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Abstract

One of the main tasks of digital image analysis is to recognize the properties of real objects based on their digital
images. These images are obtained by some sampling device, like a CCD camera, and are represented as finite sets of
points that are assigned some value in a gray level or color scale. A fundamental question in image understanding is
which features in the digital image correspond, under a given set of conditions, to certain properties of the underlying
objects. In many practical applications this question is answered empirically by visually inspecting the digital images. In
this paper, we present a mathematically comprehensive answer to this question with respect to topological properties. In
particular, we derive conditions relating properties of real objects to the grid size of the sampling device which guarantee
that a real object and its digital image are topologically equivalent. These conditions also imply that two digital images of
a given object are topologically equivalent. Moreover, we prove that a topologically invariant digitization must result in
well-composed or strongly connected sets and that only certain local neighborhoods are realizable for such a digitization.
Using the derived topological model of a well-composed digital image, we demonstrate the effectiveness of this model
with respect to the digitization, thresholding, correction, and compression of digital document images. ( 1999 Pattern
Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

Keywords: Digital topology; Digital geometry; Topologically invariant digitization; Document image analysis; Well-
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1. Introduction

In image processing and in spatial knowledge repres-
entation, continuous objects are represented as finite sets
(also called discrete sets), since only finite structures can
be handled on computers. Continuous objects and their
spatial relations can be characterized using geometric
features. Therefore, any useful discrete representation

should model the geometry faithfully in order to avoid
wrong conclusions. A basic part of geometry is topology.

It is clear that no discrete model can exhibit all the
features of the continuous original. Therefore, one has to
accept compromises. The compromise chosen depends
on the specific application and on the questions which
are typical for that application. Digital geometry can be
seen as an attempt to evaluate the price one has to pay
for discretization. Digital topology is the theoretical basis
for understanding topological features of objects in
digital images, which must be related to features of the
underlying continuous objects.
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Fig. 1. An object and its digital image.

In digital image processing, properties retrieved from
the digital images are assumed to represent properties of
the underlying real objects. Practical applications show
that this is not always the case. Therefore, we want to
know under what conditions do certain digital properties
represent actual properties of the real object? In this
paper, the authors introduce conditions that guarantee
that a real object and its digital image are topologically
equivalent. These results further extend the work of the
authors as described in Refs. [1—5]. Due to space con-
straints, the basic results are presented in this paper while
the detailed proofs are omitted here, but can be found in
Refs. [1,5]. This paper also considers how these results in
digital topology are directly useful in the area of docu-
ment image processing and analysis.

In order to study the topological equivalence of a real
continuous object and its digitization, which is a finite set
of points, some preliminaries are in order. It is intuitively
clear that the real object in Fig. 1a and the digital object
in Fig. 1b have the ‘‘same topological structure’’. Based
on the technical properties of sampling devices like
a CCD camera, digital points representing sensor output
are generally assumed to form a square grid and are
modeled as points with integer coordinates located in the
plane R2. By a digitization process, these points are
assigned some gray level or color values. By a segmenta-
tion process, the digital points are grouped to form
digital objects. For example, the digital points are
grouped by thresholding gray-level values with some
threshold value, i.e., the pixels whose gray-level values
are greater than some given threshold value are classified
as belonging to a digital object (i.e. assigned the color
black). As an output of a digitization and segmentation
process, we obtain a binary digital picture, with black
points representing the digital object and white points
representing the background.

We will identify each black point with a square
centered at this point (in such a way that the squares
form a uniform cover of the plane). A digital object is
then represented as a union of squares which form a sub-
set of the plane. For example, the digital set in Fig. 1b,
a finite subset of Z2, is identified with the union of black

squares in Fig. 1c, a subset of R2. Real objects or their
projections are modeled in computer vision as subsets of
the plane. Therefore, it makes sense to speak about
topological equivalence between a real object (Fig. 1a
and its digital image (Fig. 1c). Thus, the digitization (and
segmentation) process is modeled as a mapping from
continuous 2D sets representing real objects to discrete
sets represented as finite subsets of Z2, which are identi-
fied with finite unions of squares in R2. Consequently, we
can relate topological properties of a continuous 2D
object (e.g., a projection of a 3D object) to its digital
images interpreted as the union of squares centered at
black points.

Serra [6] considered many kinds of digitizations. He
showed that, for a certain class of planar sets, digitiz-
ations preserve homotopy. However, he proved this only
for subset digitizations in hexagonal grids, where a subset
digitization of a set A in R2 is the set of points in Z2 which
are contained in A.

In this paper we derive conditions relating properties
of continuous objects to the diameter of a square in the
grid. If these conditions are satisfied, then the digital
object obtained by this digitization (and segmentation)
process is guaranteed to be topologically equivalent to
the underlying continuous object.

2. Parallel regular sets

In this section we define a class of subsets of the plane
representing ‘‘real objects’’, which we will call parallel
regular sets. Let A be a planar set. We denote by A# the
complement of A, by bd A the topological boundary of A,
by intA the topological interior of A and by cl A the
topological closure of A in the usual topology of the
plane determined by the Euclidean metric. The connec-
ted components of the boundary bd A are called contours.
We denote by d(x, y) the Euclidean distance of points x, y
and by B (c, r) a closed ball of radius r centered at a
point c.

The following definition of parallel regular sets is
based on the classical concepts in differential geometry of
osculating balls and normal vectors, which we define
below without using derivatives and limit points.

Definition. We will say that a closed ball B (c, r) is tangent
to bd A at point x3bdA if bdAW bd(B (c, r))"MxN.

