
SINERGY: A Linear Planner Based on Genetic
Programming

Ion Muslea

Information Sciences Institute / University of Southern California
4676 Admiralty Way

Marina del Rey, CA 90292 (USA)
muslea@isi.edu

Abstract. In this paper we describe SINERGY, which is a highly
parallelizable, linear planning system that is based on the genetic programming
paradigm. Rather than reasoning about the world it is planning for, SINERGY
uses artificial selection, recombination and fitness measure to generate linear
plans that solve conjunctive goals. We ran SINERGY on several domains (e.g.,
the briefcase problem and a few variants of the robot navigation problem), and
the experimental results show that our planner is capable of handling problem
instances that are one to two orders of magnitude larger than the ones solved
by UCPOP. In order to facilitate the search reduction and to enhance the
expressive power of SINERGY, we also propose two major extensions to our
planning system: a formalism for using hierarchical planning operators, and a
framework for planning in dynamic environments.

1 Motivation

Artificial intelligence planning is a notoriously hard problem. There are several
papers [Chapman 1987, Joslin and Roach 1989, Bylander 1992] that provide in-depth
discussions on the complexity of AI planning, and it is generally accepted that most
non-trivial planning problems are at least NP-complete. In order to cope with the
combinatorial explosion of the search problem, AI researchers proposed a wide
variety of solutions, from search control rules [Weld 1994, Etzioni 1993, Minton
1996] to abstraction and hierarchical planning [Knoblock 1991 and 1994] to skeletal
planning [Friedland 1985]. However, even though the above-mentioned techniques
may dramatically narrow the search space, there is no guarantee that the
corresponding planning algorithms will gracefully scale up for real-world problems.

As a reaction to the shortcomings of the traditional planners, during the last couple
of years we witnessed the occurrence of new type of planning systems: the stochastic
planners. This new approach to AI planning trades in the completeness of the planner
for the speed up of the search process. Planners like SatPlan [Kautz and Selman
1996] or PBR [Ambite and Knoblock 1997] are at least one order of magnitude faster
than the classic planning systems, and they are also capable of handling significantly
larger problem instances.

In this paper we present SINERGY, which is a general-purpose, stochastic planner
based on the genetic programming paradigm [Koza 1992]. Genetic Programming
(GP) is an automatic programming technique that was introduced as an extension to

the genetic algorithms (GA) [Holland 92], and it uses evolution-like operations (e.g.,
reproduction and cross-over) to generate and manipulate computer programs. In
[Koza 1992 and 1994, Spector 1994, Handley 1994], the authors used GP to solve
several problems that are similar to the ones encountered in AI planning (e.g., the
Sussman anomaly, the robot navigation problem, and an unusual variant of the block
world problem). Even though their domain-specific solutions cannot be considered
general-purpose planning systems, the experimental results showed that GP has great
potential for solving large instances of traditional AI planning problems.

Based on the encouraging results obtained by both stochastic planners and GP-
based problem solving techniques, we decided to formalize and fully-implement a
general-purpose AI planner that relies on the genetic programming paradigm. Rather
than reasoning about the world it is planning in, SINERGY uses artificial selection,
recombination and fitness measures to generate linear plans that solve conjunctive
goals. We must emphasize that SINERGY has an expressive power equivalent to the
one offered by UCPOP: it provides conditional effects, disjunctive preconditions, and
both universal and existential quantifiers. We tested our planner on several domains,
and the experimental results show that SINERGY is capable of handling problem
instances that are one to two orders of magnitude larger than the ones solved by
UCPOP.

2 Genetic Programming

Genetic Programming represents a special type of genetic algorithm in which the
structures that undergo adaptation are not data structures, but hierarchical computer
programs of different shapes and sizes. The GP process starts by creating an initial
population of randomly-generated programs and continues by producing new
generations of programs based on the Darwinian principle of “the survival of the
fittest”. The automatically-generated computer programs are expressed as function
composition, and the main breeding operations arereproduction andcross-over. By
reproduction we mean that a program from generationi is copied unchanged within
generationi+1 , while the cross-over takes two parent-programs from generationi,
breaks each of them in two components, and adds to generationi+1 two children-
programs that are created by combining components coming from different parents.

