
Learning DFA from Simple Examples

TR #97-07

Rajesh Parekh and Vasant Honavar

March 18, 1997

ACM Computing Classi�cation System Categories (1991):
I.2.6 [Arti�cial Intelligence] Learning | language acquisition, concept learning; F.1.1
[Theory of Computation] Models of Computation | Automata; F.1.3 [Theory of Com-
putation] Complexity Classes | Machine-independent complexity.

Keywords:
grammar inference, regular grammars, �nite state automata, PAC learning, Kolmogorov
complexity, simple distributions, universal distribution, language learning, polynomial-
time learning algorithms.

Arti�cial Intelligence Research Group
Department of Computer Science

226 Atanaso� Hall
Iowa Sate University

Ames, Iowa. IA 50011-1040. USA

Learning DFA from Simple Examples

Rajesh Parekh and Vasant Honavar

Department of Computer Science

226 Atanaso� Hall

Iowa State University

Ames IA 50011. U.S.A.

fparekh|honavarg@cs.iastate.edu

March 18, 1997

Abstract

We present a framework for learning DFA from simple examples. We show that
e�cient PAC learning of DFA is possible if the class of distributions is restricted to
simple distributions where a teacher might choose examples based on the knowl-
edge of the target concept. This answers an open research question posed in Pitt's
seminal paper: Are DFA's PAC-identi�able if examples are drawn from the uni-

form distribution, or some other known simple distribution?. Our approach uses
the RPNI algorithm for learning DFA from labeled examples. In particular, we
describe an e�cient learning algorithm for exact learning of the target DFA with
high probability when a bound on the number of states (N) of the target DFA is
known in advance. When N is not known, we show how this algorithm can be used
for e�cient PAC learning of DFAs.

1 Introduction

The problem of learning a DFA with the smallest number of states that is consistent with
a given sample (i.e., the DFA accepts each positive example and rejects each negative
example) has been actively studied for over two decades. DFAs are recognizers for regular
languages that are considered to be the simplest class of languages in the formal language
hierarchy [Chomsky, 1956; Hopcroft & Ullman, 1979]. An understanding of the issues
and pitfalls encountered during the learning of regular languages (or equivalently, iden-
ti�cation of the corresponding DFA) might provide insights into the problem of learning
more general classes of languages.

Exact learning of the target DFA from an arbitrary presentation of labeled examples
is a hard problem [Gold, 1978]. Gold has shown that the problem of identi�cation of the

1

minimum state DFA consistent with a presentation S comprising of a �nite non-empty
set of positive examples S+ and possibly a �nite non-empty set of negative examples S�

is NP -hard. Under the standard complexity theoretic assumption P 6= NP , Pitt and
Warmuth have shown that no polynomial time algorithm can be guaranteed to produce
a DFA with at most n(1��)loglog(n) states from a set of labeled examples corresponding to
a DFA with n states [Pitt & Warmuth, 1988].

E�cient learning algorithms for identi�cation of DFA assume that additional infor-
mation is provided to the learner. Trakhtenbrot and Barzdin have described a polynomial
time algorithm for constructing the smallest DFA consistent with a complete labeled sam-
ple i.e., a sample that includes all strings up to a particular length and the corresponding
label that states whether the string is accepted by the target or not [Trakhtenbrot &
Barzdin, 1973]. Angluin has shown that given a live-complete set of examples (that con-
tains a representative string for each live state of the target DFA) and a knowledgeable
teacher to answer membership queries it is possible to exactly learn the target DFA [An-
gluin, 1981]. In a later paper, Angluin has relaxed the requirement of a live-complete
set and has designed a polynomial time inference algorithm using both membership and
equivalence queries [Angluin, 1987]. The RPNI algorithm is a framework for identifying
a DFA consistent with a given sample S in polynomial time [Oncina & Garc��a, 1992]. If
S is a superset of a characteristic set (see section 2) then the DFA output by the RPNI
algorithm is guaranteed to be equivalent to target.

Pitt has surveyed several approaches for approximate identi�cation of DFA [Pitt,
1989]. Valiant's distribution-independent model of learning (also called the PAC model)
[Valiant, 1984] is widely used for learning several di�erent concept classes approximately.
When adapted to the problem of learning DFA, the goal of a PAC learning algorithm is
to obtain in polynomial time, with high probability, a DFA that is approximately correct
when compared to the target DFA. Even approximate learnability is proven to be a hard
problem. Pitt and Warmuth have shown that the problem of polynomially approximate
predictability of the class of DFA is hard [Pitt & Warmuth, 1989]. They make use of
prediction preserving reductions to show that if DFAs are polynomially approximately
predictable then so are other known hard to predict concept classes such as boolean
formulas. Further, under certain cryptographic assumptions, Kearns and Valiant show
that an e�cient algorithm for learning DFA would entail e�cient algorithms for solving
the following problems that are known to be hard: breaking the RSA cryptosystem,
factoring Blum integers, and detecting quadratic residues [Kearns & Valiant, 1989].

