also base our approach to reduction and slicing of hierarchical state 
machines on a marking of the abstract syntax tree. Therefore, it is similar to 
Sloane’s and Holdsworth’s approach. , 

1.3 Motivation 

When reviewing and or inspecting a specification, we are interested in answering 
questions about the behavior of the specification. For example, during our work 
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with TCAS II, we asked questions such as “When do we downgrade a threat 
that has stopped reporting altitude?” and “How do we treat an intruder that is 
considered to be on the ground?“. 

Most questions regarding a specification involve an action, as in, downgrading 
an intruder that is considered to be a threat, and a specific scenario, such as, 
when the intruder has stopped reporting altitude. To help answer questions of 
this type we provide a two tiered approach to specification reduction. 

First, we allow the analyst to reduce an RSML specification based on the 
specific scenario of interest. Our tool accepts a reduction scenatio that is used to 
reduce the specification to contain only the behaviors that are possible when the 
operating conditions defining the reduction scenario are satisfied. We call such a 
reduced specification the interpretation of the specification under this scenario. 

Second, we allow the analyst to slice the interpretation based on different 
entities in the model to highlight, for example, the portions of the specification 
effecting the value of an output variable or the information effecting whether a 
specific transition can be taken. 

In this, paper we report on our first experiences with reduction and slicing 
of HSML specifications. To evaluate the feasibility of state machine slicing and 
to get some early feedback on our approach, we have applied our slicing tech- 
nique to parts of the TCAS II requirements specification. Initial results show 
that the slicing approach is very useful and would have helped us answer a set 
of questions we encountered in previous investigations. Naturally, more experi- 
mentation is needed, but these initial results are promising and show that slicing 
of state based specifications provides many benefits for specification readability 
and understandability. 

The next section gives a brief description of the syntax and semantics of 
RSML. The testbed we have used in this work is introduced in Section 3. Sec- 
tion 4 describes our approach to slicing of HSML specifications and Section 5 
discusses our experiences from a case study. Section 6 provides concluding re- 
marks. 

2 Requirements State Machine Language (RSML) 

HSML was developed as a requirements specification language for embedded 
systems. The language is based on hierarchical finite state machines and is simi- 
lar to David Harel’s Statecharts[2,5]. For example, RSML supports parallelism, 
hierarchies, and guarded transitions which originated in Statecharts (Figure 1). 

One of the main design goals of HSML was readability and understandability 
by non computer professionals such as, in our case, pilots, air frame manufac- 
turers, and FAA representatives. During the TCAS project, we discovered that 
the guarding conditions required to accurately capture the requirements were of- 
ten complex. The prepositional logic notation traditionally used to define these 
conditions did not scale well to complex expressions and quickly became unread- 
able, To overcome this problem, we decided to use a tabular representation of 
disjunctive normal form (DNF) that we call AND/OR tables (see Figure 2 for an 
example from the TCAS II requirements). The far-left column of the AND/OR 
table lists the logical phrases. Each of the other columns is a conjunction of those 
phrases and contains the logical values of the expressions. If one of the colunms is 
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Fig. 1. An example of an hierarchical state machine. 

!bxmsition(s): /Potential-Threat 1-k (Other-Paffic 

Location: Other-Aircraft D Intruder-Status,-13s 

Alt~Reporting-101 in state Lost 
RA-ModeCancelled,~~1a 
Alt-Reportings-lo1 in state NO 
Other-Bearine-Validw-l sn _ ._.~ ..~~~~~” .-A”- 

Other-Range-Valid,-117 = True 
Potential-Threat-R.ange-Testm-gr4 
Potential-Threat-Condition,,,-21 R .._ --- 
Proximate-Trafllc-Conditionrnwg~g 
Threat-Condition,-224 
Other-Air-Statusc-lnl in state On-Ground 

Output Action: Intruder-Status-Evaluated-Event,279 

Fig. 2. A transition definition from TCAS II ,with the guarding condition expressed as 
an AND/OR table. 