In order to create a GP-based application, the user has to specify aset of building-
blocks based on which the population of programs is constructed, and anevaluation
function that is used to measure the fitness of each individual program. There are two
types of primitive elements that are used to build a program:terminals andfunctions.
Both terminals and functions can be seen as LISP-functions, the only difference
between them consisting of the number of arguments that they are taking: terminals
are not allowed to take arguments, while functions take at least one argument. The
individuals generated by the GP system represent computerprograms that are built
by function composition over the set of terminals and functions. Consequently, GP
imposes theclosure property: any value returned by a function or a terminal must
represent a valid input for any argument of any function in the function set.

As we have already mentioned, the GP problem specification must include a
domain-specificfitness evaluation function that is used by the GP system to estimate

the “fitness” of each individual of a generation. More specifically, the fitness
function takes as input a GP-generated programP, and its output represents a
measure of how appropriateP is to solve the problem at hand (in this paper, lower
fitness values mean better programs). In order to estimate the fitness of an GP-
generated program, the evaluation function uses a set of fitness cases.Each fitness
case is a tuple<in-values, desired-out-values> that has a straightforward meaning:
for the givenin-values, a “perfectly fit” program should generate thedesired-out-
values. In terms of AI planning, thein-values represent the initial world status, while
thedesired-out-values can be seen as the goals to be achieved.

Once the terminals, functions, fitness cases and fitness function are specified, the
user has only to select a few running parameters (e.g., number of programs per
generation, number of generations to be created, maximum size of a program) and to
let the GP system evolve the population of programs. Both cross-over and
reproduction are performed on randomly chosen individuals, but they are biased for
highly fit programs. Such an approach has two major advantages: on one hand, the
“highly fit” bias leads to the potentially fast discovery of a solution, while on the
other hand, GP is capable of avoiding local minima by also using in the breeding
process individuals that are less fit than the “best” offsprings of their respective
generations. Although GP problem solvers are not complete (i.e., if there is a solution
to the problem, GP-based systems are not guaranteed to find it), the experimental
results show that they are usually able to find close-to-optimal solutions for a wide
range of problems, from robotics to pattern recognition to molecular biology.

3 Planning as Genetic Programming

 Even though there are several exceptions (e.g., NOAH [Sacerdoti 1975]), the vast
majority of the AI planners define their planning actions in a declarative manner that
is based on the one used by STRIPS [Fikes and Nilsson 1971]. In contrast,
SINERGY takes a different approach and requires a procedural description of the
planning operators. SINERGY relies on a procedural description of the planning
actions because its underlaying, GP-based problem solver has to execute in
simulation each plan in order to estimate its fitness. However, as Table 1 shows, the
different nature of traditional AI planners and our GP-based planner (i.e., reasoning
about plansvs. generating and executing genetically-created plans) does not prevent
the two categories of planning systems to have similar interfaces.

Table 1. Interface Comparison: Traditional AI Planning Systemsvs. SINERGY

Traditional AI Planners SINERGY

Input - initial state
- set of goals
- set of operators
- additional information (search
control rules, memory of plans, etc.)

- initial state
- set of goals
- set of operators
- additional information (fitness
evaluation functions)

Output Plan: a (partially ordered) sequence
of fully instantiated operations

Plan: alinear sequence of fully
instantiated operations

In order to find a solution for the problem at hand, SINERGY uses an approach
resembling the one described in [Kautz and Selman 1996]: it converts an AI planning
problem P1 to a problem P2 of a different nature, it solves P2 based on a stochastic
approach, and it converts the result to a solution for P1. However, while Kautz and
Selman turned the AI planning problem to an equivalent satisfiability problem,
SINERGY converts the AI planning problem to a GP problem (Figure 1).