We will say that a closed ball iob(x, r) of radius r is an
inside osculating ball of radius r to bdA at point x3bdA if
bdAWbd(iob(x, r))"MxN and iob (x, r)-intAXMxN (see
Fig. 2).

We will say that a closed ball oob (x, r) of radius r is an
outside osculating ball of radius r to bdA at point x3bdA
if bdAWbd(oob (x, r))"MxN and oob(x, r)- AcXMxN (see
Fig. 2).
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Fig. 2. The inside and outside osculating balls of radius r to the
boundary of the set A at point x.

Fig. 3. The set A is par(r)-regular while the set B is not par(r)-
regular, where r is the radius of the depicted circles.

Fig. 4. X is not par(r)-regular, but ½ is par(r)-regular.

Note that x is a boundary point, not the center, of both
iob(x, r) and oob(x, r). For example, for every boundary
point of a given ball B (c, s) of radius s, there exist inside
osculating balls of radii r, where 0(r(s. However,
B(c, s) itself is not an inside osculating ball for any of its
boundary points. Now we define parallel regular subsets
of the plane:

Definition. We assume that A is a closed subset of the
plane such that its boundary bdA is compact.

f A set A will be called par(r,#)-regular if there exists an
outside osculating ball oob(x, r) of radius r at every
point x3bdA.

f A set A will be called par(r,!)-regular if there exists an
inside osculating ball iob(x, r) of radius r at every point
x3bdA.

f A set A will be called par(r)-regular (or r parallel
regular) if it is par(r,#)-regular and par(r,!)-regular.
A set A will be called parallel regular if there exists
a constant r such that A is par(r)-regular. We will
sometimes call parallel regular sets (spatial) objects.

In Fig. 3 the set A is par(r)-regular while the set B is not
par(r)-regular, where r is the radius of the depicted circles.
Note that a parallel regular set, as well as its boundary,
does not have to be connected.

In the remaining part of this section, we state some
basic properties of parallel regular sets.

We have the following theorem:

Theorem 1. A set A is par(r)-regular iff, for every two
distinct points x, y3bdA, the outer normal vectors n (x, r)
and n (y, r) exist and they do not intersect, and the inner
normal vectors !n (x, r) and !n(y, r) exist and they do
not intersect.

For example, in Fig. 4, set X is not par(r)-regular while
set ½ is par(r)-regular, where r is the length of the depic-
ted vectors.

Definition. B (x, r) denotes the closed ball of radius
r centered at a point x. The parallel set of set A-IR2

with distance r is given by

Par(A, r)"AXZMB(x, r) :x3bdAN.

This set is also called a dilation of A with radius r. We
define

Par(A, !r)"cl (ACZMB(x, r) : x3bdAN)

For illustration, see Fig. 5. The boundaries of Par(A, r)
and Par(A, !r) sets are often called offset curves.
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Fig. 5. The set A and its parallel sets Par(A, r) and Par (A, !r).

1Observe that this digitization differs from subset digitization
used by Serra and Pavlidis, where a square p is black iff its center
point is contained in X (see Section 1).

It can be shown that A"Par (Par(A, r), !r)"
Par(Par (A, !r), r) for a par(r)-regular set A. Thus,
a par(r)-regular set A is invariant with respect to mor-
phological operations of opening and closing with
a closed ball of radius r as a structuring element (see
Ref. [6] for definitions). The following proposition moti-
vates the name of parallel regular sets.

Proposition 1. ¸et A be a par(r)-regular set. ¹hen (see
Fig. 5)

Par(A, r)"AXZMn(a, r) : a3bdAN and

Par(A, !r)"cl (ACZM!n (a, r) : a3bdAN).

Proposition 2. ¸et A be a par(r)-regular set. If x and
y belong to two different components of bdA, then
d(x, y)'2r.

We can use parallel sets to define the Hausdorff
distance of planar sets:

Definition. Hausdorff distance d
H

of two planar sets
A and B is given by

d
H
(A, B)"infMr*0: A-Par(B, r) and B-Par(A, r)N.

3. Digitization and segmentation-preserving topology

Let Q be a cover of the plane with closed squares of
diameter r such that if two squares intersect, then their
intersetion is either their common side or a corner point.
A digital image can be described as a set of points that are
located at the centers of the squares of a grid Q and that
are assigned some value in a gray level or color scale. By
a digitization process we understand a function mapping
a planar set X to a digital image. By a segmentation
process we understand a process grouping digital points
to a set representing a digital object. Therefore, the out-

put of a segmentation process can be interpreted as
a binary digital image, where each point is either black or
white. We assume that digital objects are represented as
sets of black points. Thus, the input of a digitization and
segmentation process is a planar set X and the output is
a binary digital image, which will be called a digitization
of X with diameter r and denoted Dig(X, r).

In the remainder of this paper, we will interpret a black
point p3Dig(X, r) as a closed (black) square of cover
Q centered at p and the digitization Dig(X, r) as the union
of closed squares centered at black points, i.e., Dig(X, r)
will denote a closed subset of the plane.

We will treat digitization and segmentation processes
satisfying the following conditions relating a planar
par(r)-regular set X to its digital image Dig(X, r):

ds1 If a square q3Q is contained in X, then q3Dig(X, r)
(i.e., q is black).

ds2 If a square q3Q is disjoint from X, then qNDig(X, r)
(i.e., q is white).

ds3 If a square q is black and area (XWq)4 area(XWp)
for some square p3Q, then square p is black.

These conditions describe a standard model of the
digitization and segmentation process for CCD cameras
if we exclude digitization errors. In the following, we
define some important digitization and segmentation
processes satisfying the conditions ds1, ds2, and ds3
above.