455 

true, then the table evaluates to true. A column evaluates to true if all of its ele 
ments are true. A dot denotes “don’t care.” To further increase the readability of 
the specification, we introduced many other syntactic conventions in RSML. For 
example, we allow expressions used in the predicates to be defined as mathemat- 
ical functions (e.g., Other-Tracked-Relative-Alt-Ratef-e,& and familiar and fre- 
quently used conditions to be defined as macros (e.g., Threat-Condition,-224)‘. 
A macro is simply a named AND/OR table defined elsewhere in the document. 
Naturally, the state machine in a real system is never as simple as in Figure 1. 
As an example of a realistic model, a part of the state machine modeling an 
intruding aircraft in TCAS II can be seen in Figure 4. 

Formally, the behavior of a finite-state machine can be defined using a next- 
state relation. In RSML, this relation is modeled by the transitions between 
states and the sequencing of events. Thus, one can view a graphical RSML 
specification as the definition of the mathematical next-state relation F. In short, 
an RSML specification is a mapping from a set of states (called the set of all 
configurations - Conf ig) representing the states in the graphical model and a set 
of variables (V) representing the input and output variables in the model to new 
states and variables. Thus, the next state relation F is a mapping C I+ C, where 
C C (Config x V). For a rigorous treatment of formal foundation of PSML the 
reader is referred to [7]. A detailed description of the graphical notation can be 
found in [13]. 

3 Testbed Specification 

To evaluate the effectiveness of our approach and to better understand the effect 
of slicing on a large real world RSML specification, we applied our tool to the 
TCAS II PSML model. To introduce the reader to our case study, we provide a 
short overview of TCAS II. 

3.1 TCAS II 

TCAS is a family of airborne devices that function independently of the ground- 
based air traffic control (ATC) system to provide collision avoidance protection 
for commercial aircraft and larger aircraft. TCAS II provides traffic advisories 
and recommended escape maneuvers (resolution advisories) in a vertical direc- 
tion to avoid conflicting aircraft. 

In this paper, we will use examples from the part of the collision avoidance 
system (CAS) in TCAS II that classifies intruding aircraft as Other-T&rflic, 
Proximate-Traffic, Potential-Threats, or Threats. In the CAS logic, the states of 
two main components are modeled: our own aircraft and other aircraft. 

Own-Aircraft: Figure 3 shows the expanded Own-Aircraft portion of the CAS 
model. Effective-SL (sensitivity level) controls the dimensions of the protected 
airspace around own aircraft. 

r The subscript is used to indicate the type of an identifier (f for functions, m for 
macros, and v for variables) and gives the page in the TCAS II requirements docu- 
ment where the identifier is defined. 

L 

i 



. . . 

. ; 
.-. . . 
t 

g * 

456 

Fig. 3. Model of Own-Aircraft 

There are two primary means that CAS uses to determine Effective-SL: 
ground-based selection and pilot selection. When the pilot selects an automatic 
sensitivity selection mode, CAS ‘selects sensitivity level based on the current 
altitude of own aircraft (defined in the Auto-SL state machine). 

Alt-Layer effectively divides vertical airspace into layers (e.g., Layer-3 is 
approximately equal to the range 20,000 feet to 30,000 feet). Alt-Layer and 
Effective-SL are used in the determination other aircraft threat classification 
(see Figure 4). 

Other-Aircraft: The model of an intruding aircraft can be seen in Figure 4. In 
short, the top-level state machine reflects whether a particular Other-Aircraft is 
currently being tracked or not. 

The Intruder-Status state within Tracked reflects the current classification of 
Other-Aircraft (Other-Traffic, Proximate-Traffic, Potential-Threat, and Threat), 
When an intruder is classified as a threat, a two-step process is used to select 
a Resolution Advisory @A). The first step is to select a sense (Climb or De- 
scend). The CAS logic computes the predicted vertical separation for both climb 
and descend maneuvers, and selects the sense that provides the greater vertical 
separation. 