Fig. 1. The SINERGY approach to AI planning

The SINERGY approach to solving AI planning problems has three main
advantages. First of all, GP problem solving is by its very nature a highly
parallelizable process. The most expensive operation in terms of CPU-time is the
fitness evaluation, and it is easy to see that a GP-based planner scales up gracefully to
any number of parallel processors: the fitness evaluations of different plans represent
completely independent processes that can by easily performed on different
processors. Second, the SINERGY approach to AI planning facilitates problem
solving in dynamic environments. As each plan simulation has to be executed step by
step, we can create a framework that would allow the dynamic update of the planning
environment after the execution of each operation in the plan (e.g., for the robot
navigation problem, we can define mobile obstacles that move on predefined
trajectories). Third, SINERGY provides a flexible way to express goal priorities by
requiring the definition of a fitness evaluation function for each goal-predicate (see
the next section). Domain implementers can use weight-factors to express the relative
importance of each goal type, and, consequently, plans that solve a larger number of
higher-importance goals will have a better fitness value and will be preferred during
the selection and recombination process.

GP-based problem solvers rarely find optimal solutions for the problems at hand,
but the above mentioned advantages together with SINERGY’s ability to find close-
to-optimal solutions for large, complex problem instances makes the GP-based
approach to AI planning an alternative to be taken into account and a serious
candidate for further research investigations.

Domain Description

Problem Instance

SINERGY

GP-based
problem
solver

GP solution
interpreter

Plan

“Planning
problem"

to
"GP

problem"

4 Specifying a Planning Domain for SINERGY

In this section we analyze the domain representation features offered by SINERGY.
In order to make this process as intuitive as possible, we will present an example of a
domain description for the briefcase problem (BP). In a few words, we can define BP
as follows: given a number of briefcases (B={B1, B2, ... , Bn}), objects (O={O1, O2,

...., Om}), and locations (L={L 1, L2, ..., Lk}), we want to deliver each objectOi to its

respective destinationLi
j. In order to solve the problem, the planning system can use

one of the following operators:

a) (move-briefcase a-briefcase a-location): movesa-briefcase, together with
all the objects in it, from the current location toa-location.

b) (put-inan-object a-briefcase): if an-object anda-briefcase are at the
same location, putsan-object in a-briefcase.

c) (take-outan-object): if SINERGY finds thatan-object is in a briefcase,
sayB, it takesan-object out ofB.

In SINERGY, any specification of the planning domain has four main descriptive
sections: concepts, predicates, planning operators, and auxiliary functions. Figure 2
shows the whole domain specification for the briefcase problem.Concept definitions
are self-explanatory, and they simply introduce thetypes of entities that can be
manipulated by the planner. We will focus first onpredicate specifications, which
require several important comments, and we will continue our discussion by
analyzing theplanning operators and theauxiliary functions.

Any SINERGY predicate can be used both to describe the state of the world (e.g.,
a given object isat a given location orin a briefcase) and to specify a goal (e.g., the
object obj must be transportedat a given location or putin a briefcase). As the
planning problem is converted to a GP one, each predicate must have a
corresponding fitness evaluation function. Even though in our example the fitness
evaluation functions are extremely simple (i.e., they just count the number of
unsatisfied goals), a fitness evaluation function might be arbitrarily complex: it can
use heuristics like the Manhattan distance (e.g., for the robot navigation problem), or
it might include weight-factors that would allow the user to define a hierarchy of the
goals based on their relative importance (i.e., the more important a type of a goal, the
larger its weight-factor will be).

As we have already seen, SINERGY does not reason about plans, but instead uses
artificial selection and recombination to create plans that are likely to have a better
fitness measure than the ones in the previous generation. In order to evaluate the
fitness of a given planP, which is a linear sequence of fully instantiated planning
operatorsp1, p2, ..., pl, SINERGY sets the world status to the given initial stateS0,
and it successively simulates the execution of each operatorpi in the plan. At the end
of the plan execution, the planner computes the fitness ofP based on the formula

FitnessEvaluationFunctionPredicatei
CurrentState Goals,()

i 1=

n

∑

;; Concept definitions.
(defvar *concepts* '(object briefcase location))

;;Predicate definitions: pairs <predicate fitness-eval-fct>.
(defvar *predicates* '((in in-fitness) (at at-fitness)))

(defun in-fitness(relevant-goals)
 (number-of-unsatisfied-goals relevant-goals))

