
Proceedings of Fith International Conference on Deductive and Object–Oriented
Databases (DOOD’97), December 8–12, 1997, Montreux, CH

Rule–Based Generation of Logical Query Plans with
Controlled Complexity

Karl Aberer, Dunren Che, and Klemens Böhm
GMD–IPSI, Dolivostr. 15, 64293 Darmstadt, Germany

E–mail: {aberer, che, kboehm}@darmstadt.gmd.de

Abstract

Rule–based query optimizers are recognized as particularly valuable for extensible and object–ori-
ented database management systems by providing a high flexibility in adapting query optimization
strategies to nonstandard application needs. On the other hand rule–based optimizers are problem-
atic with regard to run–time behavior for more complex queries as the generation of query plans
based on a declarative rule base tends to be difficult to control. In this paper we show that this is not
a fundamental problem of rule–based optimizers, but rather a question of careful design of the rule
system. We exemplify this for one fundamental optimization problem, namely join enumeration for
linear queries. There, a rule–based optimization strategy can achieve the theoretically optimal com-
plexity. The design principles used to achieve this have been derived from and are used in the design
of the VODAK query optimizer developed at GMD–IPSI.

1 Introduction

There exists a broad spectrum of potential (nonstandard) applications of DBMS, which
impose very different demands on database systems. Thereby much of the leading re-
search work of the database community in the recent years focuses on investigating ex-
tensible database systems [Batory+88, Becker+92, Blakeley+93, Finance+94,
Graefe+87, Graefe+93, Guting88, Haas+90, Ozsu+95, Stonebraker+86]. Several re-
search groups have introduced the extensibility concept to surmount the limitations of
traditional RDBMSs, e.g., Starburst [Haas+89, Haas+90], Gral [Becker+92], EDS ES-
PRIT [Finance+94]. Extensibility is even more necessary for object–oriented and ob-
ject–relational database systems. There are many more alternatives (such as storage
structure, object query model, object algebra, transformation rules, cost model, search
strategy, and so on) in the OODBMS realm. As a consequence, OODBMSs must be
more open, extensible, and customizable.

Modularity and hence extensibility of the query processor (optimizer) is probably the
most challenging aspect when constructing an extensible database system since it is the
most complex component of a DBMS [Becker+92]. As the first effort towards a modu-
lar query optimizer, applying rule–based techniques to query optimization was origi-
nally suggested by Freytag [Freytag87], while conventionally the query optimizer is
implemented in a hard–coded or hard–wired manner [Ozsu+95].

Compared with hard–coded approaches, rule–based techniques bear the following ad-
vantages:

Proceedings of Fith International Conference on Deductive and Object–Oriented
Databases (DOOD’97), December 8–12, 1997, Montreux, CH

(1) A straightforward advantage of the rule–based approach is that it allows the defini-
tion of new transformation rules, which are frequently required by nonstandard applica-
tions. Thus it is possible to easily change and extend the set of possible transformations
and underlying implementations, i.e., methods.

(2) The rule–based approach ensures modularity, even if it is applied in the transforma-
tion phase of an optimizer only, since transformations alone represent a major portion
of the body of a query optimizer. Actually, the application of the rule–based approach
to query optimization has already gone far from transformation/term–rewriting, as in
[Finance+94] and [Becker+92] where (meta–)rules were used to uniformly model mul-
tiple search strategies also.

(3) The rule–based approach is also highly appropriate for research prototype develop-
ment due to the great convenience it provides for experimenting with different alterna-
tives, e.g., different transformations, improved statistics and cost models, different al-
gebraic operators and implementations of algorithms.

Regardless of the attractiveness of the rule–based approach, e.g., extensibility and de-
clarative nature, it may suffer from several serious problems which are likely to dramat-
ically reduce the potential interest in it. The design of rule systems for query optimizers
typically starts in an ad–hoc manner by encoding a set of transformation rules that are
derived from valid equivalences of the query algebra. Such transformation rules consist
of an expression pattern that is transformed into a different equivalent expression, poss-
ibly restricted by conditions on the expression parameters. Due to the heuristic nature
of this approach the rule application process in enumerating equivalent expressions is
not understood and thus also the impact of selecting different heuristics is difficult to
judge. Among others, there are two important issues to consider: many uninteresting
expressions may be generated; and the same expression may be produced in many dif-
ferent ways for many times. That means a great deal of futile work is performed during
optimization. Thus the resulting optimizers tend to have poor performance as compared
to hard–coded optimizers with well understood algorithmic behavior. One methodolo-
gy at this stage is experimentation with heuristics to reduce the number of rule applica-
tions. This is however an unsatisfying approach as long as no real understanding is
gained on the structure of the rule transformation process.

In this paper we show that such an understanding can be gained and that there are no
principal obstacles in developing efficient rule–based optimizers. The goal of this pa-
per is to show that it is possible, based on an intuitively appealing heuristic, to achieve
complexity results that correspond to the inherent complexity of exhaustive search
strategies by designing appropriate rule systems. Thus, the rule system does not
introduce any unnecessary overhead. Although this might require an increased design
effort, as compared to the design of hard–coded optimizers, this has to be outweighed
against the advantages of ease of implementation (when the rule system has been de-
signed implementation is trivial) and the additional flexibility, modularity and declara-
tivity, which is in particular useful in the context of extensible database management
systems.