The second step in selecting an RA is to select the strength of the advisory. 
The least disruptive vertical rate maneuver that will still achieve safe separation 
is selected. For a more complete description of TCAS II and how it was modeled 
using RSML the reader is referred to [13]. 

4 Specification Slicing 

During our work with static analysis [6,7] we identified questions regarding the 
behavior of TCAS II where some tool support to aid in answering the questions 
would have been helpful. The questions were seldom related to output variables. 
Instead, we wanted to know how the specification behaved when, for example, 
an intruding aircraft was declared to be on the ground or when an intruding 
aircraft stopped reporting altitude. Thus, our slicing approach was defined to 
help an analyst answer questions that we know are common from experience. 
Typical questions we encountered can be seen in Table 1. 
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Fig. 4. Model of an intruding aircraft 
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1. In Intruder-Status, how does the threat classification logic work for an intruder 
that reports both valid range and valid bearing? * 

2. How do we classify an intruder that has stopped reporting altitude? 
3. What happens with a threat that lands and is determined to be on the ground? 

Table 1. Typical questions encountered while reviewing TCAS II. 

To aid the analyst in answering questions such as question 1 in Table 1 we 
need to construct several different slices of the specification. First, we are only 
interested in the behavior of the system when both bearing and range are valid 
- we need to eliminate all information that does not pertain to this particular 
situation. Second, we are only interested in the transitions between the high- 
level states in Intruder-Status (Figure 4)2 - we need to eliminate information 
that cannot effect the truth value of the guarding conditions on the transitions 
between these states. Finally, we are interested in the sequence of events that 
can cause these transitions to be taken - we need to eliminate all transitions that 
can not contribute to this sequence of events. 

The following sections illustrate how these slices are constructed and how 
they are combined. 

4.1 The Interpretation Under Scenario s 

An interpretation of an RSML specification under a scenariq s is a domain 
restriction (defined by the scenario) of the next state relation. In Section 2 we 
defined an RSML specification to be a relation F mapping C I+ C. By restricting 
the domain to only the states that satisfy the conditions that define a scenario we 
can produce a simpler mapping that is concerned with only the behaviors that 
are possible in this scenario. Formally, an interpretation of an RSML specification 
is defined as the relation .R where 

Rz{clc~C 4 s(c)}aF 

Informally, the interpretation R consists of all behaviors that are possible given 
the restrictions imposed by the scenario s 3. 

Interpretations can be used to reduce (or in some sense slice) an RSML 
specification to only show the behaviors that are possible under the specific 
conditions we are interested in. For example, the scenario where an intruder has 
stopped reporting altitude can be formalized (using AND/OR table notation) as 
in Figure 5 and the scenario where an intruder is providing reliable tracking 
data, that is, both the bearing and altitude are considered valid, can be seen in 
Figure 6. 

Scenarios can be used to reduce an RSML specification to produce a simpli- 
fied model. Consider the transition definition in Figure 2. This transition detor- 
mines under which conditions an intruding aircraft can be downgraded from a 

2 The states involved in threat classification are Other-traffic, Proximate-Traffic, 
Potential-Threat, and Threat. 

3 The notation S a R is borrowed from Z [16] and defines a relation that relates a to 
b iff R relates a to b and a is a member of S. 
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Reduction Scenario: Not-Reporting-Altitude 

19 D (Alt-Reportings-rol in state NoI q  

Fig. 5. An intruder has stopped reporting altitude expressed as an AND/OR table. 

Reduction Scenario: Valid-Tracking 

A Other-Bearing-Valid,130 = Valid T 
D Other-Range-Valid,133 = Valid IE T 

Fig. 0. An intruder reporting reliable tracking data expressed as an AND/OR table. 