The PAC model's requirement of learnability under all conceivable distributions is
often considered too stringent. Pitt's paper has identi�ed the following open research
problem: Are DFA's PAC-identi�able if examples are drawn from the uniform distribu-
tion, or some other known simple distribution? [Pitt, 1989]. Using a variant of Trakht-
enbrot and Barzdin's algorithm, Lang has empirically demonstrated that random DFAs
are approximately learnable from a sparse uniform sample [Lang, 1992]. However, ex-
act identi�cation of the target DFA was not possible even in the average case with a
randomly drawn training sample. Several concept classes are e�ciently PAC learnable

2

under restricted classes of distributions while their learnability under the distribution
free model is not known [Li & Vit�anyi, 1991]. Li and Vit�anyi have proposed a model
for PAC learning with simple examples wherein the examples are drawn according to
the Solomono�-Levin universal distribution. They have shown that learnability under
the universal distribution implies learnability under a broad class of simple distributions.
Thus, this model is su�ciently general. Recently, this model of simple learning has been
extended to a framework where a teacher might choose examples based on the knowledge
of the target concept [Denis et al., 1996]. We show that under this extended framework
of learning from simple examples (called the PACS model) it is possible to e�ciently
learn DFA thereby answering the above open research question in the a�rmative.

The rest of this paper is organized as follows: Section 2 introduces the necessary
de�nitions and notation. Section 3 summarizes the RPNI algorithm. Section 4 describes
the learning of DFA with simple examples and section 5 concludes with a discussion of
several interesting avenues that merit further investigation.

2 Preliminaries

In this section we introduce the basic de�nitions and the notation that will be used
throughout the paper.

Let � be a �nite set of symbols called the alphabet. �� denotes the set of strings
over the alphabet. �; �; will be used to denote strings in ��. j�j denotes the length
of the string �. � is a special string called the null string and has length 0. Given a
string � = �, � is the pre�x of � and is the su�x of �. Let Pr(�) denote the set
of all pre�xes of �. A language L is a subset of ��. The set Pr(L) = f� j �� 2 Lg
is the set of pre�xes of the language and the set L� = f� j �� 2 Lg is the set of
tails of � in L. The standard order of strings of the alphabet � is denoted by <. If
the alphabet is � = fa; bg then the enumeration of strings in the standard order is
�; a; b; aa; ab; ba; bb; aaa; : : : The set of short pre�xes Sp(L) of a language L is de�ned as
Sp(L) = f� 2 Pr(L) j6 9� 2 �� such that L� = L� and � < �g. The kernel N(L) of a
language L is de�ned as N(L) = f�g [f�a j � 2 Sp(L); a 2 �; �a 2 Pr(L)g. Given
two sets S1 and S2, the set di�erence is denoted by S1nS2 and the symmetric di�erence
is denoted by S1 � S2. The natural logarithm to the base e is denoted by ln and the
logarithm to the base 2 is denoted by lg.

2.1 Finite Automata

A deterministic �nite state automaton (DFA), A, is a quintuple A = (Q; �;�; q0; F)
where, Q is a �nite set of states, � is the �nite set of input symbols called the alphabet,
q0 2 Q is the start state, F � Q is the set of accepting states, and � is the transition
function: Q � � �! Q that gives the next state of the automaton upon reading a
particular symbol. A state d0 2 Q such that �(d0; a) = d0 8a 2 � is called a dead state.
The extension of � to handle input strings is denoted by �� and it maps Q� �� �! Q.

3

By de�nition, ��(q; �) = q 8q 2 Q and ��(q; b�) = ��(�(q; b); �). The set of all strings
accepted by A is its language, L(A). L(A) = f�j��(q0; �) 2 Fg. The language accepted
by a DFA is called a regular language. Fig. 1 shows the state transition diagram for a
sample DFA. A non-deterministic �nite automaton (NFA) is de�ned just like the DFA
except that the transition function � de�nes a mapping from Q�� �! 2Q.

a a

0

a

bb

a,b

a,b

b

Q Q Q

Q

0 1 2

3 d

Figure 1: Finite State Automaton.

Given a regular language L(G) there exists a DFA A with minimum number of states
such that L(A) = L(G). We call this minimum state acceptor for a regular language the
canonical DFA and denote it as A(L(G)) (or simply A). Let N denote the number of
states of A. It can be shown that the canonical DFA for any regular language can have
at most one dead state.

Given a canonical DFA A for a regular language L(G), a labeled example (�; c(�))
is a 2-tuple with � 2 �� and the classi�cation function c : �� �! f+;�g is de�ned as
follows: c(�) = + if � 2 L(G) and c(�) = � if � 62 L(G). Thus, (a;�), (b;+), (aa;+),
(aaab;�), and (aaaa;+) are labeled examples for the DFA of Fig. 1. Let S+ denote
the set of positive examples (i.e., 8� 2 S+ c(�) = +) and S� denote the set of negative
examples (i.e., 8� 2 S� c(�) = �). We say that a DFA A is consistent with a sample
S = S+ [S� if A accepts all positive examples and rejects all negative examples.

A set S+ is said to be structurally complete with respect to an automaton A if S+

covers each transition of A and uses every element of the set of �nal states of A as an
accepting state [Pao & Carr, 1978; Parekh & Honavar, 1993; Dupont et al., 1994]. It
can be veri�ed that the set S+ = fb; aa; aaaag is structurally complete with respect to
the DFA in Fig. 1. Given a set S+, let PTA(S+) denote the pre�x tree acceptor for S+.
PTA(S+) is a DFA that contains a path from the start state to an accepting state for
each string in S+ modulo common pre�xes. Clearly, L(PTA(S+)) = S+. The PTA for
the set S+ (given above) is shown in Fig. 2.

Given an automaton A and a partition � on the set of states Q of A (ignoring the
dead state d0 and its associated transitions), we de�ne the quotient automaton A� =

4

Q Q 5Q Q1Q 0

Q

a a

b

aa

2

3 4

Figure 2: Pre�x Tree Automaton.

