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Abstract: We propose a general framework for computing invariant features
from images. The proposed approach is based on a simple concept of basis ex-
pansion. It is widely applicable to many popular basis representations, such as
wavelets, short-time Fourier transform, and splines.

1 Introduction

Image features and shape descriptors that capture the essential traits of an
object and are insensitive to environmental changes are ideal for recognition.
The search for invariants (e.g., algebraic and projective invariants) is a classical
problem in mathematics dating back to the 18th century. The need for invariant
image descriptors has long been recognized in computer vision [3, 6]. Invariant
features form a compact, intrinsic description of an object, and can be used to
design recognition algorithms that are potentially more e�cient than, say, the
aspect-based approaches. Hence, it was even argued that object recognition is
the search for invariants [6]. Invariant features can be designed based on many
di�erent methods and made invariant to rigid motion, general a�ne transform,
scene illumination, occlusion, and projection. See [3, 6] for a comprehensive
survey of the subject of invariants.

The proposed framework exploits both global and local information about
shape and color, and is neither strictly global nor local. It has the advantage
of tolerating a certain degree of occlusion (unlike global analysis) and does not
require estimating high-order derivatives in computing invariants (unlike local
analysis), whence is more robust. Furthermore, it enables a quasi-localized, hi-
erarchical shape analysis which is unique among known invariant techniques.
Unlike some current research on image invariants which concentrates on either
geometry or illumination invariants, the proposed framework is very general and
produces invariants which are insensitive to rigid motion, general a�ne trans-
form, changes of parameterization and scene illumination, noise, occlusion, and
perspective transform and view point change. Finally, we introduce the rational
basis functions [4] to facilitate the analysis of invariants under perspective trans-
form. Though rational basis functions, such as NURBS, are widely known in the
computer graphics community, to the best of our knowledge they have not been
widely used in computer vision.

2 A Framework of Image-Derived Invariants

We will illustrate the mathematical frameworks using a speci�c scenario of in-
variants for planar curves. The particular basis functions we use will be the
wavelet bases and spline functions. Though the same framework can be easily
extended to other bases such as the short-time Fourier analysis.



A word on the notational convention: matrices and vectors will be represented
by bold-face characters, such as M and V, while scalar quantities by plain-face
characters such as S. 2D quantities will be in small letters while 3D quantities
in capital letters. Hence, a 3D coordinate will be denoted as [X;Y; Z]T while a
2D coordinate as [x; y]T .

We have considered variation in an object's image induced by rigid-body
motion, general a�ne transform, changes in parameterization and illumination,
and perspective transform. Due to the page limit, we will review briey only the
formulations for a�ne, luminance, and perspective invariants and present some
preliminary results. Interested readers are referred to [5] for other invariants
expressions and more results.

Rigid-Body Motion and A�ne Transform Consider a 2D curve, c(t) =
[x(t); y(t)]T ; where t denotes the a�ne arc length (invariant under a�ne trans-
form [2]), and its expansion onto the wavelet basis  a;b =

1p
a
g( t�b

a
) (where g(t)

is the mother wavelet [1]) as

ua;b =

Z
c a;bdt ; or c(t) =

Z
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Z
b

ua;b a;bdadb :

If the curve is allowed a general a�ne transform with the transformed curve
denoted by:

c0(t) =mc+ t =m

�
x(t)
y(t)

�
+ t ;

where m is any non-singular 2 � 2 matrix and t represents the translational
motion, then we have
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=
R
(mc+ t) a;bdt =

R
mc a;bdt+

R
t a;bdt

=m
R
c a;bdt+ t

R
 a;bdt =mua;b ; or

(1)

c0(t) =

Z
a

Z
b

u0a;b a;bdadb :

Note that we use wavelet property
R
 a;bdt = 0 to simplify the second term

in Eq. 1. Hence, the transformed curve can be generated using the transformed
coe�cients and the same wavelet bases, instead of transforming the curve point-
by-point. This is an observation made in the computer graphics community on
curves generated by the spline functions and associated control vertices [4]. In
that sense, ua;b's are equivalent to the control vertices in a spline curve.