We will show for one important and well analyzed class of queries, namely linear quer-
ies, that a rule–based optimizer can achieve the same performance (from a complexity

Proceedings of Fith International Conference on Deductive and Object–Oriented
Databases (DOOD’97), December 8–12, 1997, Montreux, CH

viewpoint) as a typical hard–coded optimizer does. Linear queries are interesting since
they are a relational equivalent to path expressions of object–oriented models, i.e., a
path expression is split up into a linear query in SQL. This class is well analyzed so far,
and there exists a join enumeration algorithm with complexity O(k3) for k join predi-
cates [Ono+90] which is used in the Starburst optimizer.

This paper is based on our work on investigating and developing a rule–based optimizer
for the object–oriented database management system VODAK [VODAK95] relying on
an algebraic representation of object–oriented queries that are specified in an OQL–
style query language [Cattell93]. To this extent the Volcano Optimizer Generator
[Graefe+93] has been used. This work is targeted on supporting semantic optimization
rules in the context of advanced applications, like document management and biomo-
lecular databases [Aberer+95a, Aberer+95b], at the level of the logical query algebra.
We distinguish general–purpose rules from application–specific rules, which are the
basis of application–specific semantic query optimization. In the course of our inves-
tigation we have recognized that as a sound basis for this kind of algebraic semantic
query optimization an efficient general–purpose rule system is strongly required. In the
rest of this paper we reflect those findings when developing the general–purpose rule
system consisting of application–independent rules and some generic design principles
and complexity results that can be derived from this work.

The paper is organized as follows. In the next section we elaborate on how the need for
semantic optimization rules guides the overall transformation strategy. Then in Section
3 we provide a short presentation of the logical algebra and a high level description of
the adopted transformation algorithm. Section 4 addresses our complexity results on
join enumeration of linear queries under the chosen strategy. After reviewing some re-
lated work in Section 5, we conclude this paper in Section 6 with an outlook on future
work.

2 Rationale of the Approach

When optimizing object–oriented queries we have two goals in mind:

1. the query should be optimized with regard to all standard (object–) relational
optimizations (ordering of selections and joins, pull–down of selections etc.)

2. the query should be optimized semantically by replacing expensive functions
by potentially better alternatives (application–specific index structures, alter-
native paths etc., examples can be found in [Aberer+95a])

Both types of optimizations can be performed by algebraically transforming the query.
In the following we illustrate by means of an example what difficulties can occur when
doing this. Assume the query is given by

�a6=p4(a0)�

�a5=c2��a5=g(a4)��a4=p3(a0)�

�a3=c1��a3=f(a1,a2)��a2=p2(a0)��a1=p1(a0)��a0,C))))))))

where � is a materialization operator, in the following called map operator, for expres-
sion evaluation, � is a selection operator, and � is an access operator for getting the ex-

Proceedings of Fith International Conference on Deductive and Object–Oriented
Databases (DOOD’97), December 8–12, 1997, Montreux, CH

tension of a class (precise definitions are given in the next section). The references ai
denote materialized attributes. In the following we also denote this query shortly by

�6 � �� � �5 � �4 � �1� �3 � �2 � �1 � �))))))).

Furthermore assume that there exists a method m such that m(x) = f(p1(x), p2(x)). Then
two possible optimizations need to be considered:

1. commuting the selections

2. replacing �3 � �2 � �1 � �))) with �a3=m(a0) (�a0,C)

Usually in relational query optimization the select commutativity rule can cover the or-
dering of the selections. The presence of the materialization operators complicates
things. In order to commute the two selections different approaches can be considered:

1. use rules for map–select and map–map commutativity. However this leads to
an explosion in the number of possible transformations and leads to many use-
less byproducts, of which we give a few examples:
�6 � �� � �5 � �4 � �1 � �3 � �1 � �2 � �)))))))
�� � �5 � �4 � �1 � �3 � �2 � �1 � �6 � �)))))))

 (�6 can be anywhere)
�� � �2 � �5 � �4 � �3 � �2 � �1 � �6 � �)))))))

(and most permutations of the � operators)
The main problem is that commutativity rules can be applied in both direc-
tions, and from the information available when matching a rule to a subexpres-
sion the promising direction cannot be predicted. Even worse, the same ex-
pressions are generated in many different ways leading to even more
unnecessary work.

2. introduce ”metarules” like
�� � �1

* (�� � �2
* (E)))) ⇒ �� � �2

* (�� � �1
* (E))))

where �i
* stands for an arbitrarily long sequence of map operators. This is how-

ever a substantial extension of the concepts of existing rule transformation en-
gines. In addition, this alternative does not prevent from the combinatorial ex-
plosion described in item 1.

3. Extend the definition of map operators, such that they can contain more com-
plex expressions in their parameters. However then in order to match the ”se-
mantic transformations” we have either to provide for the collapsing/uncol-
lapsing of a complex map operator into the existing atomic ones, or the pattern
matching process has to be performed at the expression parameter level and
no longer at the level of algebraic expressions. While the first alternative does
not really help with regard to the explosion of the number of possible trans-
formations, the second alternative is expensive to implement and contradicts
our original objective to use a rule–based query optimizer to do the semantic
transformations.