(Q�; ��;�; B(q0; �); F�) obtained by merging the states of A that belong to the same
block of the partition � as follows: Q� = fB(q; �) j q 2 Qg is the set of states with
each state represented uniquely by the block B(q; �) of the partition � that contains the
state q, F� = fB(q; �) j q 2 Fg is the set of accepting states, and �� : Q� � � �! 2Q�

is the transition function such that B(qj; �) = ��(B(qi; �); a) 8B(qi; �); B(qj; �) 2 Q�,
8a 2 � i� qi; qj 2 Q and qj = �(qi; a). Note that a quotient automaton of a DFA might
be a NFA and vice-versa. For example, the quotient automaton corresponding to the
partition � = ffQ0; Q1g; fQ2g; fQ3gg of the set of states of the DFA in Fig. 1 is shown
in Fig. 3.

b

Q

^Q

0

a

a

a

Q1

2

^^

Figure 3: Quotient Automaton.

The set of all derived automata obtained by systematically merging the states of A
represents a lattice of FSA [Pao & Carr, 1978]. This lattice is ordered by the grammar
cover relation �. Given two partitions �i = fB1; B2; : : : ; Brg and �j = fB1; B2; : : : ; Bkg
of A, we say that �i covers �j (written �j � �i) if r = k � 1 and for some 1 � l;m � k,
�i = f�jnfBl; Bmg [fBl [Bmgg. The transitive closure of � is denoted by �. We say
that A�j � A�i i� L(A�j) � L(A�i).

Given a regular language L(G), its corresponding canonical acceptor A, and a set S+

that is structurally complete with respect to A, the lattice
(S+) derived from PTA(S+)
is guaranteed to contain A [Pao & Carr, 1978; Parekh & Honavar, 1993; Dupont et al.,
1994].

5

A sample S = S+ [S� is said to be characteristic with respect to a regular language
L(G) (with a canonical acceptor A) if it satis�es the following two conditions [Oncina &
Garc��a, 1992]:

� 8� 2 N(L(G)); if � 2 L(G) then � 2 S+ else 9� 2 �� such that �� 2 S+.

� 8� 2 Sp(L(G));8� 2 N(L(G)); if L(G)� 6= L(G)� then 9 2 �� such that (� 2
S+ and � 2 S�) or (� 2 S+ and � 2 S�).

Intuitively, condition 1 implies structural completeness with respect to A and condi-
tion 2 implies that for any two distinct states of A there is a su�x that would correctly
distinguish them. Given the language L(G) corresponding to the DFA A in Fig. 1, the set
of short pre�xes is Sp(L(G)) = f�; a; b; aag and the kernel is N(L(G)) = f�; a; b; aa; aaag.
It can be easily veri�ed that the set S = S+ [S� where S+ = fb; aa; aaaag and
S� = f�; a; aaa; baag is a characteristic sample for L(G).

2.2 Kolmogorov Complexity

The Kolmogorov Complexity of an object x is a measure of the descriptional (or rep-
resentational) complexity of x. We will consider the pre�x version of the Kolmogorov
complexity denoted by K. Given a Turing machine implementing the partial recursive

function � : f0; 1g�
partial
�! f0; 1g�, a program � 2 f0; 1g�, and strings �; � 2 f0; 1g�, the

Kolmogorov complexity of � relative to � is de�ned as: K�(�) = minfj�j j �(�) = �g
and the conditional Kolmogorov complexity of � given � relative to � is de�ned as:
K�(� j �) = minfj�j j �(h�; �i) = �g where hx; yi is the standard pairing function1.

Intuitively, the Kolmogorov complexity of an object with respect to a particular Tur-
ing Machine (M) is the length of the shortest description of the object on M . Pre�x
Turing Machines can be e�ectively ennumerated and there exists a Universal Turing
Machine (U) capable of simulating every Pre�x Turing Machine. Assume that the Uni-
versal Turing Machine implements the partial function . The Optimality Theorem for
Kolmogorov Complexity guarantees that for any pre�x Turing machine � there exists a
constant c� such that for any strings � and � K (� j �) � K�(� j �) + c�. Note that we
use the name of the Turing Machine (say M) and the partial function it implements (say
�) interchangeably i.e., K�(�) = KM (�). Further, by the Invariance Theorem it can be
shown that for any two universal machines 1 and 2 there is a constant � 2 N such that
for all strings � and �, jK 1(� j �)�K 2(� j �)j � �. Thus, we can �x a single universal
Turing machine U and denote K(�) = KU (�) and K(�j�) = KU (�j�). It can be shown
that K(�) � j�j+ �. Finally, since K denotes the pre�x Kolmogorov complexity it can
be shown by Kraft's inequality that

P
�2�� 2�K(�) � 1. The reader is referred to [Li &

Vit�anyi, 1993] for a detailed description of Kolmogorov complexity and related topics.

1De�ne hx; yi = bd(x)01y where bd is the bit doubling function de�ned as bd(0) = 00, bd(1) = 11,
and bd(ax) = aabd(x); a 2 f0; 1g.