If m represents a rotation (or the a�ne transform is a rigid-body motion
of a translation plus a rotation), it is easily seen that invariant features can be
derived using the ratio expression���u0a;b������u0c;d��� =

jmua;bj

jmuc;dj
=

jua;bj

juc;dj
:

If the second term in Eq. 1 is not zero, but is a constant (e.g., for spline functions,
the area under a spline basis integrates to a constant 1 for a uniformly spaced



knot vector [4]), then invariant expressions can still be derived, albeit in a slightly
more complicated form:��u0
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c;d
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j(mue;f + v)� (mug;h + v)j
=

jm(ua;b � uc;d)j

jm(ue;f � ug;h)j
=

j(ua;b � uc;d)j

j(ue;f � ug;h)j
;

where v denotes the constant second term in Eq. 1.
For invariants under general a�ne transform, many forms using ratios, cross

ratios, and ratios of ratios have already been derived [3, 6]. For example, it
is known that the cross ratio of four co-linear points are invariant under an
a�ne transform, and the area of the triangle formed by any three ua;b changes
linearly in an a�ne transform (an invariant of weight 1 [3, 6]). Hence, an absolute
invariance can be generated by using the ratio of two triangles: 1����u0a;b u0c;d u0e;f1 1 1

��������u0g;h u0i;j u0k;l1 1 1

����
=
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����
: (2)

Variation in Lighting Condition Another possible variation in the appear-
ance is due to lighting: that objects can be illuminated by light sources of dif-
ferent numbers and types. To simplify the notation, in the following derivation
we will consider three spectral bands of red, green, and blue. Generalizing to
an n-band illumination model is straightforward. Let L(t) denote the perceived
image color distribution along a curve, we have:

L(t) =

2
4 r(t)g(t)
b(t)

3
5 =

Z 2
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f b(�)

3
5 s(�; t)d� ;

where � denotes the wavelength, and fr(�) the sensitivity of the red sensor
(similar interpretations for the green and blue channels). Using a Lambertian
model, s(�; t) is

s(�; t) = (

nX
i=1

li(�)N �Ni)�(�; t) + a(�) ; (3)

where n is the number of light sources used, li(�) the source luminance spectral
distribution, N the surface normal, Ni the incident direction for source i, �(�; t)
the surface reectivity, and a(�) the ambient light luminance.

When the lighting condition changes, because lights are moved, turned on,
or turned o�, or the ambient light intensity changes, we have
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1 Note that there are many valid expressions for a�ne invariants. Some may require a

smaller number of coe�cients than that in Eq. 2. For example, when wavelet bases

are used where
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 a;bdt = 0, Eq. 2 can be simpli�ed as��u0

a;b u
0

c;d

����u0

e;f u
0

g;h

�� =
��ua;b uc;d ����ue;f ug;h �� ;

where only four coe�cients are needed.
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capture the changes in the gain and o�set in the two di�erent lighting conditions.
Following a path similar to that adopted by several researchers, we assume that
surface reectance functions are modeled as a linear combination of a small
number of basis functions sk(�), whence,

s(�; t) =
X
k

�k(t)sk(�) ;

where sk(�) denotes the k-th basis function for representing the surface re-
ectance properties, and �k(t) is the space varying expansion coe�cients. Then
using an analysis which is similar to that employed in the a�ne case, we have
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Then it is easily shown that the following expression is invariant:����u0
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(4)

By using a ratio expression, we obtain a much simpler and computationally
e�cient form of invariant which does not require computing the color correlation
matrix and the SVD of such a matrix as in some previously reported technique.
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Fig. 1. (a) Original image, (b) comparison image, (c) original and deformed patterns

after undergoing a rigid-body motion, and (d) invariant signatures of the original (solid)

and transformed (dashed) patterns plotted along the contours.

Perspective Transform Perspective transform is a non-linear process involv-
ing a division in computing 2D coordinates. The projection process can be lin-
earized by using the rational form of a basis function, such as NURBS [4]. Briey,
we represent a general 3D curve by decomposing it onto pre-selected bases. We
will call the projection coe�cients control vertices, following the convention used
in computer graphics. The projection of a 3D curve is then represented by the
projected control vertices and the rational bases. The problem of �nding pro-
jective invariants is then a curve �tting problem: If a 2D curve results from the
projection of a 3D curve, then it should be possible to interpolate the observed
2D curve using the projected control vertices and the rational spline bases and
obtain a good �t. If that is not the case, then the curve probably does not come
from the projection of the particular 3D curve. Hence, the error in curve �tting
is a measure of invariance (In the ideal case, the error should be zero).

3 Experimental Results

Here we report some preliminary experimental results. Interested readers are
referred to [5] for more detailed descriptions of the algorithms and results.
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Fig. 2. (a) Original image, (b) comparison image, (c) original and deformed patterns

after undergoing an a�ne transform, and (d) invariant signatures of the original (solid)

and transformed (dashed) patterns plotted along the contours.
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Fig. 3. The same mouse pad under (a) white and (b) blue illumination.
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Fig. 4. R-g-b invariant signatures computed for the mouse pad under white (solid) and

blue (dashed) illumination. Invariant signatures were computed on the red (a), green

(b), and blue (c) circles in Fig. 3.