(defun at-fitness(relevant-goals)
 (number-of-unsatisfied-goals relevant-goals))

;; Operator definitions (names and number of arguments).
(defvar *planning-operators*

 '((move-briefcase 2) (take-out 1) (put-in 2)))

(defun put-in(arg-1 arg-2)
 (let ((an-object (convert-to arg-1 'object))
 (a-briefcase (convert-to arg-2 'briefcase)))
 (when ;; PRECONDITIONS
 (equal (get-location an-object) (get-location a-briefcase))
 ;; EFFECTS
 (add-fact `(in ,an-object ,a-briefcase))))
 arg-1)

(defun take-out(arg-1)
 (let ((an-object (convert-to arg-1 'object)))
 (when ;; PRECONDITIONS
 (is-fact ‘(in ,an-object ,(get-briefcase an-object)))
 ;; EFFECTS
 (delete-fact `(in ,an-object ,(get-briefcase an-object)))))
 arg-1)

(defun move-briefcase (arg-1 arg-2)
 (let((a-briefcase (convert-to arg-1'briefcase))
 (a-location (convert-to arg-2 'location)))
 (when ;; PRECONDITIONS
 (not (is-fact `(at ,a-briefcase ,a-location)))
 ;; EFFECTS
 (for-all ’object #'do-move (list a-briefcase a-location))

 (delete-fact `(at ,a-briefcase ,(get-location a-briefcase)))
 (add-fact `(at ,a-briefcase ,a-location))))
 arg-1)

;; Auxiliary functions.
(defun do-move (obj br to)
 (when (is-fact `(in ,obj ,br))
 (delete-fact `(at ,obj ,(get-location obj)))
 (add-fact `(at ,obj ,to))))

(defun get-location (object)
 (find-attribute-value '?location `(at ,object ?location)))

(defun get-briefcase (object)
 (find-attribute-value '?briefcase `(in ,object ?briefcase)))

Fig. 2. The Domain Description for the Briefcase Problem.

Planning operators are defined as a collection of Lisp functions that are used as
terminals and functions by the GP problem solver. In order to keep track of the world
status during a plan execution, SINERGY provides the predefined functionsadd-fact

anddelete-fact that must be used by the planning operators whenever they change the
world status. As a direct consequence of the procedural definition of the planning
operators, the use of disjunctive preconditions and conditional effects is a trivial task
in SINERGY. Furthermore, our planning system offers additional features that make
its domain description language extremely powerful and expressive. First, SINERGY
allows users to defineauxiliary functions that can be invoked within the operators.
For instance, in our BP example,get-location andget-briefcase are used to determine
the current location, respectively the briefcase that contains a given object. Second,
SINERGY provides both universal and existential quantifiers that have the following
syntax:

for-all concept-name auxiliary-function-name additional-arguments

exists concept-name auxiliary-function-name additional-arguments

In the definition of themove-briefcase operator we used the universal quantifier to
apply an action to all instances of theobject concept, but both types of quantifiers can
also be used in the goal specification of any problem instance.

SINERGY also provides a domain-independent solution to a major problem
related to the different nature of AI planning and GP: planning operators are
“strongly typed” (i.e., each argument of an operator must be of a well-defined, pre-
established type), while the GP functions introduced in [Koza 1992] are “typeless”
because they always rely on theclosure property, which ensures that any value
returned by a function or terminal represents a valid actual parameter for any
function in the function set. In order to solve this problem, we used the following
approach: in addition to the user-defined terminals (i.e., planning operators that take
no arguments), the GP problem solver uses a supplementary set of terminalsTs = { t1,

t2, ...tn }. For a given problem instance, SINERGY automatically generatesTs in such
a way that the value returned by a terminalti can be converted to a unique object

name ofany type defined within the planning universe. Consequently, each planning
operator must convert its parameters to objects of the desired type by invoking the
SINERGY-providedconvert-to function.