Definition. Let X be any set in the plane. A square p3Q

is black (belongs to a digital object) iff pWXO0, and
white otherwise. We will call such a digital image an
intersection digitization with diameter r of set X, and
denote it with Dig

V
(X, r), namely Dig

V
(X, r)"ZMp3Q:

pWX"0N. See Fig. 6a, for example, where the union of
all depicted squares represents the intersection digitiz-
ation of an ellipse. With respect to real camera digitiz-
ation and segmentation, the intersection digitization cor-
responds to the procedure of coloring a pixel black iff
there is part of the object A in the field ‘‘seen’’ by the
corresponding sensor.

Now we consider digitizations corresponding to the
procedure of coloring a pixel black iff the object X fills
the whole field ‘‘seen’’ by the corresponding sensor. For
such digitizations, a square p is black iff p-X and
white otherwise. We will refer to such a digital image
of a set X as a square subset digitization1 and denote it
by Dig

ª
(X, r) , where Dig

ª
(X, r)"ZMp3Q: p-XN. In

Fig. 6b, the two squares represent Dig
ª
(X, r) , where X is

an ellipse.
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Fig. 6. (a) The union of all squares represents an intersection digitization of the ellipse. b) The two squares represent a square subset
digitization of the ellipse. c) The eight squares represent a digitization of an ellipse with the area ratio equal to 1/5.

Fig. 7. Par(A, !r) is a strong deformation retract of Dig (A, r) .

Next, let us consider a digitization and segmentation
process in which a pixel is colored black iff the ratio of
the area of the continuous object in a sensor square to the
area of the square is greater than some constant thre-
shold value v. An example is given in Fig. 6c, where the
squares represent a digitization of the ellipse with the
ratio equal to 1/5. This process models a segmentation by
applying a threshold value to a gray-level digital image
for all real devices in which the sensor values can be
assumed to be monotonic with respect to the area of the
object in the sensor square.

In the following, we briefly review the concept of
homotopy equivalence.

Definition. Let X and ½ be two topological spaces. Two
functions f, g: XP½ are said to be homotopic if there
exists a continuous function H : X][0, 1]P½, where
[0, 1] is the unit interval, with H(x, 0)"f (x) and
H(x, 1)"g (x) for all x3X. The function H is called
a homotopy from f to g. Sets X and ½ are called homotopy
equivalent or of the same homotopy type if there exist two
functions f : XP½ and g : ½PX such that g C f is
homotopic with the identity over X (id

X
) and f C g is

homotopic with the identity over ½ (id
Y
).

Definition. We say that two topological spaces X and
½ are topologically equivalent or homeomorphic if there
exists a bijection f : XP½ such that f and the inverse
function f~1 are continuous.

If two topological spaces X and ½ are homeomorphic,
then they are homotopy equivalent. We will use topologi-
cal equivalence as a definition for topology preserving.

Definition. We will say that a digitization Dig(X, r) of
some set X is topology preserving if X and Dig(X, r) are
homeomorphic.

We now consider a special case of homotopy equiva-
lence called a strong deformation retraction. Intuitively,
saying that there is a strong deformation retraction from
a set X to a set ½-X means that we can continuously
shrink X to ½.

Definition. Let X and ½-X be two topological spaces.
A continuous function H:X][0, 1]PX, where [0, 1] is
the unit interval, is called a strong deformation retraction

of X to ½ if H(x, 1)"x and H(x, 0)3½ for every x3X,
and H(x, t)"x for every x3½ and t3[0, 1]. ½ is called
a strong deformation retract of X.

Note that if ½ is a strong deformation retract of X,
then ½ is homotopy equivalent to X. To see this, take f :
XP½ to be f (x)"H(x, 0) and g: ½PX to be inclusion.

Theorem 2. ¸et A be a par(r)-regular set. ¹hen Par(A,
!r) is a strong deformation retract of A.

Theorem 3. ¸et A be a par(r)-regular set. ¹hen Par(A,
!r) is a strong deformation retract of Dig(A, r) for every
digital image Dig (A, r) (which satisfies conditions ds1, ds2,
and ds3), and d

H
(A, Dig (A, r)))r, where d

H
is Hausdorff

distance (see Fig. 7 for an illustration).

Now we are ready to present our main theorems.

Theorem 4. ¸et A be a par(r)-regular set. ¹hen A and
Dig(A, r) are homotopy equivalent for every digitization
Dig(A, r), and d

H
(A, Dig(A, r)))r, where d

H
is Hausdorff

distance (which satisfies conditions ds1, ds2, and ds3).

For Theorem 5, we need the following concepts:

Definition. We call a closed set A a bordered 2D manifold
if every point in A has a neighborhood homeomorphic to
a relatively open subset of a closed half-plane. A connec-
ted component of a 2D bordered manifold is called
a bordered surface.
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Fig. 8. This pattern and its 90o rotation cannot occur in every
Dig(A, r).

Fig. 9. The only possible 2]2 configurations of boundary
squares in Dig (A, r) of a par(r)-regular set A (modulo reflection
and 90o rotation).

We suspect strongly that every par(r)-regular set is
a bordered 2D manifold. However, a proof of this asser-
tion would be beyond the scope of this paper. Therefore,
in Theorem 5, we explicitly assume that a set A is a bor-
dered 2D manifold.

Theorem 5. ¸et A be a par(r)-regular bordered 2D mani-
fold. ¹hen A and Dig (A, r) are homeomorphic for every
digital image Dig (A, r) (which satisfies conditions ds1, ds2,
and ds3).