So we approached the problem from a different side. Experimentation has shown that
a lot of efficiency can be gained if by ”directing” the rule application more control is
imposed on the transformation process. The extreme case of a directed rule engine is

Proceedings of Fith International Conference on Deductive and Object–Oriented
Databases (DOOD’97), December 8–12, 1997, Montreux, CH

expression normalization, which performs simplifications of an expressions only. In
fact, some rule–based optimizers use this approach. On the other hand normalization
does not generate alternative solutions. Thus we targeted towards the combination of
strongly directed transformations with generation of alternative expressions. When
transforming in a directed manner the starting expression becomes an important matter.
We illustrate this for our example. Using the join operator x, as a starting representation
of the query we choose the expression

�6 � �� � �5 � �4 � � ��� x �1 � �3 � �2 � �1 � �)))))

This expression by itself is definitely not optimal. However, we need now to apply com-
mutativity rules only in one direction, namely for moving selection and map operators
upwards and subsequently idempotency rules for eliminating redundant subexpres-
sions. This appears at first to be a quite counter–intuitive approach, e.g. because selec-
tions are pushed up instead of pulled down. Indeed, if the rules for moving operators
upwards are applied to an expression that is in a ”reasonably optimal” form (e.g. the
linear order of the selections given at the beginning), such a restricted rule set does not
allow to find an equivalent superior alternative. A possible interpretation of the ap-
proach is that it corresponds to a (deterministic) hill–climbing method, i.e. the trans-
formations chosen lead always directly (or indirectly) to improvements. Thus, the start-
ing point should typically be non–optimal in order to avoid being captured in a local
optimum.

Interestingly – and this is the focus of this paper – it turned out that this heuristic is not
only beneficial for the transformation of query expressions in the presence of material-
ization operators, but that under this strategy classical relational query optimization
goals, like selection and join ordering, can be achieved efficiently. This opens the possi-
bility to combine algebraic semantic optimizations with standard query transforma-
tions, and achieve an efficient behavior at the same time. After introducing the opti-
mization framework in the next section we give such a specific result for the problem
of join enumeration for linear queries in section 4.

3 The Transformation of Logical Query Expressions

3.1 ��� �ogical Algebra

Queries are mapped to logical algebra expressions. The operators of the logical as well
as the physical query algebra are applied to complex values of type {[a1: D1,, an:
Dn]} where D1,...,Dn are complex data types. We assume that the record components
are unordered. Operator arguments of this type are denoted by S, S1 and S2. The opera-
tor parameters are represented as subscripts of the operators. We define

ref(S) := {a1,...,an} for Type(S)={[a1: D1, ..., an: Dn]}.

and refer to a1, ..., an as the references of S. In the following vi denotes a value of type
Di, � is one of the boolean binary operations on built–in data types (e.g., ==, !=, <, >,
IS–IN, IS–SUBSET), and C is a class name.

Proceedings of Fith International Conference on Deductive and Object–Oriented
Databases (DOOD’97), December 8–12, 1997, Montreux, CH

The principal operators of the logical algebra we need for the purposes of this paper are
as follows.

1. Access to classes:

�a,C := { [a: o, a1: o.attr1, ..., an: o. attrn] | o � extension(C) }

where a a � ref(extension(C)) = { a1,...,an }, C is a class name, and attr1, ..., attrn are
immediately materialized attributes of the objects (e.g. values of atomic data types). We
assume attribute names are globally unique for all class types.

2. Materialization of expressions (map operator):

�a := expr(a1, a2, ...,ak) (S) :=

{[a: v,a1: v1, ..., an: vn] | [a1: v1, ..., an: vn]�S�v=expr(v1, v2, ...,vk) }

where ref(S) = { a1,...,an } and a � ref(S), k�n, where expr is a scalar expression. In the
current implementation the following expressions are supported without nesting:
constant values, property access, elementary operations on data types and method calls.
The references are related one–to–one with the generating expressions. If we do not
need the detailed structure of the expression we also will denote this operator shortly by
�a . For set–valued expressions we provide a corresponding operator that performs im-
mediate unnesting:

�a := expr(a1, a2,...,ak) (S) :=

{[a: v, a1: v1, ..., an: vn] | [a1: v1, ... ,an: vn]�S�v�expr(v1, v2, ...,vk) }

where ref(S) = { a1,...,an }, a � ref(S), k�n and expr is a set-valued expression.

3. Selection:

�a1 	 a2 (S) :=

{[a1: v1, ..., an: vn] | [a1: v1, ..., an: vn] �S�� a1 	 a2) =TRUE }

where ref(S) = { a1,...,an }, and both a1 and a2 belong to ref(S).

4. Natural join:

S1 x S2 := {[a1: v1, ..., ai: vi, ..., ak: vk, ..., an: vn] |

� [a1: v1, ..., ai: vi, ..., ak: vk] � S1�� [ai: vi, ..., ak: vk, ..., an: vn]� S2}

where ref(S1 x S2) = ref(S1) U ref(S2) for ref(S1) = {a1, ... , ak}, ref(S2) = {ai, .., an} and
1�i�k+1�n (if i=k+1 this is the Cartesian product).