Transition(s): 1 Potential-Threat I+ [Other-Traffic 

Location: Other-Aircraft D htrUder-StatU&-lg6 

Trigger Event: Air-Status-Evaluated-Evente-27e 
Condition: 

RA-Mode-Cancelled,-21s 
Alt-Reporting,-101 in state No 
Other-Bearing-Valid,lao 
Other-Range-Valid,117 = ‘kre 
Potential-Threat-Range-Testni-214 
Potential-Threat-Condition,,,-213 
Proximate-Traffic-Conditioq,,-216 
Threat-Condition,.224 
Other-Air-Status,.lo, in state On-Ground 

Output Action: Intruder-Status-Evaluated-Event,+zTo 

Fig. 7. The transition definition sliced based on the reduction scenario Not-Reporting- 
Altitude in Figure 5 
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!hm3ition(s): 1 Potential-Threat I+ IOeher-Paffic 
Location: Other-Aircraft D Intruder-Status,-rss 

Trigger Ev 
Condition: 

rent: An-Status-Evaluated-Event+srs 

A IPotential-Threat-Condition,-21 R I 
OR 

Output Action: Intruder-Status-Evaluated-Event,.279 

Fig. 8. The transition definition sliced based on the scenario Valid-lkackiq in Figure 6. 

Potential-Threat (indicating that an intruder is close and that a trafhc advisory 
should be issued to the pilot) to Other-Trafhc (indicating that an intruder is 
considered to be irrelevant and no information about the intruder is presented 
to the pilot). Under normal circumstances, a potential threat is only downgraded 
to other traffic if it is not considered to be a potential threat, nor a threat or 
in proximity (captured in column 9 of Figure 2). However, there are many ex- 
ceptions for abnormal operating conditions, for example, when an intruder stops 
reporting altitude. These exceptions make the threat detection logic quite com- 
plex and obfuscates the specification. If we construct an interpretation of the 
specification based on the scenario named Not-Reporting-Altitude in Figure 5, 
we get a simpler transition definition (Figure 7) telling us how TCAS down- 
grades a non-altitude reporting intruder. The scenario Not-Reporting-Altitude 
requires the state machme Alt-Reporting to be in state No. Since the state ma- 
chine Alt-Reporting (Figure 4) by definition can only be in one state at the time, 
all columns in Figure 2 requiring Alt-Reporting to be in a state other than No 
can be eliminated (columns 1, 2, 5, and 6 can be eliminated). 

If we are only interested in the normal operating condition where we have 
reliable tracking data from an intruding aircraft, we can construct an interpreta- 
tion based on the scenario named Valid-Tracking in Figure 6. This interpretation 
almost eliminates the guarding condition (Figure 8) and we can more clearly see 
how TCAS operates under normal conditions. 

Construction of Interpretations: As mentioned in Section 4, our slicing algo- 
rithms are based on a marking of the abstract syntax tree. In a previous in- 
vestigation we developed an RSML parser as a part of an analysis environment 
for RSML [7]. This parser has been modified to allow us to mark the abstract 
syntax tree based on various slicing criteria. 

A reduction scenario is used to mark the infeasible columns in each AND/OR 
table. A column is infeasible if any of the truth values in the column (recall that a 
column represents a conjunction) contradicts the scenario. We have implemented 
a collection of decision procedures to determine if the predicates constituting a 
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column contradict a scenario. The current decision procedures cover predicates 
expressed over enumerated variables and over the states in the model. The de- 
cision procedures do not cover predicates over integer and real variables. These 
limitations are discussed in more detail below. 

After the infeasible columns have been marked they are removed from the 
table. Furthermore, after the columns have been removed, any rows consisting of 
all don’t care are removed since those rows are now superfluous. If a table is left 
with no remaining columns, the guarding condition defined by the table cannot 
be satisfied in this scenario. After all tables have been reduced, the transitions 
with unsatisfiable guarding conditions are eliminated from the model. The re- 
maining specification constitutes the interpretation of the specification under 
the scenario. 