An important consequence of Theorem 5 is the fact
that under correct digitization resolution any two digital
images of a given spatial object A are topologically
equivalent. This means, for example, that shifting or
rotating an object or the camera cannot lead to topologi-
cally different images, i.e., topological properties of ob-
tained digital images are invariant under shifting and
rotation.

Theorem 6. ¸et A be a par(r)-regular bordered manifold.
¹hen any two digitizations Dig1(A, r) and Dig2(A, r) of
A are homeomorphic.

Theorem 7. ¸et A be a C2 subset of the plane (i.e., A is the
closure of an open set whose boundary can be described as
a disjoint finite union of twice continuously differentiable
simple closed curves). ¹hen there always exists a digitiz-
ation resolution r'0 such that every digitization Dig(A, r)
of A is topology preserving.

It can also be shown that if a set A is par(r)-regular,
then Dig

V
(A, r) will never significantly change its local

geometric properties (see Ref. [1]).

4. Digital patterns in digitizations

In this section, we show that if A is a par(r)-regular set,
then some digital patterns cannot occur in its digitization
Dig(A, r). This is very useful for noise detection, since if
these patterns occur, they must be due to noise. So, if in
a practical application the resolution r of the digitization
is such that the parts of the object which have to be
preserved under the digitization are compatible with the
square sampling grid, then our results allow for efficient
noise detection. In this section, we establish two useful
theorems about the digitization of parallel regular sets.

Theorem 8. ¸et A be par(r)-regular. ¹hen the pattern
shown in Fig. 8 and its 90° rotation cannot occur in any
Dig(A, r).

By Theorem 8, a local 2]2 checkerboard pattern as
shown in Fig. 8 cannot occur in any Dig(A, r). In Ref. [7]
a set is said to be well-composed iff every 8-connected

component is also a 4-connected component. It is further
shown in Ref. [7] that this is equivalent to the set admit-
ting no local checkerboard patterns, as those shown in
Fig. 8. Thus, we have shown that a topologically invari-
ant digitization of a parallel regular set is well-composed.

Hereafter, we will alternatively refer to a set that is
well-composed as a strongly connected set and a set that
is not well-composed as a weakly connected set. Our
definition of strong connectivity is equivalent to the def-
inition given in Ref. [8]. A local 2]2 checkerboard
pattern will alternatively be referred to hereafter as an
nwc (non-well-composed) neighborhood. Well-composed
sets have very nice digital topological properties; in par-
ticular, a digital version of the Jordan Curve Theorem
holds and the Euler characteristic is locally computable.
These results imply that many algorithms in digital im-
age processing can be simpler and faster (See Ref. [7]).

Since the configuration shown in Fig. 8 (and its 90°
rotation) cannot occur in Dig(A, r) by Theorem 8, there
exist only three 2]2 configurations of boundary squares
in Dig(A, r) shown in Fig. 9 (modulo reflection and 90°
rotation). Therefore, if we view Dig (A, r) as a subset of R2,
every point in Dig (A, r) has a neighborhood homeomor-
phic to a relatively open subset of a closed half-plane.
This motivates the following theorem (See Ref. [5]):

Theorem 9. ¸et A be par(r)-regular. ¹hen Dig(A, r) is
a bordered 2D manifold.

5. Topological invariance in digital documents

5.1. ¹hresholding

In the previous section, we showed that a topologically
invariant digitization is rather well-behaved. In particu-
lar, it should have no checkerboard patterns, i.e. it is
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Fig. 11. The gray-level document image thresholded at the gray-level value of 169, which is the approximate minimum of the histogram
of image gray-level values.

Fig. 10. A gray-level document image.

well-composed and only three possible 2]2 boundary
configurations are possible (modulo reflection and rota-
tion). One of the important problems that generally
needs to be solved in analyzing document images is that
of finding a threshold to convert the document from
a gray-level digital image to a binary one. Finding a good
threshold value is important in the document domain for
many subsequent applications from OCR to symbolic
compression (see Refs. [3,9].

Often image documents have the property that they
are bimodal, and the two peaks of the gray-level histo-
gram are quite distinct, but the proper threshold value
between these peaks can be very hard to find. Consider
the gray-level image shown in Fig. 10 of part of a digital

document image. This image was captured using a scan-
ner at 400 dpi. The apparent minimum of the gray-level
histogram occurs at approximately 169. The image in
Fig. 10 is shown thresholded at gray-level value 169 in
Fig. 11. As is evident, this is not a particularly good
threshold of the gray-level document. It seems to be
considerably lower than the desired threshold value and
results in many false disconnections, where components
that were clearly connected in the original image have
become disconnected in the thresholded image. If we
desire a homeomorphic digitization, then quite clearly
a digitization, which includes finding the correct thre-
shold, is one where there are neither false connections nor
false disconnections of connected components.
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Fig. 12. The resulting binary image when the threshold is set to 232.

Fig. 13. Two different fonts with identical gray-level distribu-
tions and their respective binary images, thresholded at 215.

Next, let us consider the binary image shown in
Fig. 12, which is once again a thresholded version of the
image shown in Fig. 10. It can be seen that in this image
the problem is reversed — there is primarily a problem of
false connection, with letters connecting to other letters
in the text. One way to view thresholding a digital docu-
ment is that setting the threshold lower effectively thins
out each letter, or component, while raising the threshold
effectively thickens each textual component. Clearly,
then, there is a tradeoff between the false connection and
the false disconnection rate. Assuming the initial docu-
ment was scanned at some resolution that was not com-
pletely topology preserving, as described in the previous
sections, this false connection/disconnection tradeoff will
almost always exist.