Finally, for a given planning domain, the user has to specify the instance of the
problem to be solved (Figure 3). The variable*concept-instances* defines the
domain objects of each type (e.g., briefcases, locations, or objects-to-be-moved),
while *init-state* and*goal-state* are used by SINERGY to generate a fitness case
for the GP problem solver. Based on the information in*concept-instances*,
SINERGY also creates the internal data structures that allow theconvert-to function
to uniformly map GP entities to valid domain objects.

5 An Example of Plan Evolution Based on Genetic Recombination

In order to better understand how SINERGY creates new plans from the existing
ones, we will analyze an example of plan construction that is based on the GP cross-
over operation. Let us suppose that SINERGY tries to solve the BP instance that is
presented in Figure 3. Based on the BP domain description, our planner generates an
empty set of GP terminals and three GP functions:take-out, put-in, and move-

briefcase (take-out has one argument, whileput-in and move-briefcase require two
arguments).

(defvar *concept-instances*

 '((object (o1 o2)) (briefcase (b1)) (location (l1 l2 l3))))

(defvar *init-state* '((at o1 l1)(at o2 l3) (at b1 l1)))

(defvar *goal-state* '((at o1 l2))))

Fig. 3. The Definition of a Simple BP Instance.

After analyzing the domain description, SINERGY examines the problem instance
and generates the additional set of terminalsTs that was briefly discussed in the
previous section. As it is beyond the scope of this paper to explain the algorithms
based on whichTs and the corresponding data structures are generated (for details see
[Muslea 1997]), let us accept without further proof that for the given BP instance
SINERGY creates a set of six additional terminalsTs = {t1, t2, t3, t4, t5, t6}, and the
function convert-to provides the mappings described in Table 2. The information
from Table 2 must be interpreted as follows: the function call(convert-to (t2)

’location) returns the location namel2, while the function call(convert-to (t6)

’object) returns the object name o2. Note that for concepts that have a unique instance
(e.g., briefcase) all terminals are mapped to the unique object name, while for
concepts with several instances, each object name corresponds to thesame number of
distinct terminals fromTs.

Now let us suppose that in Generation 1 the GP system creates the two random
programsP1 andP2 presented in Table 3. BothP1 andP2 are expressed as function
compositions over the sets of GP terminals and functions. During the plan-simulation
phase, the GP problem solver executes the programsP1 andP2 by starting with the
inner-most functions (i.e., the terminalst1 and t2) and ending with the outmost ones
(e.g.,take-out, respectivelymove-briefcase). If we use theconvert-to function to map
each occurrence of the terminalst1 and t2 to object names of the types specified in
each planning operator, the programsP1 andP2 can be interpreted as the equivalent
linear plans<(put-in o1 b1), (take-out o1)> , respectively<(take-out o2), (move-

briefcase b1 l2)> . As none of these two plans satisfies the goal(at o1 l2), the GP
problem solver will create a new generation of programs.

Table 2. CONVERT-TO mapping of terminals to domain objects.

CONVERT-TO location object briefcase

t1 l1 o1 b1

t2 l2 o2 b1

t3 l3 o1 b1

t4 l1 o2 b1

t5 l2 o1 b1

t6 l3 o2 b1

In Table 3, we assumed that in order to create the second generation, the GP
system applies the cross-over operator to the plansP1 andP2. As the recombination
process arbitrarily breaks each parent in two components, let us suppose that in the
current example the GP system chooses to interchange the high-lighted portions of
P1 andP2, which leads to the creation of the new plansC1 andC2. Even though the
child-plan C1 is useless and contains redundant operators, the planC2 represents a
solution to our BP instance because after its simulated execution the goal(at o2 l2) is
satisfied. As a final note, we must emphasize that most of the GP-generated plans are
similar toC1 in the sense that they include redundant operators, and, in many cases,
the preconditions of the fully-instantiated operators are not satisfied (e.g., during the
simulation ofC1, none of the operators can be actually executed because the object
o1 is not in the briefcaseb1). However, after multiple recombinations, plan fragments

might fit together in such a way that a newly created plan solves the problem at hand.