Limitation: Our current implementation of the reduction algorithm only allows 
the definition of the scenarios to contain predicates over enumerated variables 
and over the states in the specification. Since simplification of a table involves de- 
termining if two predicates contradict each other, we have limited our approach 
to predicates where the decision procedures are relatively easy to implement. We 
are currently extending the decision procedures to handle a wider range of pred- 
icates. However, extending the algorithm to handle the full range of predicates 
in the RSML syntax is not possible since the language allows both linear and 
non-linear arithmetic in predicate definitions. The interested reader is referred 
to [7] for a detailed discussion about how the expressive power of RSML effects 
static analysis. 

4.2 Data Flow Slices 

To help answering the questions in Table 1, it is not enough to construct the 
interpretation of the specification under a reduction scenario. In general, few 
transitions are completely eliminated in an interpretation, most transitions are 
still satisfiable and cannot be removed from the model. Thus, in addition to 
constructing an interpretation, we are interested in knowing what parts of the 
state machine that effect a particular transition or variable we are interested 
in. We need to construct a slice based on the data dependency of the guarding 
condition on the transition. 

To discover the data dependencies for a guarding condition, we perform a 
graph traversal of an RSML specification. A partial version of the static data 
dependency graph for the elements of an RSML specification can be seen in Fig- 
ure 9. The solid lines represent data dependencies and the dotted lines represent 
a parent child (is-a) relationship between the elements. To discover the data 
dependencies for a given node in the graph, we traverse all of the nodes below 
it in the data dependency graph. For example, a transition is data-dependent 
on its guarding condition, which in its turn is dependent on an AND/OR ta- 
ble. Eventually, all aspects of the system are dependent on the system’s current 
state, constants, and variable values (the gray roundtangles). 

To illustrate our approach, consider the set of transitions between the top- 
level states in Intruder-Status (Figure 4). We are interested in answering the 
first question in Table 1. Thus, we have first constructed an interpretation based 
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Fig. 9. Data dependencies 

on the scenario in Figure 6. The transition between Potential-Threat and Other- 
Traflic (Figure 2) is in this interpretation reduced to the table in Figure 8. Many 
other transitions in the model exhibit similar reductions for the same scenario. 

To construct the data-flow slice for this transition we simply mark all en- 
tities (states, macros, functions, variables, and constants) that can directly or 
indirectly effect the truth value of the reduced guarding condition. The unmarked 
entities in the specification cannot effect the behavior of the transition and can 
safely be removed from the specification. 

4.3 Control Flow Slices 

The slice constructed based on the data dependencies only shows us what infor- 
mation is needed to determine if a transition can be taken. It does not tell us 
when the transition can be taken. To determine this, we need to construct a slice 
based on the control flow in the specification. In RSML, the order in which state 
machines are evaluated is based on the events and actions on the transitions 
(see Section 2). Thus, to determine when a transition can be taken we need to 
construct a slice that shows all the parts of the specification that are involved in 
the generation of the trigger event on the transition. For example, the transition 
in our example is triggered by the Air-Status-Evaluated-Event (Figure 8) so all 
transitions with this event as an action (all transitions that can generate this 
event) must be included in our control slice. In this case, the event is generated 
by the transitions in the state machine Other-Air-Status. This process is now 
repeated for the transitions just added to the slice. The algorithm is terminated 
when we reach transitions that are triggered by the receipt of an input from 
an external source (the event is not generated from within the RSML model). 

j 
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The construction of the control slices is also based on a simple marking of the 
abstract syntax tree. 

Fig. 10. Model of Own-Aircraft reduced 

As mentioned above, a slice is identifies by the set of tagged entities in the 
abstract syntax tree. By using a different tag for each slice, it is trivial to combine 
slices using standard set operations (union, intersection, and set complement), 
For example, the combined slice needed to fully answer question 1 in Table 1 
consists of the union of all data flow and control flow slices for all transitions 
between the high-level states in Intruder-Status (Figure 4). The states and tran- 
sitions in this slice are shown in Figures 10 and 11. 

In summary, our approach to slicing of hierarchical state machines allows an 
analyst to reduce a specification based on a scenario. We call such a reduced 
specification the interpretation of the specification under the scenario. The in- 
terpretation can then iteratively be sliced based on data-flow and control-flow 
information. The slices can be arbitrarily combined using standard set operations 
to construct a combined slice containing the information of interests. 

5 Case Study 

To evaluate the effectiveness of our approach and to better understand the ef- 
fect on a large real world RSML specification, we applied our tool to the most 
complex part of the TCAS II RSML model. This section discusses some metrics 
we used to evaluate the reduction capability and discusses our experiences. 

5.1 Evaluation Criteria 

In traditional program slicing, the effectiveness of a slicing algorithm is easily 
evaluated by comparing, for example, the number of statements in theslice to the 
number of statements in the original program. In hierarchical state machines, 
however, there is no established way of evaluating a slice. In fact, there are 
no established metrics to measure the size and complexity of a state machine. 
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Fig. 11. Model of an intruding aircraft 

Measures such as number of reachable states, number of named states, or number 
of transitions are reasonable, but the correlation between these metrics and 
the difficulty of understanding a specification is unknown. Nevertheless, in an 
attempt to make a reasonably objective evaluation of the effectiveness of our 
approach, we use some metrics to measure the reduction of the specification. We 
have chosen to measure number of transitions, perceived table size, and effective 
table size. 

Number of tra&tions: The number of transitions in the model is easily 
counted and the metric is a reasonable and intuitive measure of the diffi- 
culty of understanding a model. 

Perceived table size: The perceived size of a table is defined to be the table 
height (the number of rows in the table) times the table width (the number 
of columns). This metric indicates the complexity of a single table shown 
on one page. Naturally, to fully understand a table one may have to trace 
macros through several layers of indirection and this added complexity is 
captured in our third metric. 

Effective table size: The use of macros reduces the perceived size of a table 
since much of the complexity of the guarding condition is hidden in the 
macros. The complexity added through macro indirection is captured by the 
effective table size. The effective size of a table is defined to be the perceived 
size of the table with all macro references recursively expanded. 

As an absolute measure of the complexity of a state machine these metrics may 
have little value, there is no evidence that a state machine with 200 transitions is 
harder to understand than one with 100 transitions. Nevertheless, as measure of 
the relative complexity between the original specification and the reduced model 
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produced by our reduction tool the metrics make intuitive sense. Intuitively, if a 
model with 40 transitions is reduced to a model with 20 transitions, it is easier 
to understand and review. 

5.2 Reduction Results 

We applied our tool to the transitions defining the behavior of state machine 
Tracked in Figure 4. We used reduction scenarios based on questions (for exam- 
ple, the questions in Table 1) encountered during previous investigations related 
to TCAS II. Thus, we believe the reduction scenarios are representative of sce- 
narios that would be used during reviews and inspections of an RSML model. 
This section summarizes the main observations from this limited case study. 

Table size: The reduction scenarios we used provided significant reductions in 
the tables effected by the criteria. A typical example is the reductions of the 
transition from Potential-Threat to Other-Traffic discussed in Section 4. 

Most of our reduction criteria were related to the classification of an intruding 
aircraft as a Threat, Potential-Threat, Proximate-‘Dafilc, or Other-Traffic. The 
perceived size of the ‘conditions guarding these transitions ranged from 1 to 
80” before reduction and ranged from 0 to 40 after reduction. Subjectively, 
these reductions helped clarify some issues regarding threat classification (as 
illustrated by the reductions of the transition in Figure 2). 