3.2 Canonical Equivalences

With the above definition of the algebra several equivalences hold that can be used for
the generation of alternative expressions in query optimization. It has to be pointed out
that a rule–based optimizer using these equivalences directly and unrestricted as trans-
formation rules will not work efficiently as will be illustrated later.

Select commutativity

��
������� � ��

�������

Proceedings of Fith International Conference on Deductive and Object–Oriented
Databases (DOOD’97), December 8–12, 1997, Montreux, CH

Join associativity

���� ������ ���� � ����� ���������

Join commutativity

��� ����� ������ �����

Select–join commutativity

�
��	������� ���� � �

��	������ �����

�
��	������ ����� � �

��	������� ����� � � � ��� 	��
 ��� 	 ��� ����

Idempotency

��� ���� � �� ��� � ��� ���� 	 ��� ���� and �� free of selections

Map–select commutativity

��
��

��	������ � �
��	��

�������

�
��	��

������� � ��
��

��	������ ��� � � � 	��
 ���

Map–join commutativity

�
��
�������

������� ����� � �

��
�������

�������� ���� ��� 	��

 ��
 	 ��� ����

 ������� ���� � ������ �����

Map–map commutativity

�
��
�������

���

��
�
���� � �

�
��

��
�������

������� ��� � � 	��

 ���

3.3 Transformation Algorithm

In the optimization process Volcano proceeds in two phases. In the first phase all pos-
sible logical query plans are generated by a transformation algorithm. In the second
phase a search algorithm finds the optimal physical plan starting from the set of gener-
ated logical plans. In the following we consider the first phase.

The transformation algorithm for logical query expressions makes heavy use of the con-
cept of equivalence class. Expressions that are equivalent under the above equivalences
are collected in equivalence classes. During the transformation process expressions are
not stored explicitly but with the arguments of the root operator replaced by the corre-
sponding equivalence class of the argument expression.

Definition: An equivalence class � is the set of expressions that are equivalent under
a given set of equivalences. A representative of an equivalence class � is an expression
Erep = op(�1,...,�n), n�0, corresponding to an expression E=op(E1, ..., En) ��, where
E1 ��1, ..., En��n.

This compressed representation of expressions allows to store the generated expres-
sions in an extremely space–efficient form. Of course, for the sake of pattern matching
in rule applications, the arguments of expressions have to be temporarily replaced by
all possible representatives up to the depth of the rule pattern expression. In order to

Proceedings of Fith International Conference on Deductive and Object–Oriented
Databases (DOOD’97), December 8–12, 1997, Montreux, CH

apply this concept with Volcano we had to slightly adapt the internal representation of
expressions. In the original Volcano system instead of replacing the top level arguments
of an expression by equivalence classes they were replaced by canonical members of
these equivalence classes. This leads to intricate reorganizations of the representations
of internal expressions when equivalence classes which are identified to be identical
as a result of rule applications have to be merged and thus the canonical members are
changed. With our modified representation scheme these difficulties do not occur.

The following is a high level description of the transformation algorithm:

transform(expr) :={
for each argument a of expr

transform(a)
if expr is not contained in an equivalence class

{ generate new equivalence class e(i);
insert expr into e(i) }

for each rule r
{ if r applicable
(by expanding arguments through representatives !)

{ generate new expression e by applying r
insert e into equivalence class of expr
if e found in a different equivalence class

{merge equivalence classes}
else transform(e); }

}
}

4 Join Enumeration for Linear Queries

Linear queries are an important class of queries, for which a well known result on the
complexity of join enumeration exists [Ono+90]. In a linear query classes are joined
(linearly) by a sequence of join predicates. Given a sequence of k classes as in Figure
1 there exists (a conjunction of) k–1 predicates predi(Ci, Ci+1).

Linear queries correspond closely to path expressions and are thus also particularly in-
teresting in the context of object–oriented query optimization. We show that given an
appropriate input representation of the linear query and an appropriate rule system, the

 C1 C2 C3 ... Ck–1 Ck

 Pred1 Pred2 Pred3... Predk–1

Figure 1. Classes and predicates in linear queries

Proceedings of Fith International Conference on Deductive and Object–Oriented
Databases (DOOD’97), December 8–12, 1997, Montreux, CH

enumeration of all join expressions can be performed with the theoretically lowest pos-
sible cost by exactly enumerating the O(k3) alternative join expressions. The underly-
ing assumption is that inner and outer joins are not distinguished and Cartesian products
are not allowed, see [Ono+90]. The Starburst optimizer uses an hard–coded join enu-
meration algorithm based on dynamic programming to achieve this complexity.

In the following we introduce an algebraic representation of linear queries that will be
used as input representation for the transformation algorithm.

Let k classes be used in the query. Then we define the following expressions.

Tii = �ai,Ci

Ci is a class, ai is a newly introduced reference to the object identifiers from class Ci,
i=1, ...,k. For simplicity, we assume that selection predicates use only immediately ma-
terialized attributes. Using materialization operators does not principally change the re-
sults but complicates the presentation of the proof considerably. Next we introduce the
representation of the single selection predicates.