There is no apparent reason to assume that finding the
minimum, if it can be found, in the gray-level image
histogram will yield a threshold that is topologically
optimal. For example, consider the text of the word
‘‘should’’ shown in Fig. 13a, which is a subimage of Fig.
10. Now suppose that the document was set in a different
font, where the shape of the letters was exactly the same
while the distance between letters (i.e., white space) was
considerably smaller than in the original font and the
distance between words in this new font was considerably
larger. Then we might have a digitization of the word
‘‘should’’ as shown in Fig. 13c, which was generated by
taking the bounding boxes around each gray-level letter
and moving these bounding boxes as to make them
adjacent, while moving all the columns containing only
background pixels to the outside. Since the distribution
of pixels in the image itself remained the same, the histo-
gram for the two images also did not change. From
a digital topology perspective, however, the image in
Fig. 13c is very different from the one in Fig. 13a. The

text font in Fig. 13a has wide spaces between letters, but
the width of the actual letters themselves is quite narrow,
often less than the two pixels required for topologically-
invariant digitization. As such, we need to cut a higher
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Fig. 14. A gray-level image of the word ‘‘than’’ taken from
original document.

Fig. 15. A false topological connection between two digital sets
often first appears as a weak connection between these sets,
i.e., 8-connected but not 4-connected. As the threshold increases
disjoint sets first become weakly connected then strongly
connected.

threshold, which will result in thickening the letters them-
selves while narrowing the distance between letters.

While the version of ‘‘should’’ in Fig. 13a might be
par(5,#)-regular or (6,#)-regular, the generated font in
Fig. 13c is in between par(1,#)-regular and par(2,#)-
regular. Since the first font is more dilatable than the
second, it follows that the digitization of the first font can
be thresholded at a higher gray-level value than the
second font, while still remaining homeomorphic to the
preimage. Clearly, this is not a distinction we could make
from their identical gray-level histograms.

For example, if the image in Fig. 13a were thresholded
at the gray-level value of 200, then the digitization would
be homeomorphic to the original image in R2, as shown
in Fig. 13b. On the other hand, the same threshold value
when applied to the text font of ‘‘should’’ in Fig. 13(c)
results in a false connection as shown in Fig. 13(d), so that
the digitization, after thresholding, is not topology-
preserving. This second font, with smaller distances be-
tween letters, clearly requires a lower threshold value.
Thus, in this example we have demonstrated that two
images with identical gray-level histograms may require
considerably different thresholds in order to insure the
topological invariance of the digitization process.

It would seem that a more useful indicator as to what
threshold preserves topology is to consider the weak
connectivity or number of non-well-composed neighbor-
hoods induced on the digital set by a given threshold. For
example, consider the gray-level word ‘‘than’’ shown in
Fig. 14 taken from the original document in Fig. 10. We
consider what happens to this word topologically as we
change the threshold. Thresholded versions of the image
are shown in Fig. 15 as the threshold is set respectively to
gray-level values 232, 233, 236, and 237. As one can see,
a false topological connection often occurs initially as
a weak connection between two sets. The binary ‘‘than’’,
thresholded at 232, in Fig. 15a is homeomorphic to the
original image in R2 except for the separate dot inside the
h. The binary ‘‘t’’ thresholded at 233, shown in Fig. 15b, is

weakly connected to the ‘‘h’’. When the threshold is
changed to 236, see Fig. 15c, the weak connection be-
tween the ‘‘t’’ and ‘‘h’’ becomes a strong connection, and
at the same time, ‘‘h’’ becomes weakly connected to the
‘‘a’’. If the threshold is incremented to 237, as shown in
Fig. 15d, the letters ‘‘t’’, ‘‘h’’, and ‘‘a’’ are now all strongly
connected to each other, and there is now a non-well-
composed neighborhood on the boundary of the letter
‘‘n’’ as it starts to connect with the ‘‘a’’. This example is
typical of the way in which false topological connections
occur as the threshold is increased.

A. Gross, L.J. Latecki / Pattern Recognition 32 (1999) 407—424 415



Fig. 16. A false topological disconnection between two digital
sets often appears initially as a weak connection between these
sets, i.e. 8-connected but not 4-connected. As the threshold
decreases, connected sets first become weakly disconnected and
then completely disconnected.

A similar situation frequently occurs in the reverse
direction, with respect to false topological discon-
nections. Consider the same image, this time as the thre-
shold is lowered to effect some false disconnections. First,
the image thresholded at 174, as shown in Fig. 16a, is
homeomorphic to the original. When the threshold is
lowered to 169 then the ‘‘a’’ becomes disconnected while
the ‘‘n’’ becomes only weakly connected, see Fig. 16b. If
we lower the threshold further to 164, as shown in Fig.
16c, then the top part of the ‘‘a’’ becomes weakly connec-
ted, while the ‘‘n’’ that was weakly connected becomes
completely disconnected. Finally, when the threshold is

lowered to 158 (see Fig. 16d), then top of the ‘‘a’’ becomes
disconnected and the ‘‘h’’ also becomes completely dis-
connected (without having been previously weakly con-
nected).

So we see that weak connectivity is often evident
before a set goes from being connected to disconnected or
the reverse. From our experiments, it seems that if two
sets are about to connect (alternatively disconnect) due to
a change in threshold, it is very likely that this will
involve an interim state of weak connectivity. If we revisit
the two thresholded images shown in Figs. 11 and 12,
there is a clear indication from the number of weakly
connected components in each case that neither thre-
shold is topologically ‘‘optimal’’. In Fig. 17 there are a lot
of weakly connected sets, where each locally non-well-
composed neighborhood is marked for visibility pur-
poses as a gray colored square, but these almost always
occur within letters and result from sets that should have
been connected but instead are only weakly connected.
Similarly, the non-well-composed neighborhoods in
Fig. 18 result primarily from either pairs of adjacent
disconnected letters that have become weakly connected
or from letters that are incorrectly self-connecting.