6

2.3 Universal Distribution

The set of programs for a string � relative to a Turing Machine M is de�ned as:
PROGM (�) = f� jM(�) = �g. The algorithmic probability of � relative toM is de�ned
asmM(�) = Pr(PROGM). The algorithmic probability of � with respect to the Universal
Turing Machine is denoted asmU(�) =m(�). m is known as the Solomono�-Levin distri-
bution. It is the universal enumerable probability distribution, in that, it multiplicatively
dominates all enumerable probability distributions. Thus, for an enumerable probability
distribution P there is a constant � 2 N such that for all strings �; �m(�) � P (�).
The coding theorem due independently to Schnorr, Levin and Chaitin [Li & Vit�anyi,
1993] states that 9� 2 N 8� mM(�) = 2��K(x): Intuitively this means that if there are
several programs for a string � on some machine M then there is a short program for
� on the Universal Machine (i.e., � has a low Kolmogorov complexity). By optimality
of m it can be shown that: 9� 2 N ; 8� 2 f0; 1g�; 2�K(�) � m(�) � 2��K(�): Given a
string r 2 �� the universal distribution based on the knowledge of r, mr, is de�ned as
mr(�) = �r2�K(�jr) where �r

P
�2�� 2�K(�jr) = 1 (i.e., �r � 1).

2.4 PAC Learning Model

The PAC learning model [Valiant, 1984] describes a probabilistic framework for approx-
imate learning of concept classes from labeled examples. We present the de�nition of
PAC-learning that is appropriate for learning DFA [Pitt, 1989].

Let X denote the sample space de�ned as the set of all strings ��. Let x � X denote a
concept. For our purpose, x is a regular language. We identify the concept with the corre-
sponding DFA and denote the class of all DFA as the concept class C. The representation
R that assigns a name to each DFA in C is de�ned as a function R : C �! f0; 1g�. R is
the set of canonical encodings for the DFA in C. Assume that there is an unknown and
arbitrary but �xed distribution D according to which the examples of the target concept
are drawn. In the context of learning DFA, D is restricted to a probability distribution
on strings of �� of length at most m.

De�nition: [Pitt, 1989]
DFAs are PAC-identi�able i� there exists a (possibly randomized) algorithm A such that
on input of any parameters � and �, for any DFAM of size N , for any numberm, and for
any probability distribution D on strings of �� of length at most m, if A obtains labeled
examples of M generated according to the distribution D, then A produces a DFA M

0

with probability at least 1 � �, the probability (with respect to distribution D) of the
set f� j � 2 L(M) � L(M

0

)g is at most �. The run time of A (and hence the number
of randomly generated examples obtained by A) is required to be polynomial in N , m,
1=�, 1=�, and j�j.

PAC learning models natural learning in that it is fast (learning takes place in poly-
nomial time) and it su�ces to learn approximately. Angluin's L� algorithm [Angluin,

7

1987] that learns DFA in polynomial time using membership and equivalence queries can
be recast under the PAC framework to learn by posing membership queries alone. We
present a framework for PAC learning from simple examples drawn according to the
universal distribution.

3 The RPNI Algorithm

The regular positive and negative inference (RPNI) algorithm [Oncina & Garc��a, 1992] is
a polynomial time algorithm for identi�cation of a DFA consistent with a given sample
S = S+ [S�. Further, if the sample is a characteristic sample for the target DFA the
algorithm is guaranteed to return a canonical representation of the target DFA. Our
description of RPNI algorithm is based on the explanation given in [Dupont, 1996].

The algorithm constructs a pre�x tree acceptor PTA(S+) for the examples in S+.
Clearly, each state of PTA(S+) corresponds to a unique element of the set of pre�xes
of S+ i.e., Pr(S+). If the set Pr(S+) is sorted by the standard order of strings then
the states of PTA(S+) could be labeled by the index of the corresponding string in the
ordered set. Let N denote the number of states of PTA(S+). The algorithm performs an
ordered search in the space of partitions of the set of states of PTA(S+) under the control
of the set of negative examples S�. The partition, �0, corresponding to the automaton
PTA(S+) itself is ff0g; f1g; : : : ; fN � 1gg.

Algorithm

Input: A sample S = S+ [S�

Output: A DFA compatible with S

begin
� = �0 = ff0g; f1g; : : : ; fN � 1gg
M = PTA(S+)

for i = 1 to N � 1
for j = 0 to i� 1

~� = �nfB(i; �); B(j; �)g[fB(i; �)[B(j; �)g
M~� = derive(M; ~�)
�̂ = determistic merge(M~�)
if compatible(M�̂; S

�)
then

M =M�̂

� = �̂
break

end if
end for

8

end for

return M
end

At each step i the algorithm attempts to re�ne the current partition by merging the
blocks in order such that the quotient automaton corresponding to the re�ned parti-
tion is consistent with the negative sample S�. The function derive(M; ~�) returns the
quotient automaton M~� of M with respect to the partition ~�. Since M~� might be a
NFA, the function determistic merge(M~�) returns the partition �̂ obtained by succes-
sively merging the blocks in ~� that cause non-determinism. The resulting automaton
(M�̂) is guaranteed to be a DFA. The function, compatible(M�̂; S

�) returns True if M�̂

is compatible with all examples in S� and False otherwise.

Example

We demonstrate the execution of the RPNI algorithm on the task of learning the DFA
in Fig. 1. Assume that we are given the characteristic sample S = S+ [S� where
S+ = fb; aa; aaaag and S� = f�; a; aaa; baag. The FSA M = PTA(S+) is depicted
in Fig. 2 where the states are numbered in the standard order. The initial partition
� = �0 = ff0g; f1g; f2g; f3g; f4g; f5gg. First, we attempt to merge the blocks 1 and
0 of the partition �. The quotient FSA M~� and the FSA M�̂ obtained after invok-
ing deterministic merge are demonstrated in Fig. 4. Clearly the DFA M�̂ accepts the
negative example � 2 S�. Thus, the current partition � remains unchanged.