Tii+1 = �predi (Tii x Ti+1i+1),
Sii+1 = Tii x Ti+1i+1, i = 1,...,k–1,

�pred i is a selection based on predicate predi which uses references in ref(Tii) and
ref(Ti+1i+1). Next we introduce expressions that extend linear queries.

Tij = Tij–1 x Tj–1j, 0<i<j–1<k

Then we define the following equivalence classes:

�ij is the class of all expressions equivalent to Tij, 1�i�j�k

�ij
n is the class of all expressions equivalent to Tin x Tn+1j, 1�i�n<j�k

Intuitively speaking the class �ij
n corresponds to expressions where predn is missing

from an expression in class �ij. For the equivalence classes we define the following rep-
resentatives:

Tij
0 is a representative of class �ij of the form �ij–1 x �j–1j , i<j–1

Sij
n is a representative of class �ij

n of the form �in x �n+1j , i�n< j

Tij
n is a representative of class �ij of the form �n (�ij

n) , i�n< j

Sij
n0 is a representative of class �ij

n of the form �ij–1
n x �j–1j , i�n < j–1,

respectively of the form �ij–1 x �j–1j
j–1 for i<n = j–1

The goal of the expression transformation is to enumerate all possible join sequences.
For our case this means all expressions of type Tij

n have to be generated, since they
represent all possible join orders for the linear query. For illustration purposes, we give
in Figure 2 all join orders for a linear query in the case k = 4 .

Next we introduce the rule set for efficient enumeration of all expressions of type Tij
n
.

An interesting design criteria for rule systems is the question whether the rules are ap-
plied based on information on the expression itself only, or also require context in-
formation. It turns out that context information is required. In particular information
on the history of how an expression has been generated by rules is required to avoid un-

Proceedings of Fith International Conference on Deductive and Object–Oriented
Databases (DOOD’97), December 8–12, 1997, Montreux, CH

C1

C1 C1

C1 C1

C2 C2

C2

C2

C2C3

C3

C3

C3 C3

C4 C4

C4 C4

C4

T14
1 T14

2 T14
3

Figure 2. Join orders for linear queries for k=4.

productive rule applications. Note that the rules are all specializations of the general
transformation rules from Section 3.2.

Rule R1
l: ��(E1) x ��(E2) � ��(E1 x ��(E2)), if ref(E1) � ref(E2)
 � and the expres-

sion this rule is applied to has not been generated as the result of an application of this
rule, including subexpressions. Analogously rule R1

r for the right hand side is defined.

Rule R2
r: E1 x (E2 x E3) � (E1 x E2) x E3, if ref(E1) � ref(E2)
 � and ref(E2) � ref(E3)

= � . Analogously rule R2
l is defined for (E1 x E2) x E3 .

Rule R3
r: This rule comes in two versions: rule R3

rl is given as E1 x (E2 x E3) � E1
x E3 if ref(E2) 	 ref(E1) and E2 is free of selection operators, and rule R3

rr is given as
E1 x (E2 x E3) � E1 x E2 if ref(E3) 	 ref(E1) and E3 is free of selection operators. Analo-
gously rule R3

l is defined for (E1 x E2) x E3. These rules are normalization rules, i.e.,
if an expression is generated by means of these rules no further transformations are per-
formed with this expression. In other words, for all other rules the additional condition
holds that they are not applied if the expression has been generated by these normaliza-
tion rules.

This rule system has the following property:

Lemma: For the following expressions no rules are applicable:
 E1 x E2, if ref(E1) � ref(E2) = �
 �(E), for any expression E

The lemma shows that only the representatives Tij
n and Sij

n can be used to enable the
matching of rules. Using the other representatives never leads to possible rule applica-
tions. This property is useful in the proof of the following theorem.

Theorem: Under the assumption that the transformation algorithm is applied using the
above rules to the representative expression T1k

0, k>1, of class �1k the following prop-
erty holds:

For each equivalence class �ij , 1�i<j–1<k, the representatives Tij
n and Tij

0 are pro-
duced for i�n< j. For each equivalence class �ij

n , 1�i<j–1<k, the representatives Sij
n

and Sij
n0 are produced for i�n< j. No other expressions are generated, except of the

trivial expressions Tii, for 1�i�k, Tii+1, Sii+1, for 1�i<k.

This theorem leads immediately to the main result of this paper.

Proceedings of Fith International Conference on Deductive and Object–Oriented
Databases (DOOD’97), December 8–12, 1997, Montreux, CH

Corollary: All possible join sequences are generated for the linear query during rule
transformation. The number of expressions generated during the transformation pro-
cess is O(k3).

Proof: All expressions of type Tij
n are generated. Thus we have to analyze the complex-

ity. We accomplish this straightforwardly by counting the total number of generated ex-
pressions. The number of expressions of form Tij

0 is

�� �

 �

���

�

�

� �

� = �
�
��� ����� �� ;

the number of expressions of form Tij
n, Sij

n and Sij
n0 is

 ��
�� �

 �

���

�

�

� �

���
� = �
�

�
� ��

�
� � ;

the number of expressions of form Tii , Tii+1, and Sii+1 is ��� �. Thus the total sum is
��

�
� ��

�
� ��� �. �

The proof of the theorem is given inductively by a detailed analysis of all possible
transformation steps that can be performed at each level k starting from expression
T1k

0. An illustration of the transformations that are performed starting from T1k
0 is

given in Figure 3. For space limitations we omit the detailed analysis of all the pos-
sible steps. For ease of understanding, an illustration of sample representations and
transformations of query representatives as used in the proof of the theorem is pro-
vided in the appendix of this paper.