The histogram of the number of non-well-composed
neighborhoods per threshold value is bimodal for almost
all the digital documents we have tried in our experi-
ments, which have consisted of several hundred docu-
ment images scanned at different dpi’s (and consisting of
several different languages). The two maxima of the his-
togram correspond to the two gray-level values where
either the rate of topological false connections or discon-
nections has an extrema. For the document shown in Fig.
10, the two extrema occurred at gray-level values of 86
and 246. The first extrema occurred as a result of letters
that were falsely disconnecting, as can be seen in Fig. 19.
Similarly, the second extrema occurred as a result of both
false disconnections resulting from letters connecting or
from noisy background pixels forming non-well-com-
posed neighborhoods. Both of these images are topologi-
cally very unstable in that the underlying topological
structure of the image is rapidly changing. Conversely,
the minimum of weakly connected neighborhoods that
occurs in between these two maxima is topologically very
stable in that the rate of topological change is at a min-
imum, which occurs at the gray-level value of 213 as
shown in Fig. 20.

Over several hundred documents that we have studied,
finding the minimum of the weak connectivity histogram
seems to result in a thresholding of the gray-level image
into binary that is either topologically optimal, i.e. total
number of false connections and disconnections is mini-
mized, or very close to optimal. Unlike the minimum of
the gray-level histogram, which is often flat or not well-
defined, the minimum of the weak connectivity histo-
gram is generally very well-defined. For example,
two typical document gray-level histograms are shown in
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Fig. 17. The image is underthresholded. The weakly connected components are almost entirely the result of false (weak) disconnections.

Fig. 18. The weakly connected components in this image result from false (weak) connections that occur either between adjacent
disconnected letters or as a result of single letters that have incorrect (weak) self-intersections. The result is an image that is
overthresholded.

Fig. 21, where the minima are either flat or non-well-
defined. In contrast, the weak connectivity histograms of
the same two documents are shown in Fig. 22. In both of
these histograms the minima are clearly defined. In addi-
tion, in all of the experiments we have conducted, the
weak connectivity minima outperform the gray-level
minima considerably with respect to the topological cor-
rectness of the resulting binary image. Furthermore,
when used as a filter to an OCR program (e.g. Omni-
Page), OCR rates significantly improve.

The algorithm we use to compute the topology-
preserving threshold is simply one of computing the
number of checkerboard or non-well-composed neigh-

borhoods that would result from each gray-level value
and then finding the minimum that lies between the two
maxima of the histogram. This algorithm runs in linear
time and requires only one pass of the image. For each
pixel in the image (except for last row and column),
consider the 2]2 neighborhood with the given pixel in
the top left corner. This 2]2 neighborhood has two
diagonals, each diagonal defining an interval on the
integers. Now either the two intervals defined by the two
diagonals are disjoint or they intersect. If the intervals
intersect then this 2]2 neighborhood will never induce
a non-well-composed neighborhood and we need not
consider it any further. If, however, the two intervals are
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Fig. 19. Image that results from thresholding at a gray-level value of 86, which is the lower of the two maxima of the weak connectivity
histogram.

Fig. 20. This image was thresholded at the minimum of the non-well-composedness histogram, which occurred at a gray-level value of
213. The resulting binary image is topologically very close to the original document.

disjoint then any threshold of the document inside the
disjoint interval results in this neighborhood becoming
a checkerboard pattern. Therefore, in our histogram all
the bins in the disjoint interval are incremented. After
traversing the entire image, having updated the histo-
gram in the manner described, we find the two peaks in
the histogram. The minimum that lies between them is
selected by the algorithm as the best topology-preserving
threshold.

5.2. Correction

One of the main reasons for using digital topology as
a basis for document analysis is that it allows for the

derivation of discrete document models, like well-com-
posedness, that can be used to guide aspects of the
processing and analysis of digital documents. For
example, one of the important results in the previous
section was that only three boundary configurations are
possible as a result of a topologically invariant digitiz-
ation. This can obviously be introduced as a dynamic
constraint on the thresholding process to supplement the
static method described above. We have not pursued this
aspect thus far, although we certainly intend to explore it
in future work. Whether or not a pixel is turned ‘‘on’’ or
‘‘off’’ during the thresholding process should probably be
a function not only of the pixel’s gray-level value but also
a function of its local support. In Ref. [1] only 7 3]3

418 A. Gross, L.J. Latecki / Pattern Recognition 32 (1999) 407—424



Fig. 21. Gray-level histograms for typical document images.

boundary configurations were found to be realizable
under a topologically invariant intersection digitization,
and subsequently we verified experimentally that almost
all occurrences of boundary configurations not in this
group are the result of sensor error (e.g. non-monotonic-
ity). So certainly biasing the threshold in favor of
topologically realizable neighborhoods is a logical pro-
gression. In addition, recent research indicates that the
threshold should also vary dynamically with respect to
the local digital geometry, e.g. convex or concave.

In this section, however, we are simply interested in
converting the digital document, thresholded at a gray-
level value minimizing the weak connectivity, to a digital
image that is well-composed, i.e. strongly connected. The
motivation for correcting the digital document in this
way is essentially twofold: (i) all the non-well-composed
neighborhoods are actually either connected or discon-
nected in IR2 and, as such, should to be corrected in the
digital image; and (ii) once we have converted the image
to one that is entirely well-composed, many subsequent
image processing algorithms are both faster and easier.
For example, both sequential and parallel thinning algo-

rithms are greatly simplified, see Ref. [7], and guaranteed
to result in a single-pixel-thick skeleton. Also, well-
composed sets are quite well-behaved and satisfy some
important properties. In particular, the digital Jordan
Curve Theorem is satisfied, without requiring different
connectivity relations for foreground and back-
ground pixels, and the Euler characteristic is locally
computable.

In general, the number of pixels that actually need
correction is very small compared to the number of pixels
in the image. In the image shown in Fig. 10, when
thresholded at a gray level of 213, only 1 in 859,308 2]2
neighborhoods was non-well-composed. Of course, this
threshold was selected exactly because it minimized the
weakly connected sets that would need to be resolved.
A different threshold of the document could result in
many more neighborhoods needing correction. If we had
selected a threshold value of 169, which was approxim-
ately the minimum of the gray-level histogram, then there
would have been many more neighborhoods to correct.
When thresholded at 169, the resulting binary image had
111 locally non-well-composed neighborhoods.
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Fig. 22. Weak connectivity histograms for typical document images.

Fig. 23. The weak connectivity between the ‘‘r’’ and the ‘‘a’’ is
accidental, resulting from insufficient white space between the
letters. In particular, the digitization is not homeomorphic to the
preimage since the real letters ‘‘r’’ and ‘‘a’’ in R are not par(1,#)-
regular.

Fig. 24. The weak connectivity between the two parts of the ‘‘g’’
is not considered to be accidental since the ‘‘g’’ remains one
connected component regardless of how the weak connection is
resolved. Consequently, this weak connectivity is resolved in
favor of strongly connecting the neighborhood, i.e., one of the
background pixels is changed.

Finding neighborhoods that need to be fixed does not
necessarily mean that we know how to correct them. But
there seem to be two general approaches to correcting
any weak connectivity on a digital document. One
method is strictly based on local topology. The example
shown in Fig. 23 is very typical of a weak connection.
Most weak connections on the thresholded image result
from two characters touching accidentally, due to insuffi-
cient sensor resolution with respect to the white space
separating them. We assume that two 4-connected com-
ponents that are weakly connected together are only
connected together accidentally. This is corrected for by
disconnecting the two weakly connected sets, i.e. chang-
ing one of the foreground pixels to a background pixel.

Another type of weak connection that occurs is shown
in Fig. 24. Here the ‘‘g’’ should be connected, but is in fact
only weakly connected since its preimage was not
par(1,!)-regular, i.e. the stroke of the ‘‘g’’ is too narrow
considering the given sensor resolution. However, since
the ‘‘g’’ is already one connected component, even if this
local neighborhood is disconnected, it is assumed that
this weak connection between parts of the ‘‘g’’ did not
occur accidentally and is resolved in favor of strong
connectivity.

These are two of the rules that we currently use to
resolve any weakly connected neighborhoods. These
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rules are local as they do not require solving for para-
meters of the document. It is often useful, however, once
a threshold has been found and the document image
grouped into connected components to use aspects of the
recovered parameters of the document model to further
resolve any remaining topological ambiguity. For
example, knowing the frequency of each type of bound-
ing box in the document image can be useful in resolving
weak connectivity. Computing a document model,
however, is not within the scope of the current paper
so we assume for now that any weakly connected neigh-
borhoods can be correctly resolved using a set of
local rules.

5.3. Topological compression and document readability

In this section, we develop the concept of topological
compression and, at the same time, consider algorithms
for computing the minimal resolution under which
a document preserves readability. Transform-based com-
pression methods such as Fourier transforms are
frequency-based and, as such, are not guaranteed to
preserve either topological or geometric features of the
original image. But since many image analysis algorithms
rely on connectivity-related features for the purpose of
analysis and recognition, it seems important for the com-
puter vision community to develop compression tech-
niques that preserve various aspects of image structure
during the compression process. We consider topological
compression in this section.

Having thresholded the digital document in such
a way as to minimize its weak connectivity, the image
was then corrected, as described in the previous section,
so that all non-well-composed neighborhoods were re-
moved. This digital document is now strongly connected
and, hopefully, homeomorphic to the original prescan-
ned document. We now construct a pyramidal data
structure, with each successive level of the pyramid con-
sisting of an image that is half the size in each dimension
of the level below it. For a description of pyramidal data
structures and some related algorithms in image repres-
entation and compression, see Refs. [10] and [12]. We
are interested, at each level of the pyramid, in compress-
ing the image from n]n to (n/2)](n/2) while preserving
topology.

The basic rules we use in the algorithm are rather
simple, in part, because since the digital document model
is one of a well-composed set we can rely on various
properties being satisfied such as the local computability
of the Euler characteristic. As is classically done in pyr-
amidal algorithms, each pixel or cell has both sons and
stepsons, or alternatively, neighborhoods and overlap-
ped neighborhoods. If a pixel on level i#1 of the pyr-
amid sees that his sons, i.e. the immediate neighborhood,
are all the same color, either black or white, then he
adopts that color. Since this involves no ‘‘recoloring’’ of

the pixels on level i, there is no topological change to the
image. This case is, of course, rather trivial. Now assum-
ing that the immediate neighborhood is not all one color,
then obviously some ‘‘recoloring’’ is necessary.

For example, if the father pixel has in the 2]2 immedi-
ate neighborhood 3 black pixels and 1 white pixel then
either value assumed will involve some recoloring of the
2]2 neighborhood. Since the compression is topologi-
cal, our first priority is one of topology, and only after we
are assured that topology is preserved are we concerned
with preserving geometric features. Therefore, since there
are always two ways to color a pixel, if only one of them
preserves topology then this is the recoloring of the local
neighborhood that we choose. In the case of the 2]2
neighborhood where there are three black pixels and one
white pixel, if the white pixel is an isolated point, i.e. no
white neighbors (perhaps it is digitization of the inside of
the letter ‘‘a’’) then recoloring to black means that the
topology is changed so the father pixel on level i#1 is
colored white.

A pixel is referred to as ‘‘simple’’ if its recoloring does
not affect the image topology, see Ref. [7]. Similarly, we
can refer to a 2]2 neighborhood as simple if a recolor-
ing, either black or white, does not affect the image
topology. If a neighborhood is not simple and only one
recoloring of the father pixel preserves topology then we
have no choice but to recolor in this manner. This is also
the case if one recoloring preserves topology while the
second recoloring creates a non-well-composed neigh-
borhood since this also involves some change to the
topological structure of the image. Assuming that both
recolorings of the father pixel are equally topology-
preserving then we select the one that is more
geometry-preserving, which usually translates into
using majority color. If neither recoloring is topology-
preserving, then we select the recoloring most geometry-
preserving and increment the variable that keeps count of
how many times on a given level of the pyramid there was
no possible topology-preserving recoloring of the local
neighborhood. Since the underlying image is well-com-
posed, determining whether a neighborhood is simple is
straightforward.

This topological compression algorithm not only
allows us to preserve the topology of the image wherever
possible, but also allows us to determine the degree of
topological degradation at each successive level of the
pyramid. If the text font for the document was originally
par(4)-regular, for example, then on the next level of the
pyramid it would still be par(2)-regular, and we would
not expect any topological loss of information until at
least the thrid level. Generally, a given font has a
certain stroke width and a certain width for the white
space between strokes. There is a point in the pyramid of
the binary well-composed document where topology can
no longer be preserved. We usually consider a given level
of the pyramid to no longer be topology-preserving if

A. Gross, L.J. Latecki / Pattern Recognition 32 (1999) 407—424 421



Fig. 25. Level 2 of topological compression on well-composed binary document, with only about 2% of the neighborhoods on this level
of the pyramid not preserving topology.

Fig. 26. Pyramid level 2 gray-level version of image preserves readability of the document.

more than 10% of the pixels on that level can no
longer preserve the topology of their underlying neigh-
borhoods.

In addition, there seems to be a correlation between
preserving the topology of the digital document and
preserving its readability. It appears that at an image
resolution where topology can no longer be preserved
neither can the readability of the document. As an
example, consider once again the original document
gray-level image in Fig. 10 and the thresholded (well-
composed) version in Fig. 20. Assuming that these two
images are the base images at level 0 of their respective
pyramidal data structures, then level 2 of the binary
pyramid is shown in Fig. 25. On this level of the pyramid,
there were roughly 2% of the pixels that did not preserve
the topology of their underlying neighborhoods. In gen-
eral, this degree of topological degradation is relatively
minor and indicates that the digitization at this level is

approximately topology-preserving. Consequently, the
corresponding level of the gray-level pyramid preserves
the document readability, see Fig. 26. At the next level of
the pyramid, however, the compressed version of the
binary image no longer preserves topology with over
15% of the pixels on this level not able to preserve the
topology of their underlying neighborhoods. The binary
version of the pyramid is shown in Fig. 27. The fact that
topology is not preserved at this level of the pyramid
indicates that the original text of the prescanned docu-
ment image was not par(8)-regular with respect to the
sensor resolution of the scanner. Not surprisingly, the
gray-level version of this level of the pyramid no longer
preserves document readability, see Fig. 28. Thus, the
algorithm described can be used both for topological
compression and for computing the minimal image
resolution that still preserves readability of the digital
document.
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Fig. 27. Level 3 of the binary document pyramid, with over
15% of the neighborhoods on this level no longer preserving
topology.

Fig. 28. Since the binary compressed document is no longer
topology-preserving, level 3 of the pyramid gray-level image no
longer preserves readability of the document.

6. Conclusions

In this paper, we gave conditions on the correct digitiz-
ation resolution which guarantee that topology is preser-
ved under a digitization and segmentation process. For
a par(r)-regular set A, A and each of its digital images
Dig(A, r) are topologically equivalent. We also proved
that the Hausdorff distance of sets A and Dig(A, r) is less
than or equal to r. These results have many conse-
quences. For example, under correct digitization resolu-
tion any two digital images of a given spatial object A are
topologically equivalent. Furthermore, Dig (A, r) is well-
composed, i.e. the checker board digital patterns cannot
occur in Dig (A, r). In Latecki et al. [27] it is shown that
well-composed sets have very nice digital properties,
which imply that many algorithms for digital image pro-
cessing can be simpler and faster. Well-composedness
can be useful for noise detection, since if the neighbor-
hood of a boundary point contains a checker board
digital pattern, it must be due to noise. For a large class
of 2D objects, which includes projections of some real 3D
objects, a constant r can be computed such that they are
par(r)-regular.

The results derived in this paper, particularly the fact
that a topologically invariant digitization results in
a well-composed digital image, were applied to the do-

main of document image processing and analysis. We
developed an algorithm to find a static threshold such
that the weak connectivity of the digital document was
minimized. In addition, we demonstrated that this algo-
rithm performed very well with respect to minimizing the
number of false topological connections/disconnections
in the image. It was then shown how to further correct
the document image to make it entirely well-composed.
Finally, we developed a pyramid-based algorithm
that performed topological compression and determined
the minimal image resolution preserving document read-
ability.
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