Q

a

Q Q
a

3 4 5
a

Q 0

Q

a

b

2

a

Q

b

2

Q 0

Figure 4: M~� obtained by fusing blocks 1 and 0 of � and the corresponding M�̂

Next we attempt to merge the blocks 2 and 0 of the partition. The quotient FSAM~�

is depicted in Fig. 5. Since M~� is a DFA, the procedure deterministic merge returns
the same DFA i.e., M�̂ = M~�. M�̂ accepts the negative example � 2 S� and hence the
partition � remains unchanged.

Table 1 lists the di�erent partitions ~� obtained by fusing the blocks of �0, the par-
titions �̂ obtained by deterministic merge of ~�, and the negative example (belonging

9

Q 3

b

Q Q Q1
a a aa

4 5Q 0

Figure 5: M~� (same as M�̂) obtained by fusing blocks 2 and 0 of �.

to S�), if any, that is accepted by the quotient FSA M�̂. The partitions marked �
are the current representation of the partition � (i.e., the partition that is consistent
with all examples of S�). It is easy to see that the DFA corresponding to the partition
� = ff0g; f1; 4g; f2g; f3; 5gg is exactly the target DFA we are trying to learn (Fig. 1).

Partition ~� Partition �̂ Negative Example

ff0; 1g; f2g; f3g; f4g; f5gg ff0; 1; 3; 4; 5g; f2gg a
ff0; 2g; f1g; f3g; f4g; f5gg ff0; 2g; f1g; f3g; f4g; f5gg �

ff0g; f1; 2g; f3g; f4g; f5gg ff0g; f1; 2g; f3g; f4g; f5gg a

ff0; 3g; f1g; f2g; f4g; f5gg ff0; 3g; f1; 4g; f2g; f5gg �

ff0g; f1; 3g; f2g; f4g; f5gg ff0g; f1; 3; 4; 5g; f2gg a

ff0g; f1g; f2; 3g; f4g; f5gg ff0g; f1g; f2; 3g; f4g; f5gg baa

ff0; 4g; f1g; f2g; f3g; f5gg ff0; 4g; f1; 5g; f2g; f3gg a
ff0g; f1; 4g; f2g; f3g; f5gg ff0g; f1; 4g; f2g; f3; 5gg� |
ff0; 3; 5g; f1; 4g; f2gg ff0; 3; 5g; f1; 4g; f2gg �

ff0g; f1; 3; 4; 5g; f2gg ff0g; f1; 3; 4; 5g; f2gg a

ff0g; f1; 4g; f2; 3; 5gg ff0g; f1; 4g; f2; 3; 5gg baa

ff0g; f1; 4g; f2g; f3; 5gg ff0g; f1; 4g; f2g; f3; 5gg� |
ff0g; f1; 3; 4; 5g; f2gg ff0g; f1; 3; 4; 5g; f2gg a

Table 1: Execution of the RPNI algorithm.

If jjS+jj and jjS�jj denote the sums of lengths of each example in S+ and S� re-
spectively then it can be shown that the time complexity of the RPNI algorithm is
O((jjS+jj+ jjS�jj) � jjS+jj2). The interested reader is referred to [Oncina & Garc��a, 1992]
for the correctness proof and the analysis of the time complexity of the RPNI algorithm.

4 Learning from Simple Examples

The learnability of DFA under the standard PAC model is known to be hard. Re-
stricting the underlying distribution of the PAC model to the universal distribution
results in an interesting framework for PAC learning with simple examples. Concept
classes such as log n-term DNF and simple k-reversible DFA are PAC learnable with
simple examples whereas their PAC learnability in the standard sense is unknown [Li

10

& Vit�anyi, 1991]. Further, the learning system might be aided by a benign teacher
who knows the target concept and uses this knowledge in selecting the examples. This
scheme due to [Denis et al., 1996] is called the PACS model. Under this model ex-
amples with low Kolmogorov complexity are called simple examples. Speci�cally, for
a concept with representation r, the set Srsim = f� j K(�jr) � �lg(jrj)g (where � is
a constant) is the set of simple examples for the concept. According to the univer-
sal distribution, simple examples have higher probability of being drawn. Formally, the
probability of drawing an example � for a target concept with representation r is given as
mr(�) = �r2�K(�jr) where �r is a positive constant. Concept classes such as poly-term
DNF and k-reversible DFA are shown to be learnable under the PACS model [Denis
et al., 1996]. We demonstrate the use of the RPNI algorithm under the PACS framework
to provide a mechanism for e�ciently learning DFA from simple examples.

A representative sample for a given concept is a set of examples that in some sense
contains the necessary information for inference of the concept. For example, if r is the
representation of a N state DFA A, a characteristic sample for A can be treated as a
representative sample for A. The Occam's Razor theorem for the PACS model [Denis
et al., 1996] states that if there exists a representative sample of simple examples for
each concept in a concept class then the concept class is PACS learnable. Let C be a
concept class and R be the set of representations of C. Consider a concept in C that has a
representation r and the set Srsim of simple examples i.e., 8� 2 Srsim; K(�jr) � � lg(jrj).
Further, let Srsim;rep denotes a set of simple representative examples for the concept r
such a set exists.

Lemma 1: (Due to [Denis et al., 1996]2)
Suppose that a sample S is drawn according tomr. For an integer l � jrj, and 0 < � � 1,
if jSj � �l�(lg(1=�) + lg(l�)), then with probability greater than 1 � �, Srsim � S where
� is a constant.