We have simulated the transformation process using the computer algebra system Ma-
thematica [Wolfram88] which is more flexible to handle for experimental purposes
than the Volcano system. The simulations have verified experimentally the stated re-

Proceedings of Fith International Conference on Deductive and Object–Oriented
Databases (DOOD’97), December 8–12, 1997, Montreux, CH

T1k
0S1k

n0
n in [1, k–2]

S1k
k–10

T1k
n

n in [1, k–2]

Tn+1k
0

n in [1, k–2]

S1k
n

n in [1,k–2]

S1k
k–1

Sn+1k
m0

m in [n+1, k–2]
n in [1, k–2]

Tn+1k
m

m in [n+1, k–2]
n in [1, k–2]

Sn+ 1k
k–10

n in [1, k– 2]

Tn+1k
k–1

n in [1, k–2]

Sn+1k
m

m in [n+1, k–2]
n in [1,k–2]

Sn+1k
k–1

n in [1, k–2]

R1
l

R1
l

R1
r

R1
r

R2
l

R2
l

R3
r

R1
l

R1
l

R1
r

R1
r

R2
l

R3
r

R2
l

T1k
k–1

 Figure 3. Illustration of different transformations

Proceedings of Fith International Conference on Deductive and Object–Oriented
Databases (DOOD’97), December 8–12, 1997, Montreux, CH

sults. We give the results in the following table. The number of expressions generated

matches precisely the computed value of �
�

�
� ��

�
� ��� �:

expressions
generated

transformations equivalence
classes generated

k=4 34 18 20

k=5 67 46 35

k=6 116 92 56

k=7 184 160 84

k=8 274 254 120

k=9 389 378 165

k=10 532 536 220

k=11 706 732 286

k=12 914 970 364

k=13 1159 1254 455

5 Related Work

To our knowledge this is among the first results on giving a strict complexity result for
rule–based query optimizers. A work that has been published in parallel [Pellenkoft+
97] gives comparable results in a relational context for duplication–free generation of
join trees. It requires further investigation to see whether these results are applicable
in a setting where materialization operators require a directed transformation approach.
Also this work has been using the Volcano optimization framework.

There exists an abundance of results in the context of rule–based approaches to query
optimization, which are related to this work. We review important features of several
related and representative projects that adopt the rule–based approach to query opti-
mization.

• The Volcano optimizer generator [Graefe+93] is a data model independent tool
that provides a fairly complete framework for quickly developing a query opti-
mizer with specific data model and for experimenting with alternatives in differ-
ent directions of query processing, including logical operators, algorithms, cost
models, and especially transformation and implementation rules.

• The Open OODB object query optimizer [Blakeley+93] is the first working ob-
ject query optimizer based on a complete extensible optimization framework in-
cluding logical algebra, execution algorithms, property enforcers, logical trans-
formation rules, implementation rules, and selectivity and cost estimation. The
two important contributions of it are the introduction of the “presence in

Proceedings of Fith International Conference on Deductive and Object–Oriented
Databases (DOOD’97), December 8–12, 1997, Montreux, CH

memory” physical property (materialization), and its first validation of the (Vol-
cano) query optimizer generator paradigm for the generation of a working query
optimizer.

• The MOOD [Dogac+95, Ozkan+93] object–oriented query optimizer is not only
derived from the Volcano optimizer generator, but also is implemented on the
storage manager of EXODUS [Graefe+87, Graefe93] (a predecessor of Volcano).
The rule set of the MOOD query optimizer exploited only canonical well–known
heuristics, e.g., “combining consecutive projections” and “combining nested
selections into a single one”.

• The Starburst [Hass+89, Hass+90] extensible database research project has ex-
plored extensibility of relational DBMS in “every” aspect of data management.
Query processing is divided into two phases: Query rewriting and query planing
where query rewrite rules (i.e., production rules, written in C) and plan generation
rules (based on grammar like rules) are used, respectively. Lack of homogeneity
in Starburst, e.g., the presence of two rule systems within the optimizer alone is
particularly unsatisfactory [Finance+94]. The Starburst optimizer allows exten-
sions to both kinds of rules, while the set of search algorithms, cost functions and
the set of algebraic operators due to its underlying relational data model does not
support extension [Ozsu+95].

• TIGUKAT [Ozsu+95] is an OBMS with an extensible object model characterized
by purely behavioral semantics and a uniform modeling approach. It treats every-
thing as first–class object. Consequently, every component of the optimizer, e.g.,
calculus, algebra, transformation rules, and the queries themselves, are modeled
as first–class objects. The designers of the TIGUKAT optimizer put special em-
phasis on extensibility by pursuing a uniform object–oriented approach. Via the
basic OO principle of subtyping, the type system in TIGUKAT incorporates all
optimizer components, and it consequently allows extensibility in every direction
of optimization.