6 Experimental Results

In order to have an accurate image of SINERGY’s capabilities, we ran our planner on
three different domains: the single robot navigation problem (RNP), the 2-robot
navigation problem (2RNP), and the briefcase problem (BP). In this paper, we define
RNP as follows: given a rectangularm-by-n table T withk blocks located in its grid-
cells, a robot R must navigate from its current position CP to the desired position DP.
In order to reach DP, the robot can use any of the eight available operations:move
(north/south/east/west) to an unoccupied neighboring cell, orpush (north/south/east/
west) a block located in a neighboring cell X to an empty cell Y that is right behind
X. 2RNP is similar to RNP, but it requires that both robots reach their respective
destination. RNP is an extremely hard problem because of the high level of
interaction among the operators’ effects (i.e., if the robot pushes a block to an
inappropriate location, it may bring the universe into a status from where the problem
is not solvable anymore), and 2RNP is even harder because the two robots might
have conflicting goals.

Table 3. ProgramsP1 andP2 are recombined intoC1 andC2.

GP-generated
Programs

GP Functions Executed
During Plan Simulation Equivalent Linear AI Plans

P1 (take-out
(put-in (t1) (t2)))

1: (put-in (t1) (t2))
2: (take-out (t1))

1: (put-in o1 b1)
2: (take-out o1)

P2 (move-briefcase
(take-out (t2))

 (t2))

1: (take-out (t2))
2: (move-briefcase (t2) (t2))

1: (take-out o2)
2: (move-briefcase b1 l2)

C1 (take-out
(take-out (t2)))

1: (take-out (t2))
2: (take-out (t2))

1: (take-out o2)
2: (take-out o2)

C2 (move-briefcase
(put-in (t1) (t2))

 (t2))

1: (put-in (t1) (t2))
2: (move-briefcase (t1) (t2))

1: (put-in o1 b1)
2: (move-briefcase b1 l2)

For all our experiments, we ran SINERGY on a maximum of 1000 generations of
200 individuals each. The population size is extremely small in terms of GP problem
solvers, but due to our hardware limitations (we ran the experiments on a single-
processor, non-dedicated SUN-4 machine) we could not afford to consistently use a
larger population. However, we made a few experiments on 50 generations of 2000
individuals, and the solution was found in significantly fewer generations because the
larger initial population increases the chances of finding well-fit plans from the very
first generation. For each of the three domains mentioned above, we ran SINERGY
on more than 100 problem instances, and our results for the most difficult instances
are presented in Tables 4, 5 and 6.

In Table 4, we show the results of running SINERGY on several difficult
instances of RNP that UCPOP was not able to solve. Based on the experimental
results, we can make several important observations. First, SINERGY is capable of
solving hard problem instances that are two orders of magnitude larger than the ones
solved by UCPOP (note: for both RNP and 2RNP we used a fitness evaluation
function based of the Manhattan distance between the position reached by the robot
and the desired position). For instance, in RNP-8 we have a 100-by-100 table with 18
blocks that completely obstruct the way from the initial position (0,0) to the
destination (99,99), and the robot must perform two complicated sequences of PUSH
operations (one to get away from its initial location, and another one to make its way
toward the final destination). Second, SINERGY is capable of creating better plans
(i.e., closer to the optimal solution) once it finds a first solution. For example,
SINERGY found a first solution for RNP-6 at generation 354 (it had 293 operations,
while the optimal plan required only 206 actions), but by the time it reached
generation 867, our planner kept improving the plan and was able to deliver a
solution with only 216 operations. Finally, SINERGY is especially well fit to solve
hard problem instances. While on easy instances, like small tables with no blocks,
UCPOP is faster than SINERGY, the GP-based approach is more appropriate for
problem instances that have a higher level of difficulty.