Proof:
Claim 1.1: 8� 2 Srsim; mr(�) � �rl

��.

mr(�) = �r2
�K(�jr)

� �r2
��lgjrj

� �rjrj
��

� �rl
��

Claim 1.2: jSrsimj � 2l�.

jSrsimj � jf� 2 f0; 1g� j K(�jr) � �lg(jrj)gj

� jf� 2 f0; 1g� j K(�jr) � �lg(l)gj

2We have presented the original results due to Denis et al as two di�erent lemmas for the sake of
clarity

11

� jf� 2 f0; 1g� j j�j � �lg(l)gj

� 2�lg(l)+1

� 2l�

Claim 1.3: If jSj � �l�(lg(1=�) + lg(l�)) then Pr(Srsim � S) � 1 � �.

Pr(� 2 Srsim is not sampled in one random draw) � (1� �rl
��) (claim 1.1)

� (1� l��) (since �r � 1)

Pr(� 2 Srsim is not sampled in jSj random draws) � (1� l��)jSj

Pr(some � 2 Srsim is not sampled in jSj random draws) � 2l�(1� l��)jSj (claim 1.2)

Pr(Srsim 6� S) � 2l�(1� l��)jSj

In order to get Pr(Srsim � S) � 1 � � we must have

2l�(1 � l��)jSj � �

2l�(e�l
��

)jSj � �; since 1� x � e�x

ln(2) + ln(l�)� jSjl�� � ln(�)

jSj � l� (ln(2) + ln(l�) + ln(1=�))

jSj � �l� (lg(l�) + lg(1=�)) where � is a constant

Thus, Pr(Srsim � S) � 1 � � 2

Corollary 2:
Suppose that a sample S is drawn according tomr. For an integer l � jrj, and 0 < � � 1,
if jSj � �l�(lg(1=�)+lg(l�)), then with probability greater than 1��, Srsim;rep � S where
� is a constant.

Proof:
Follows immediately from Lemma 1 since Srsim;rep � Srsim. 2

Thus, we have shown that if there exists a representative set of simple examples for
a concept (r) and an adequately large sample S is drawn according mr then with very
high probability, the representative set of simple examples is a subset of S. Further, this
holds for all representative sets of simple examples for r. Next we demonstrate that for
any DFA there exists a characteristic set of simple examples.

Lemma 3:
For any N state DFA with canonical encoding r (jrj = O(N lg(N))), there exists a char-
acteristic sample of simple examples (denoted by Srsim;rep) such that each string of this
sample is of length at most 2N � 1.

12

Proof:
Given the canonical encoding r of a DFA A = (Q; �;�; q0; F) it is possible to �nd a
characteristic set of simple examples as follows:

1. Fix an enumeration of the shortest paths (in standard order) from the state q0 to
each state in Q except the dead state. This is the set of short pre�xes of A. There
are at most N such paths and each path is of length at most N � 1.

2. Fix an enumeration of paths that includes each path identi�ed above and its ex-
tension by each letter of the alphabet �. From the paths just enumerated retain
only those that do not lead to a dead state of A. This represents the kernel of A.
There are at most N(j�j+ 1) such paths and each path is of length at most N .

3. The strings for Srsim;rep = Sr;+sim;rep [S
r;�
sim;rep are now evaluated as follows:

(a) For each string � identi�ed in step 2 above, determine the �rst su�x � in the
standard enumeration of strings such that �� 2 L(A). Since j�j � N and � is
the shortest su�x in the standard order it is clear that j��j � 2N � 1. Each
such �� is a member of Sr;+sim;rep.

(b) For each pair of strings (�; �) in order where � is a string identi�ed in step
1 and � is a string identi�ed in step 2 determine the �rst su�x in the
standard enumeration of strings such that � 2 L(A) and � 62 L(A) or vice
versa. Since j�j � N � 1, j�j � N , and is the shortest distinguishing su�x
for the states represented by � and � it is clear that j�j; j�j � 2N � 1 .
The accepted string from among � and � is a member of Sr;+sim;rep and the

rejected string is a member of Sr;�sim;rep.

It is clear that jSr;+sim;repj � (N2 + N)(j�j + 1), jSr;�sim;repj � N2(j�j + 1), and the
length of each string in S is less than 2N � 1.

Given a Turing machine TM (with knowledge of the target concept r) that implements
the above algorithm for computing the set Srsim;rep, it is clear that given an index of length
at most lg(3j�jN2) bits TM will be able to extract the corresponding string belonging
to Srsim;rep. Thus, 8� 2 S

r
sim;rep

K(�jr) � lg(3j�jN2)

� � lg(jrj)

This proves the lemma. 2

Theorem 4:
For all N , the class C�N , of DFA whose canonical representations have at most N states
is probably exactly learnable under the PACS model.

13

Proof:
Let A be a canonical DFA with at most N states and r be its canonical encoding. We
de�ne the simple representative sample Srsim;rep to be the characteristic sample of A eval-
uated as described in lemma 3 above. Recall that the length of each example in Srsim;rep is
at most 2N �1. Now consider the algorithm A that draws a sample S with the following
properties:

1. S = S+ [S� is a set of positive and negative examples corresponding to the target
DFA A

2. The examples in S are drawn at random according to the distribution mr

3. 8� 2 S K(�jr) � � lg(jrj)

4. jSj � �l�(lg(1=�) + lg(l�))

Algorithm A

Input: N; 1=�
Output: A DFA M

begin
Randomly draw a labeled sample S according to mr.
Retain only those examples in S that have length at most 2N � 1.
M = RPNI(S).
return(M).

end

In lemma 3 we have identi�ed Srsim;rep to be the characteristic set of simple examples
with the length of each example at most 2N � 1. From lemma 2 we know that with
probability greater than 1 � �, Srsim;rep � S. From the correctness proof of the RPNI
algorithm we know that if S is a superset of a characteristic sample for the canonical
DFA A corresponding to the target then the DFA M returned by RPNI is equivalent to
A. Since the size of S is polynomial in N and 1=� and the length of each string in S is
restricted to 2N � 1, the RPNI algorithm and thus the algorithm A can be implemented
to run in time polynomial in N and 1=�.

Thus, the class C�N is exactly learnable with probability greater than 1� � under the
PACS model. 2

We now show that the class of DFA can be identi�ed in polynomial time under the
PACS model. Let A be the canonical representation of the target DFA, N be the num-
ber of states of A, and r be the canonical encoding of A. Since N might not be known
in advance we present a PAC learning algorithm A that iterates over successively larger

14

guesses for N . At each step the algorithm draws a random sample according to mr, ap-
plies the RPNI algorithm to construct a DFA, and tests the DFA using another randomly
drawn test sample. If the DFA is consistent with the test sample then the algorithm out-
puts the representation of the DFA and halts. Otherwise the algorithm continues with
the next guess for N .

Theorem 5:
The concept class C of DFA is learnable in polynomial time under the PACS model.

Proof: We present the following learning algorithm for the PACS model and prove
its correctness.

Algorithm A

Input: �; �
Output: A DFA M

begin
1) i = 1, EX = �, p(0; 1=�) = 0
2) Repeat

Draw p(i; 1=�)� p(i� 1; 1=�) examples according to mr

Add the examples just drawn to the set EX
Let S be the subset of examples in EX that have length at most 2i� 1
M = minimize(RPNI(S))
Draw q(i; 1=�; 1=�) examples according to mr and call this set T
Test M on T
If M is consistent with T
Then Output M and halt
Else i = i+ 1

until eternity
end

In the above algorithm the polynomial p is de�ned such that a sample S of size p(N; 1=�)
contains the set of simple representative examples Srsim;rep with probability greater than
1 � �. Note that according to lemma 2, p(N; 1=�) = O(l� (lg(l�) + lg(1=�))) will satisfy
this constraint. The polynomial q is de�ned as q(i; 1=�; 1=�) = 1

�
[2 ln(i+ 1) + ln(1

�
)].

From lemma 3, it is clear that for any step i of the algorithm (i � N), the sample S will
include the characteristic sample of simple examples (Srsim;rep) with probability greater
than 1 � �. In this case the RPNI algorithm will return a DFA M that is equivalent
to the target A and hence M will be consistent with the test sample T . Thus, the al-
gorithm will halt and correctly output the target DFA with probability greater than 1��.

15

Consider the probability that the algorithm halts at some step i and returns a DFA
M with error greater than � i.e., the probability (according to the distribution mr) of
the set f� j � 2 L(M)� L(M

0

)g is at least �.

Pr(M and A are consistent on some �) � 1 � �

Pr(M and A are consistent on all � 2 T) � (1 � �)jT j

� (1 � �)
1

�
[2 ln(i+1)+ln(1

�
)]

� e�[2 ln(i+1)+ln(1
�
)]

�
�

(i+ 1)2

The probability that the algorithm halts at any step i and returns a DFA with error

greater than � is at most
1X

i=1

�

(i+ 1)2
which can be shown to be strictly less than �. Thus,

we have shown that with probability greater than 1 � � the algorithm returns a DFA
with error at most �. Further, it is easy to see that the running time of the algorithm is
polynomial in N , j�j, 1=�, 1=�, and m (where m is the length of the longest test example
seen by the algorithm).

Thus, the class of DFA is e�ciently PAC learnable under the PACS model. 2

5 Discussion

The problem of exactly learning the target DFA from an arbitrary set of labeled examples
and the problem of approximating the target DFA from labeled examples under Valiant's
PAC learning framework are both known to be hard problems. Thus, the question as
to whether DFA are e�ciently learnable under some restricted yet fairly general and
practically useful classes of distributions was clearly of interest. In this paper, we have
answered this question in the a�rmative by providing a framework for e�cient PAC
learning of DFA from simple examples.

In particular, we have shown that if a benign teacher (or nature) provides labeled
examples of a target DFA drawn according to the universal distribution mr, then with
probability at least 1 � �, this sample is guaranteed to include a characteristic set of
examples for the target DFA when the sample size is polynomial in the number of states
of the target DFA and lg(1

�
). The RPNI algorithm [Oncina & Garc��a, 1992] is guaranteed

to return a DFA that is equivalent to the target DFA provided the set of examples given
to the algorithm includes a characteristic set.

Thus, by casting the RPNI algorithm in the framework of learning from simple exam-
ples we demonstrate probably exact leanability of DFA from labeled examples. Further,
we show that when an upper bound on the number of states of the target DFA is un-
known, we can use this algorithm iteratively, to e�ciently PAC learn the concept class
of DFAs for any desired error and con�dence parameters.

16

The class of simple distributions includes a large variety of probability distributions
(including all computable distributions that are characterized by �nite precision param-
eters). Li and Vitany�i have shown that a concept class is e�ciently learnable under the
universal distribution if and only if it is e�ciently learnable under each simple distri-
bution [Li & Vit�anyi, 1991] provided the sampling is done according to the universal
distribution. This raises the possibility of using sampling under the universal distribu-
tion to learn under all computable distributions. However, the universal distribution
is not computable. Whether one can instead get by with a polynomially computable
approximation of the universal distribution remains an open question. It is known that
the universal distribution for the class of polynomially-time bounded simple distribu-
tions is computable in exponential time [Li & Vit�anyi, 1991]. Thus we have a number of
interesting possibilities for learning under simple distributions.