• Using the EDS ESPRIT project as a testbed, Finance and Gardarin [Finance+94]
have developed a rule–based query optimizer. They apply meta–rules to specify
the search strategy of the optimizer. This makes their approach different and am-
bitious, and they see this feature as their main contribution. They proposed a
high–level rule language based on extended term rewriting under constraints; it is
uniform in the sense that it allows to express both transformation rules and opti-
mization strategies. Their optimizer supports syntactic, semantic and cost–based
optimization rules. The rule base is divided into modules each of which is associ-
ated with its own control strategy as meta–rules.

• Gral [Becker+92] is an extensible database system, based on the relational model.
The key concept embodied in Gral is the formal concept of a many–sorted rela-
tional algebra. The query language, executable language, and rule language, as
well as the whole system architecture [Becker+92, Guting89], are based on this
formal concept. Consequently it provides a more uniform framework for extensi-
bility and optimization; application developers can describe queries, execution
plans and optimization rules all with the same kind of notation. Although three

Proceedings of Fith International Conference on Deductive and Object–Oriented
Databases (DOOD’97), December 8–12, 1997, Montreux, CH

different control mechanisms are offered, alternatives are only considered locally,
i.e., no global comparison of query plans based on their complete cost estimates
is performed. This may make optimization efficient, but runs the risk of produc-
ing bad query plans.

6 Conclusion

In this paper, after reviewing the VODAK query optimization framework we discussed
the motivation of our approach and the underlying rational. We then elaborated on the
approach to join enumeration and gave a strict complexity result.

In the sense of using the same query optimizer generator, our work is closely related
with the Open OODB query optimizer [Blakeley+93]. The VODAK query optimizer,
in which the approach is used, is a complete working object query optimizer, although
not yet a full–fledged one at the moment with regard to the expressive power of OQL
[Cattell+93]. We identified a set of highly efficient rules with practical heuristics which
is good both for theoretical reflections and for experiments using a real system
[Böhm+97].

The most distinguishable feature of our optimization approach are the various heuris-
tics which we exploited for rule application, of which some are quite counterintuitive
but practically effective. Our effort on developing an efficient rule–based optimizer for
VODAK, thereby led us to investigate the efficiency problem of rule–based query opti-
mization, and thus we originally proved that it is possible for a rule–based optimizer
to achieve the same level of performance as a hard–coded optimizer by using an ap-
propriate rule system with effective heuristics.

Some future work regarding rule–based query optimizers includes:

• Investigate systematically the effect of the rule system and the heuristics for other
classes of queries, e.g. more general classes of join queries. E.g. we can show that
a rule system compatible with the one used in this paper can perform efficient
ordering of single–class–predicate selections (if an order relation is given on the
predicates). Can this be extended for ordering of join predicates by using the Ad-
jacent Sequence Interchange Property [Ibaraki+84] that is used in the Krishna-
murthy–Boral–Zaniolo algorithm ?

• Perform quantitative performance analysis based on experiments by applying a
rule system that has an optimality property for a certain class of queries to queries
that are outside the class.

• Using the VQO framework on hand to incorporate semantic optimization rules
which are application–dependent and studying the effect on the behavior of the
rule–based optimizer when extending the rules system in this way. Semantic opti-
mization is the main target of this investigation which tries to lay efficient
foundations towards that goal.

Proceedings of Fith International Conference on Deductive and Object–Oriented
Databases (DOOD’97), December 8–12, 1997, Montreux, CH

Acknowledgement
We gratefully acknowledge the detailed remarks given by the anonymous reviewers
which were very helpful to improve this paper.

References

Aberer, K., Fischer, G.. Semantic Query Optimization for Methods in Object–Oriented
Database Systems. In Proc. of 11th IEEE International Conference on Data
Engineering, pp. 70–79, Taipei, Taiwan, March 6–10, 1995.

Aberer, K., Hemm, K. Semantic Optimization of Biomolecular Queries in
Object–oriented Database Systems, Meeting on the Interconnection of
Molecular Biology Databases (MIMBD) ’95, Cambridge, UK, 1995.

Batory, D.S., Barnett, J,R., Garza, J.F., Smith, K.P., Tsukuda, K., Twichell, B.,C., and
Wise, T.E. GENESIS: An extensible database management system. IEEE Trans.
Softw. Eng. 14, 11(Nov. 1988), 1711–1730.

Becker, L., Guting, R.H. Rule–based Optimization and Query Processing in an
Extensible Geometric Database System. In ACM Transaction on Database
Systems, Vol. 17, No. 2, June 1992, pp. 247–303.

Blakeley, J., McKenna, W., and Graefe, G. 1993. Experiences building the Open
OODB query optimizer. In Proc. ACM SIGMOD Int. Conf. On Management of
Data, 287–296.

Böhm, K., Aberer, K., Neuhold, E. J. and Yang, X. Structured Document Storage and
Refined Declarative and Navigational Access Mechanisms in HyperStorM.
Accepted for publication in VLDB Journal, 1997.

Cattell, R.G.G. (ed). The Object Database Standard: ODMG–93, Release 1.2. Morgan
Kaufmann Publishers, Inc., San Francisco, California, 1993.

Derrett, N., and Shan, M.–C. Rule–based query optimization in IRIS. In Proc. of the
17th Annual ACM computer Science Conference (Louisville, Kentucky Feb..
1989) pp. 78–86.