Table 4. Results for the Single Robot Navigation Problem

Instance Description Generation of
First Solution

RNP-1 4x4 table, 6 obstacles 1
RNP-2 another 4x4 table, 6 obstacles 1
RNP-3 8x8 table, 18 obstacles (requires at least 6 PUSH-es) 10
RNP-4 50x50 table, no obstacles 150
RNP-5 100x100 table, no obstacles 317
RNP-6 100x100 table, same obstacles positions as in RNP-1 354
RNP-7 100x100 table, same obstacles positions as in RNP-2 333
RNP-8 100x100 table, same obstacles positions as in RNP-3 353

The experiments presented in Table 5 are of a different nature: for 2RNP, we
tested SINERGY’s performance on domain specifications that are totally unfit for the
GP approach. That is, rather than extending the domain representation for RNP such
that both themove andpush operators take an additional parameter that denotes the
robot-to-perform-the-action, we decided to use the same set of operators, and to
interpret a generated plan as follows: by default, all the even operators are performed
by robot1, while the odd ones are executed byrobot2. It is easy to see that such a
representation is not fit for GP-based problem solvers: if the recombination of two
parent-plansP1 = <a1, a2, ..., an> andP2 = <b1,b2, ...,bm > generates the children-
plansC1 = <a1,a2, ...,a2k+1,b2l+1,b2l+2, ...,bm> andC2 = <b1,b2, ...,b2l, a2k+2,a2k+3,

...,an> , the operatorsb2l+1, b2l+2, ..., bm from C1 anda2k+2, a2k+3, ...,an from C2 will
be executed by different robots than the ones that executed them within the original
plans P1 and P2. However, despite the inappropriate encoding of the plans,
SINERGY is capable of finding a solution for all medium-size test-instances.

Finally, our last set of tests was performed for the briefcase problem (Table 6). We
used the domain specification presented in Figure 2, and the experimental results are
similar to the ones obtained for the RNP domain: on easy instances (e.g., all objects
must be transported to the same place and are initially stored at the same location)
UCPOP solves the problem faster than SINERGY, but on complex problem instances
(e.g., large number of objects, each of them being initially located at a different
location) SINERGY is still capable of solving the problem, while UCPOP is unable
to cope with the increased level of difficulty. By analyzing the results of SINERGY
in the three domains that we considered, we can conclude that our planner

Table 5. Results for the 2-Robot Navigation Problem

Instance Description Generation of First Solution

2RNP-1 8x8 table, no obstacles 9
2RNP-2 8x8 table, 2 obstacles 14
2RNP-3 8x8 table, 5 obstacles 24
2RNP-4 8x8 table, 10 obstacles 49
2RNP-5 100x100 table, 18 obstacles -

Table 6. Results for the Briefcase Problem

Instance Description Generation of First Solution

BP-1 4 objects, 5 locations, 1 briefcase 59
BP-2 5 objects, 5 locations, 1 briefcase 42
BP-3 5 objects, 5 locations, 5 briefcases 42
BP-4 10 objects, 10 locations, 1 briefcase 66
BP-5 10 objects, 10 locations, 2 briefcases 68
BP-6 10 objects, 10 locations, 5 briefcases 136
BP-7 10 objects, 10 locations, 10 briefcases -

significantly outperforms UCPOP for all difficult test-instances, but it is slower than
UCPOP on most of the easy ones.

7 Future Work

We plan to extend SINERGY by adding two major features. First, we would like to
facilitate the search reduction by introducing hierarchical planning operators. The
new version of SINERGY would allow users to create several levels of abstraction,
each of them being described by a distinct set of operators and predicates. For
instance, if we consider a combination of the briefcase problem and the robot
navigation problem (BRNP), at the higher level of abstraction each robot could
perform the three BP operations (put-in, take-out,and move-to), and SINERGY
would not be concerned with any navigation details. Once the planner finds a
solution at the higher level of abstraction, it translates each fully-instantiated(move-
to roboti locationj) operator into a goal(at roboti xj yj) that must be solved at a lower
level of abstraction. In order to satisfy the newly generated goals, SINERGY must
solve the navigation problem based on a different set of operators (e.g.move, rotate,
or push). The use of hierarchical planning operators might be extremely beneficial
for domains likeBRNP, in which achieving the goal(at object 100 13) involves a
long sequence ofmove andpush operators, followed by a singletake-out action.