A related question of interest has to do with the nature of environments that can be
modeled by simple distributions. In particular, if Kolmogorov complexity is an appropri-
ate measure of the intrinsic complexity of objects in nature and if nature (or the teacher)
has a propensity for simplicity, then it stands to reason that the examples presented to the
learner by the environment are likely to be generated by a simple distribution. Against
this background, empirical evaluation of the performance of the proposed algorithms
using examples that come from natural domains is clearly of interest.

In the incremental version of the RPNI algorithm [Dupont, 1996] the learner maintains
a hypothesis that is consistent with all labeled examples seen thus far and modi�es it
whenever a new inconsistent example is observed. The convergence of this algorithm
relies on the fact that sooner or later, the set of labeled examples seen by the learner will
include a characteristic set. If in fact the stream of examples provided to the learner is
drawn according to a simple distribution, our results show that in an incremental setting
the characteristic set would be made available relatively early (during learning) with a
su�ciently high probability and hence the algorithm will converge quickly to the desired
target.

Some of the negative results in approximate identi�cation of DFA are derived by
showing that an e�cient algorithm for learning DFA would entail algorithms for solving
known hard problems such as learning boolean formulae [Pitt & Warmuth, 1988] and
breaking the RSA cryptosystem [Kearns & Valiant, 1989]. It would be interesting to
explore the implications of our results on e�cient learning of DFA from simple examples
on these problems.

Acknowledgements

The authors wish to thank Dr. Jack Lutz for introducing them to Kolmogorov Com-
plexity and the related topics and Dr. Giora Slutzki for several helpful discussions on
automata theory and grammar inference. This research was partially supported by grants
from the National Science Foundation (IRI-9409580 and IRI-9643299) and the John Deere
Foundation to Vasant Honavar.

17

References

Angluin, D. (1981). A Note on the Number of Queries Needed to Indentify Regular
Languages. Information and Control, 51, 76{87.

Angluin, D. (1987). Learning Regular Sets from Queries and Counterexamples. Infor-
mation and Computation, 75, 87{106.

Chomsky, N. (1956). Three Models for the Description of Language. PGIT, 2(3), 113{
124.

Denis, F., D'Halluin, C., & Gilleron, R. (1996). PAC Learning with Simple Examples.
STACS'96 - Proceedings of the 13th Annual Symposium on the Theoretical Aspects
of Computer Science, 231{242.

Dupont, P. (1996). Incremental Regular Inference. Pages 222{237 of: Miclet, L., &
Higuera, C. (eds), Proceedings of the Third ICGI-96, Lecture Notes in Arti�cial
Intelligence 1147. Montpellier, France: Springer.

Dupont, P., Miclet, L., & Vidal, E. (September 1994). What is the Search Space of
the Regular Inference? Pages 25{37 of: Proceedings of the Second International
Colloquium on Grammatical Inference (ICGI'94).

Gold, E. M. (1978). Complexity of Automaton Identi�cation from Given Data. Infor-
mation and Control, 37(3), 302{320.

Hopcroft, J., & Ullman, J. (1979). Introduction to Automata Theory, Languages, and
Computation. Addison Wesley.

Kearns, M., & Valiant, L. G. (May 1989). Cryptographic Limitations on Learning
Boolean Formulae and Finite Automata. Pages 433{444 of: Proceedings of the
21st Annual ACM Symposium on Theory of Computing. ACM, New York.

Lang, K. J. (1992). Random DFA's can be approximately learned from sparse uniform
sample. Pages 45{52 of: Proceedings of the 5th ACM workshop on Computational
Learning Theory.

Li, M., & Vit�anyi, P. (1991). Learning Simple Concepts under Simple Distributions.
SIAM Journal of Computing, 20, 911{935.

Li, M., & Vit�anyi, P. (1993). An Introduction to Kolmogorov Complexity and its Appli-
cations. Springer Verlag.

Oncina, J., & Garc��a, P. (1992). Inferring Regular Languages in Polynomial Update Time.
Pages 49{61 of: P�erez, N. et al (ed), Pattern Recognition and Image Analysis. World
Scienti�c.

18

Pao, T., & Carr, J. (1978). A Solution of the Syntactic Induction-Inference Problem for
Regular Languages. Computer Languages, 3, 53{64.

Parekh, R.G., & Honavar, V. G. (August 1993). E�cient Learning of Regular Languages
using Teacher Supplied Positive Examples and Learner Generated Queries. Pages
195{203 of: Proceedings of the Fifth UNB Conference on AI.

Pitt, L. (1989). Inductive Inference, DFAs and Computational Complexity. Pages 18{44
of: Analogical and Inductive Inference, Lecture Notes in Arti�cial Intelligence 397.
Springer-Verlag.

Pitt, L., & Warmuth, M. K. (1988). Reductions among prediction problems: on the
di�culty of predicting automata. Pages 60{69 of: Proceedings of the 3rd I.E.E.E.
Conference on Structure in Complexity Theory.

Pitt, L., & Warmuth, M. K. (1989). The minimum consistency DFA problem cannot
be approximated within any polynomial. Pages 421{432 of: Proceedings of the 21st

ACM Symposium on the Theory of Computing. ACM.

Trakhtenbrot, B., & Barzdin, Ya. (1973). Finite Automata: Behavior and Synthesis.
Amsterdam: North Holland Publishing Company.

Valiant, L. (1984). A Theory of the Learnable. Communications of the ACM, 27, 1134{
1142.

19