Rigid-body Motion Fig. 1 shows (a) a star pattern on a book cover and (b)
the same pattern after undergoing a rigid-body motion in 3D (a rotation and
translation of the book cover). The extracted patterns are shown in Fig. 1(c)
as solid (original pattern) and dashed lines (transformed pattern). We use the
second-order b-spline function of a uniform knot vector [4] in the basis expansion
step. Fig. 1(d) shows the invariant signatures (based on Eq. 2) of the original
(solid) and transformed (dashed) curves along the contours. (The starting point
and travesal direction were manually picked.) As can be seen from the �gure,
the invariant signatures are quite consistent.
General A�ne Transform Figs. 2(a) and (b) show a shirt with a dolphin imprint
and a stretched and deformed version of the same imprint. Fig. 2(c) shows the
extracted patterns. The invariant signatures are plotted in Fig. 2(d), and, again,
they are quite consistent.
Change of Illumination To illustrate invariance under illumination changes, we
placed di�erent color �lters in front of the light source. An example is shown
below: Fig. 3 shows the same mouse pad under white and blue illumination.
We randomly placed three circular curves{the red (left), green (bottom right),
and blue (top right) curves in Fig. 3, and computed the invariant signatures
along these three curves for both the images under white and blue illumination.
Fig. 4(a), (b), and (c) show the invariant pro�les computed from the white (solid)



2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

16

Original (solid) and deformed (dashed) shapes

Fig. 5.Original and transformed shapes with noise added. Solid lines for original shapes

and dashed lines for transformed and noise-corrupted shapes.
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) shapes at scale 1
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) shapes at scale 3

0 2 4 6 8 10 12 14 16 18 20
−14

−12

−10

−8

−6

−4

−2

0

2

4

Arc length

In
v
a

r
ia

n
t 

fe
a

tu
r
e

s

Invariant features of original (solid) and deformed (dashed
) shapes at scale 5
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Fig. 6. Invariant shape descriptors at many scales for the original and deformed shapes

with noise added. Solid lines for original shapes and shape descriptors and dashed lines

for transformed and noise-corrupted shapes and shape descriptors.

and blue (dashed) illumination. As can be seen from the �gure, they are quite
consistent.

Hierarchical Invariant Analysis The additional degree of freedom in designing
the basis function enables a hierarchical shape analysis. To illustrate, Fig. 5
shows the original (solid lines) and deformed (dashed lines) shapes with a signif-
icant amount of noise added. Our approach, which analyzes the shape at many

scales locally, will discover the similarity which may manifest itself at di�erent
levels of detail. This is the case in Fig. 6, where shape similarity may not be
apparent in the original shapes and shape descriptors, but eventually manifest
itself from scale 5 onward. Traditional analysis relying on a single scale or requir-
ing high-order derivatives of the contour function will have di�culty handling
this and similar cases.

Perspective Invariants Fig. 7(a) and (b) show the canonical (head-on) view and
another perspective of a package box, respectively. We extracted the arc-shape
pattern from both images for verifying the perspective invariance. We display
the predicted shapes superimposed on Fig. 7(b) after certain iterations of our
algorithm. The predicted shape matched the real one well which veri�es the
perspective invariance.
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Fig. 7. (a) The canonical view, (b) another perspective, and (c) and (d) the estimated

shapes after the 1st and 10th iterations.

4 Conclusion
We present a new framework for computing image invariants. The framework
utilizes many desirable properties of wavelet and basis expansion techniques and
is neither strictly global nor purely local. Furthermore, it is quite simple and
straightforward to implement. Preliminary results on both real and synthetic
images are very promising. These results demonstrate the tolerance to noise,
change of luminance, and perspective distortion, and the ability for multi-scale
analysis.

References
1. I. Daubechies. Orthonormal Bases of Compactly Supported Wavelets. Commun. Pure Appl. Math., 41:909{960,

1988.

2. H. W. Guggenheimer. Di�erential Geometry. McGraw-Hill, New York, 1963.

3. T. H. Reiss. Recognizing Planar Objects Using Invariant Image Features. Springer-Verlag, Berlin, 1993.

4. D. F. Rogers and J. A. Adams. Mathematical Elements for Computer Graphics, 2nd Ed. McGraw-Hill, New York, NY,

1990.

5. Y. F. Wang. A New Framework for Image Invariants using Basis Expansion. Technical Report TRCS97-02,

Dept. of Computer Science, UCSB, Feb. 1997.

6. I. Weiss. Geometric Invariants and Object Recognition. Int. J. Comput. Vision, 10(3):207{231, 1993.

This article was processed using the LATEX macro package with LLNCS style