 Second, we would like to allow users to define planning problems that involve
dynamic environments. For instance, in the robot motion problem, we could define
two distinct types of obstacles: fixed blocks and mobile blocks. Fixed blocks could
change their positions only if they are pushed by a robot, while mobile blocks would
be continuously changing their positions based on predefined trajectories. As
candidate plans are executed in simulation, after performing each planning operation
SINERGY could update the position of the mobile blocks based on the predefined
trajectory functions. We believe that the ability of SINERGY to plan in dynamic
environments would represents a major advantage of our approach because most real-
world problems must be solved in dynamic environments, and traditional planners
are generally unable to cope with such environments.

8 Conclusions

The major contribution of this paper consists of providing a domain-independent
mapping of any AI planning problem into an equivalent GP problem. In final
analysis, we can conclude that SINERGY is a general-purpose AI planning system
that is capable of solving large, complex problem instances. By supporting
disjunctive preconditions, conditional effects, and both existential and universal
quantifiers, SINERGY provides users with a domain description language that has an
expressive power equivalent to the one offered by UCPOP. Our initial results show
that SINERGY outperforms UCPOP on all the difficult examples it was tested on.
Furthermore, the highly parallelizable nature of GP makes us believe that running
SINERGY on a relatively low-power, parallel machine would allow our planner to
easily solve problem instances at least two orders of magnitude larger than the ones
presented in this paper.

Even though SINERGY is an incomplete planner that does not generally find the
optimal solution for a given problem, its practical ability to solve complex problems
and to improve the quality of its initial solution makes it a valuable tool for dealing
with hard problems. We plan to enhance SINERGY by adding hierarchical operators
and a formalism for handling dynamic universes, and we expect the new version to
provide both a faster planning process and significantly more expressive power.

9 References

Ambite, J.L., Knoblock, C.: Planning by Rewriting: Efficiently Generating High-
Quality Plans. InProceedings of AAAI-97706-713, 1997.

Bylander, T.: Complexity Results for Extended Planning. InArtificial Intelligence
Planning Systems: Proceedings of First International Conference20-27, 1992.

Chapman, D.: Planning for Conjunctive Goals.Artif Intelligence 32 (1987) 333-377.

Etzioni, O.: Acquiring search-control knowledge via static analysis.Artificial
Intelligence62 (1993) 255-302.

Fikes, R., Nilsson, N.: STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving. InArtificial Intelligence2 (1971) 189-208.

Friedland P., Imasaki, Y.: The Concept and Implementation of Skeletal Plans.
Journal of Automated Reasoning1 (1985), 161-208.

Handley, S.: The Automatic Generation of Plans for a Mobile Robot via Genetic
Programming with Automatically Defined Functions. InAdvances in Genetic
Programming, K.E. Kinnear Jr., Editor. MIT Press, 391-407, 1994.

Holland, J.H.:Adaptation in Natural and Artificial Systems. MIT Press, 1992.

Joslin, D., Roach, J.: A Theoretical Analysis of Conjunctive-Goal Problems.
Artificial Intelligence41(1989) 97-106.

Kautz, H., Selman, B.: Pushing the Envelope: Planning, Propositional Logic, and
Stochastic Search. InProceedings of AAAI-96 1194-1201, 1996.

Knoblock, C.: Automatically Generating Abstractions for Planning. Artificial
Intelligence, 68(1994) 243-302.

Knoblock, C.: Search Reduction in Hierarchical Problem Solving. InProceedings of
the National Conference on Artificial Intelligence 686-691, 1991.

Koza, J.:Genetic Programming II. MIT Press, 1994.

Koza, J.:Genetic Programming. MIT Press, 1992.

Minton, S.: Is There Any Need for Domain-Dependent Control Information?: A
Reply. InProceedings of AAAI-96855-862, 1996.

Muslea, I.: A General-Purpose AI Planning System Based on the Genetic
Programming Paradigm.Late Breaking Papers at GP-97 157-164, 1997.

Sacerdoti, E.: The Nonlinear Nature of Plans. InAdvance Papers of the Fourth
International Conference on Artificial Intelligence (IJCAI-75) 204-214, 1975.

Spector, L.: Genetic Programming and AI Planning Systems. InProceedings of
Twelfth National Conference of Artificial Intelligence 1329-1334, 1994.

Weld, D.: An Introduction to Least-Committed Planning.AI Mag.15(1994) 27-60.