The effective size of the transitions involved in threat classification ranged 
from approximately lOa to lOlo when all macro references were expanded. The 
effective size after reduction ranged from 0 to lo* based on the same set of reduc- 
tion criteria ss in the previous paragraph. These numbers led to two observations. 
First, we were surprised when we got an indication of the true complexity of the 
guarding conditions in the threat detection logic. This complexity is effectively 
hidden by the macro abstractions in RSML. Some guarding conditions involved 
more that 100 predicates and would be nearly impossible to capture without the 
use of macros. 

Second, the effective size metric does not tell us much about the readability 
of a real-world specification-all the metric indicates is that this model is very 
large, Focusing on the size of individual tables seems to be a better gauge of 
readability, small tables seem to be easy to understand regardless of how many 
macros and levels of indirection are used. Nevertheless, to accurately determine 
the effect of slicing on the readability of RSML specifications we need to conduct 
controlled readability studies. Such studies are in the planning stages. 

!&ansitions: When constructing an interpretation, the number of transitions in 
the model was not effected to the extent we had hoped. Some interpretations 
produced useful elimination of transitions, for example, all transitions upgrading 
an intruding aircraft to a threat are unsatisfiable if the intruder is declared to 
be on the ground, but as a whole most transitions were still satisfiable under the 
reduction scenarios we applied. On the other hand, after an analyst has selected 
a subset of the transitions for closer study, the data flow slices and control flow 
slices eliminated large unrelated parts of the specification. The simplification is 
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clearly illustrated in the difference between Figure 4 and Figure 11. Nevertheless, 
all the questions we had compiled were related to the threat detection encap 
sulated in Intruder-Status. Thus, all data flow and control flow slices produced 
similar results. We are currently in the process of slicing TCAS II baaed on a 
multitude of data-flow and control-flow criteria, for example, slices based on the 
data dependencies for all output variables and all transitions. We are collecting 
data and we hope to be able to present an empirical study of the reduction 
capabilities in a large real world application shortly. 

6 Conclusion 

In this paper we described an approach to reducing an RSML specification based 
on a reduction scenario in conjunction with traditional program slicing tech- 
niques. Our approach is two tiered. First, we allow an analyst to simplify a 
specification based on a scenario. As scenario is some operating condition the 
under which we are interested in inspecting or reviewing a specification. Sec- 
ond, the remaining specification, called an interpretation of the specification, is 
sliced based on data-flow and control-flow information to extract the parts of 
the specification effecting selected variables and transitions. 

To evaluate the effectiveness of the approach, we implemented a prototype 
tool and applied it to a specification for a large avionics system called TCAS II. 
We used the tool to slice the specification to help us answer a set of questions we 
have asked ourselves during previous investigations. In this case study, the re- 
duction results were very helpful and the approach seems to have great potential. 
The reduction scenarios provided significant reductions in the tables relevant to 
answer the question and, the data-flow and control-flow slices eliminated large 
parts of, for these questions, irrelevant information. 

Although the slices helped clarify and simplify the model, we have not yet 
collected sufficient empirical data regarding the reduction capabilities in hier- 
archical state machines. The metrics we used in the case study are inadequate. 
The perceived size of a table is a very simplistic metric and the effective size of 
a table (the size of a table with all macro references expanded) only told us that 
guarding conditions are very complex, but did not aid much in the evaluation 
of the reduction capabiIity of the slicing approach. New metrics and controlled 
readability studies are needed to objectively evaluate the effect of slicing in hi- 
erarchical state machines. 

Finally, the approach to specification slicing outlined in this paper is not 
limited to RSML specifications. The approach is general enough to apply to all 
languages based on state machines using guarded transitions. From our experi- 
ences in this investigation, we are convinced that specification slicing holds great 
potential in areas such as requirements development, requirements inspections, 
and visual requirements verification. Specification languages such as SCR [8] 
would benefit from the same simplification mechanisms and we strongly encour- 
age tool developers to include such a mechanism in future versions of their tools, 
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