Dogac, A., Altinel, M., Ozkan, C., Durusoy I. Implementation Aspects of an
Object–Oriented DBMS. In SIGMOD RECORD, Vol. 24, No.1, March 1995.

Dogac, A., Ozkan, C, Arpinar, B., Okay, T., and Evrendilek, C. 1994. METU
object–oriented DBMS. In Advances in Object–Oriented Database Systems, A.
Dogac, M.T. Ozsu, A. Biliris, T. Sellis, Eds. Springer–Verlag.

Finance, B., Gardarin, G. A rule–based query optimizer with multiple search strategies.
In Data & Knowledge Engineering 13 (1994) 1–29.

Freytag, J. 1987. A rule–based view of query optimization. In Proc. ACM SIGMOD Int.
Conf. On Management of Data, 173–180.

Graefe, G. and DeWitt, D. The EXODUS optimizer generator. In Proc. ACM SIGMOD
Int. Conf. On Management of Data, pp. 160–172, May 1987.

Proceedings of Fith International Conference on Deductive and Object–Oriented
Databases (DOOD’97), December 8–12, 1997, Montreux, CH

Graefe, G. Query Evaluation Techniques for Large Databases, ACM Computing
Survey,Vol. 25, No. 2, pp. 73–170, June 1993.

Graefe, G., McKenna, W.J. The Volcano Optimizer Generator: Extensibility and
Efficient Search. Proc. 9th ICDE, pp. 209–218, Vienna, Austria, April 19–23,
1993.

Guting, R.H. Gral: An extensible relational database system for geometric applications.
In proc. of the 15th International Conference on Very Large Databases
(Amsterdam 1989), pp. 33–44.

Haas, L., Cody, W., Freytag, J., Lapis, G., Lindsay, B., Lohman, G., Ono, K., and
Pirahesh, H. 1989. Extensible query processing in Starburst. In Proc. ACM
SIGMOD Int. Conf. On Management of Data, 377–388.

Hass, L.M., Chang, W., Lohman, G.M., McPHERSON J., Wilms, P.F., Lapis, G.,
Lindsay, B., Pirahesh, H., Carey, M.J., Shekita, E. Starburst Mid–flight: As the
Dust Clears. In IEEE Transaction on Knowledge and Data Engineering, Vol. 2,
No. 1, March, 1990.

Ibaraki, T., Kameda, T. Optimal nesting for computing N–relational joins. ACM Trans.
on Database systems, 9(3): 482–502. 1984.

Lanzelotte, R. and Valduriez, P. Extending the search strategy in a query optimizer. In
Proc. of 17th Int. conf. on Very Large Databases, pp. 363–373, 1991.

Mitchell, G., Zdonik, S.B., and Dayal, U. An Architecture for Query Processing in
Persistent Object Stores. In Proc. of the Hawaii International Conference on
System Sciences, Vol. II, pp. 787–798, January 1992.

Ono, K., Lohman, G. Measuring the Complexity of Join Enumeration in Query
Optimization. Proc. of the 16th VLDB Conference, Brisbane, Australia 1990.

Ozkan, C., Evrendilek, C., Dogac, A., Gesli. T. Design and Implementation of
Object–Oriented SQL Query Processor with an Optimizer. Technical Report,
1993, Software Research and Develop Center, Scientific and Technical Research
Council of Turkiye Middle East Technical University.

Ozsu, M.T., and Blakeley, J.A. Query Processing in Object–Oriented Database
Systems. In Modern Database Management – Object–oriented and
Multidatabase Technologies, W.Kim (ed.), Addison–Wesley/ACM Press, 1994,
pp. 146–174.

Ozsu, M.T., Munoz, A., Szafron, D. An Extensible Query Optimizer for an Objectbase
Management System. In Proc. of the 4th Int. Conf. on Information and
Knowledge Management (CIKM’95), November 1995, pp. 188–196.

Pellenkoft, A., Galindo–Legaria, C.A., Kersten, M., Duplicate–free Generation of
Alternatives in Transformation–based Optimizers, Proc. of the Fifth
International Conference on Database Systems for Advanced Applications,
Australia, April 1997.

Stonebraker, M., and Rowe, L.A. The design of POSTGRES. In Proceedings of the
ACM SIGMOD Conference (Washington, DC, May 1986), pp. 340–355.

Proceedings of Fith International Conference on Deductive and Object–Oriented
Databases (DOOD’97), December 8–12, 1997, Montreux, CH

VODAK V4.0 User Manual, GMD Technical Report No. 910, Sankt Augustin, April
1995.

Wolfram , S. Mathematica, A System for Doing Mathematics by Computer, Addison
Wesley, 1988.

��� ������

���

���

���

�
�
��

�
�
��

�
�
��

�� ��

��

�
�
�� �

�
��

�
�
���

�
��

�
�
�� . . .

���

������

���

��

�
�
��

�
��
��

R1 l

��

���

��

 R2
l & R3

rl�
�
��

���

���

�
�
��

�
�
��

�� �
�
�� �

�
��

�
�
��

Figure notation:

: subpart transformed

: transformation

Appendix

Illustration of sample representation and transformation of query representatives as
used in proof of the theorem.

�
�
��

