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Abstract In this paper will be investigated what constraints on the intrinsic pa-
rameters that are needed in order to reconstruct an unknown scene from a number
of its projective images. Two such minimal cases are studiedin detail. Firstly, it
is shown that it is sufficient to know the skew parameter, evenif all other param-
eters are unknown and varying, to obtain a Euclidean reconstruction. Secondly,
the same thing can be done for known aspect ratio, again when all other intrinsic
parameters are unknown and varying. In fact, we show that it is sufficient to know
any of the� intrinsic parameters to make Euclidean reconstruction.
An algorithm, based upon bundle adjustment techniques, to obtain Euclidean re-
construction in the above mentioned cases are presented. Experiments are shown
on the slightly simpler case of both known aspect ratio and skew.

1 Introduction

During the last years there has been an intensive research onthe possibility to obtain
reconstructions up to an unknown similarity transformation (often calledEuclidean re-
construction), without using fully calibrated cameras. It is a well-known fact that it is
only possible to make reconstruction up to an unknown projective transformation (often
calledprojective reconstruction) when nothing about the intrinsic parameters, extrinsic
parameters or the object is known. Thus it is necessary to have some additional infor-
mation about either the intrinsic parameters, the extrinsic parameters or the object in
order to obtain the desired Euclidean reconstruction.

A priori information about the object can be used in a fairly straight-forward man-
ner, see [3]. Several researchers have dealt with the problem of using additional infor-
mation about the extrinsic parameters, i.e., the camera orbit, see for example [12].

One common situation is when the intrinsic parameters are constant during the
whole (or a part) of the image sequence. This approach leads to the well-known Kruppa
equations. These equations are highly nonlinear and difficult to solve numerically. Sev-
eral attempts to solve this problem have been made, see [9], [2]. In [5] the same problem
is solved by a global optimisation technique, where a lot of smaller optimisation prob-
lems have to be solved in order to get a starting point for the last optimisation.
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Another constraint, called themodulus constrainthave been used in [11], to obtain
Euclidean reconstruction from constant intrinsic parameters. This formalism has been
extended to the case when the focal length is varying betweenthe different imaging
instants, see [10]. The practical implications of this result is questionable since when
the focal length varies, by zooming, the principal point varies also.

The results presented in this paper is motivated by the fact that when a CCD-camera
is used in order to capture an image sequence and the zoom is used, as in active vision,
both the focal length and the principal point varies. However, it is often the case that the
aspect ratio and/or the skew are constant during the whole sequence (at least if the same
camera is used), since they are determined by the geometry ofthe light sensitive array.
It is furthermore possible to measure, once and for all, the aspect ratio and/or skew for
a camera and then use these values for all image sequences captured by that camera.
When these quantities are known, they can be compensated forand we may assume
that the aspect ratio is equal to� and/or the skew is equal to�.

It has been shown, see [7] that it is possible to make Euclidean reconstruction when
both the skew and aspect ratio are known. In this paper we willextend that result
and show theoretically that Euclidean reconstruction is possible in two minimal cases.
Firstly, when the aspect ratio is known and secondly, when the skew is known. In both
cases are all other intrinsic parameters unknown and allowed to vary between the dif-
ferent imaging instants. Although of less practical importance, it is also shown that it
is possible to make Euclidean reconstruction if only one coordinate of the principal
point is known or if the focal length is known. In all these cases, not only a Euclidean
reconstruction of the object are obtained, but also the intrinsic camera parameters for
each camera, i.e. auto-calibration is performed. The proofis based on the assumption of
generic camera motion. The theoretical result is verified byexperiments on simulated
data.

2 The Camera Model

The image formation system (the camera) is modeled by the equation
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Here� 	 �� � � ��� denotes object coordinates in extended form and
� 	 � � � ���

denotes extended image coordinates. The scale factor
�
, called thedepth, accounts

for perspective effects and � ! �" represent a rigid transformation of the object, i.e.�
denotes a# $ # rotation matrix and� a # $ � translation vector. Finally, the parameters
in � represent intrinsic properties of the image formation system: � represents focal
length,
 represents theaspect ratio, � represents the skew and � ! � " is called the
principal point. The parameters in� and � are calledextrinsic parameters and the
parameters in� are called theintrinsic parameters. In this paper we will mostly deal
with cameras where� 	 � and/or
 	 �.



Definition 1. A camera that can be modeled as in (1), with� 	 � is called anon-skew
camera. When
 	 � it is called anaspect-free cameraand when both� 	 � and
 	 � it is called acamera with Euclidean image plane. Internal calibration matrices� of type
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are callednon-skew calibration matrices, aspect-free calibration matricesandEu-
clidean calibration matrices respectively.

Observe that it is not necessary that
 	 � and/or� 	 � in order to use the subse-
quent results. It is sufficient that they are known, since then the image coordinates can
be transformed to new ones obeying the constraints on
 and/or�, for details see [8].

The following results, one of them shown in [6] and one shown in [4], will be needed
later. For a proof, see [8].

Lemma 2. A camera matrix� 	
�
�
��
� � �
	 �

�
� , normalised such that	 �	 	 �, represents

a non-skew camera if and only if

 � $ 	 " � � $ 	 " 	 � (3)

an aspect-free camera if and only if

� � $ 	 " $  � $ 	 " � 	  � $ 	 " � � $ 	 " (4)

and a camera with Euclidean image plane if and only if

 � $ 	 " � � $ 	 " 	 � and  � $ 	 " � � $ 	 " 	  � $ 	 " � � $ 	 " � (5)

Here
 �� denotes the scalar product of
 and�.

Observe that the condition	 �	 	 � can easily be fulfilled by multiplying the camera
matrix by a suitable constant, since a camera matrix is only defined up to scale.

It is possible to state similar conditions for the cases of known � , � and � . By
making coordinate changes in the images similar to the previous cases it is no restriction
to assume that� 	 �, � 	 � and� 	 � respectively. The conditions on the camera
matrices are in turn�� $ 	 � 	 	 �	 , � �	 	 � and� �	 	 � respectively.

Now we have the necessary tools to prove that it is possible toobtain a Euclidean
reconstruction, when sufficiently many point correspondences are given in a sufficient
number of images.

3 Euclidean Reconstruction is Possible

For a moment, we do not take into account the special form of the camera matrices,
(2), for cameras with known skew and/or aspect ration, and instead work with totally



uncalibrated cameras, as in (1). Then it is possible to make reconstruction up to an
unknown projective transformation. This means that it is possible to calculate camera
matrices� �, � 	 �! � � � !� that fulfills

� �� � 	 � �� ! � 	 �! � � � !� ! (6)

where
� � denotes extended image coordinates in image

�
and

� � denotes the correspond-
ing depth in image

�
. It can easily be seen from (6) that given one such sequence of

camera matrices,� �, � 	 �! � � � !� , and a reconstruction,� , also� �� ,
� 	 �! � � � !�

and� ��� is a possible choice of camera matrices and reconstruction,where� de-
notes a nonsingular� $ � matrix. Multiplication of � by such a matrix corresponds
to projective transformations of the object. In our case� can not be chosen arbitrarily
since every camera matrix has to obey the conditions in Lemma2.

The next step is to show that given a sequence of camera matrices that solves the
projective reconstruction problem and represents cameraswith known skew and/or as-
pect ratio, i.e. fulfills one of the conditions in Lemma 2, then the only possible transfor-
mations� that preserve these conditions are the ones representing similarity transfor-
mations. In order to show this some notations will be introduced.

Denote by�� the manifold of all# $ � projection matrices, i.e., the set of all
# $ � matrices defined up to scale. Denote by� �� , � �� and� ��� the manifold of all
camera matrices that represents non-skew cameras, aspect-free cameras and cameras
with Euclidean image planes, respectively, i.e., all# $ � matrices that can be written
as in (2), and thus obeying one of the conditions in Lemma 2. Denote the group of
all projective transformations, represented by� $ � matrices, by	� . The subclass of
transformations that preserves the properties in Lemma 2 isdenoted by	�� , 	�� and	��� respectively, e.g.

	�� 	 
 � � 	� � � � � �� " � � � � � ��  �
Finally, the group of all similarity transformations will be denoted by	� and will be
represented by

	� 	 
 � 	 ��� �
� �

�
� �� � 	 � ! � �	 � � ��  � (7)

It can easily be seen that the group of similarity transformations is contained in	��
as well as in	�� and	��� . Thus	� � 	�� � 	� , 	� � 	�� � 	� and	� � 	��� �	� . Note that	�� , 	�� and	��� , are precisely the transformation groups that groups of
interest. If, for example,	�� 	 	� then it is only possible to make reconstruction up to
a projective transformation in the non-skew camera case. If	�� 	 	� then it is possible
to make reconstruction up to a similarity transformation.

Theorem 3. Let 	��, 	�� and	��� respectively denote the class of transformations in
3D-space that preserves the conditions in Lemma2 and 	� the group of similarity
transformations in 3D-space. Then

	�� 	 	�� 	 	��� 	 	� �



Proof. Consider first the case of a aspect-free camera. From the discussion above we
have	� � 	��� .

Observe that the constraints on the camera matrices in Lemma2 only involve the
first # $ # submatrix. Use the notation� 	 �� �� � �, where� is a# $ # matrix. Assume
that� represents an aspect-free camera,� a projective transformation and

� � 	 � �� � � � �� �� �
�

	 ��  �� 	 ��" � �  � � 	 ��" � � � �� � (8)

Then�  �� 	 ��" can be factorised�  �� 	 ��" 	 � 
� 
 where� is an aspect-free
calibration matrix and� 
 denotes an orthogonal matrix. Since (8) is valid for any� that
represents a camera matrix, i.e., for any� , � and�, we first choose� 	 �.

Assume that� has the property that for every aspect-free calibration matrix � and
orthogonal� , it is possible to factorise� �� according to� �� 	 � 
� 
, for some
aspect-free calibration matrix� 
 and orthogonal� 
. Then also� �� has this property
for every pair of orthogonal matrices� and� , since
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 !
where�  and�  denote orthogonal matrices. Now, using the singular value decom-
position of� we can write
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where
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is obtained by a simple permutation of the rows and columns in� � and� �
respectively. Replacing� by

� � and choosing� 	 � in (8), Lemma 2 gives
 	 � and
replacing� by

��
gives� 	 �. Thus all singular values of� are equal, which means

that� is a multiple of an orthogonal matrix.
Consider now the case, where� �	 �, and the condition that for every aspect-free

calibration matrix� , every orthogonal� and every�, �  �� 	 ��" can be factorised
as�  �� 	 ��" 	 � 
� 
 for some aspect-free calibration matrix� 
 and orthogonal� 
.
If �� 	 �� can be factorised in this way then so can �� 	 ��"� for every orthogonal
matrix� . Choose� such that�� 	 �� � � �, then choose� 	  �� "�� and� 	 � �� � �� .
These choices give
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and according to Lemma 2,� 	 �, which in turn implies� 	 � � � � �.
Summing up,� is of the form� 	 ��� � � �, where

�
is a scalar and� an orthogonal

matrix. Dividing by� gives ��� � 	� . Thus	�� � 	� from which the first part of the
theorem follows.

Consider now the case of a non-skew camera. Again from the discussion above
we have	� � 	��� . The proof is analogous to the above until

� � 	 � ��� � 	
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 ! � ! �" is obtained. Then according to (8)
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Now, according to Lemma 2,���
is a skew-free calibration matrix if and only if
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i.e. if and only if 
 	 �. Using a permutation of the singular values as before gives

 	 � 	 � and then we can proceed as in the aspect-free case again untilthe choice of�� . This time we chose�� 	 � � � � �, which gives
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which according to Lemma 2 gives� 	 � and so on.
Finally, the case of a camera with Euclidean image plane follows from either of the

two cases above and this completes the proof.

A glimpse at the proof gives that the three remaining minimalcases can be proven
similarly:

– If only the focal length,� is known (assumed to be equal to�), it is possible to
make Euclidean reconstruction. (A similar proof as in the aspect-free case.)

– If only the �-coordinate or the�-coordinate of the principal point is known, it is
possible to make Euclidean reconstruction. (Similar to theproof in the skew-free
case, but use

� 	 ���
�
� � � �

� �� ��� � �

�
� and �� 	 � � � � �

in the case of� 	 � and similarly in the case of� 	 �.

Thus reconstruction up to a similarity transformation is possible if any of the internal
calibration parameters� , �, 
 , � or � are known.

Observe that this theorem is valid only under the assumptionthat the camera motion
is sufficiently general. This fact is used implicit in the formulation of the theorem and
in the proof, by requiring that� 	 � �� � � � � � can be chosen arbitrarily.

Finally, it can be shown that these reconstruction problemscan be formulated as
polynomial equations in the intrinsic parameters in the first image and the parameters
describing the plane at infinity, see [6]. The polynomial equations are exactly the ones in
Lemma 2, i.e. two equations per image for the case of Euclidean image planes and one
equation per image in the other cases. Since the equations arises from different images
they are in general independent. This means that in the case of Euclidean image planes
at least� images are needed since we have� parameters (# for the plane at infinity and
# for the unknown intrinsic parameters) and� equations (� equations will not give a
unique solution). In the other cases we have� parameters and one equation per images,
which means that at least� images are needed in general.



4 Experiments

The method was tested on simulated data in the case of a camerawith Euclidean image
plane. The numerical computations has been made using a so called bundle adjustment
technique. Briefly parameters are introduced for all object coordinates and camera ma-
trices. Then the squared difference between the image coordinates obtained from these
parameters and the true image coordinates are minimised with respect to the parameters.
Apart from this least squares solution also an estimate of the accuracy of the parameters
can be obtained. For further details see [8]. Note that the calculated parameters not only
gives a Euclidean reconstruction, but also the intrinsic parameters for all cameras.
First Simulation. First an experiment was performed with 10 points in 15 images.
The points were taken as random points with coordinates between �#�� and 	#��
units. The camera positions were chosen at random approximately 1000 units away.
The standard deviation� together with the focal length� and the position � ! � " of
the principal point of the first camera and the RMS of reconstructed object positions in
percent of overall scale are presented in Table 1 for different levels of noise,� ���.
Second Simulation.Second an experiment was performed with 50 points in 20 images.
The points were taken as random points with coordinates between ���� and 	���
units. The camera positions were chosen at random approximately 1000 units away.
The standard deviation� together with the focal length� and the position � ! � " of
the principal point of the first camera and the RMS of reconstructed object positions in
percent of overall scale are presented in Table 1 for different levels of noise,� ���.

� � � � �

0 2112.191 25.433 8.250 0.000
0.12096.894 33.395 6.853 0.371
0.22107.966 43.571 5.061 2.193
0.52143.423 56.123 31.375 1.727
1 1982.302 9.773-16.357 3.611
2 2057.016352.815-22.97911.247
5 1974.814314.814 32.67118.755

� �� � � �

0.01010.752 4.435 1.3550.000
0.11010.787 4.460 1.3850.017
0.21012.072 4.723 1.2710.135
0.51008.164 4.416 1.9590.225

1 1010.795 5.023 2.9700.251
2 1014.648 7.878 2.2850.357
5 1007.92412.647-1.3640.669

10 1020.446-6.559-7.9342.033

Table 1: Some estimated parameters and the reconstruction e rror in the first and
second simulation respectively.

It is important to note that many points are needed in many images since there are
so many unknown parameters. The first simulation with 10 points in 15 images with
300 equations and 158 unknown degrees of freedom is much lessstable than the second
simulation with 50 points in 20 images, (2000 equations and 323 unknown degrees of
freedom).

5 Conclusions

In this paper we have shown that it is possible to reconstructan unknown object from a
number of its projective images up to similarity transformations, i.e. angles and ratios



of lengths can be calculated. This is possible even when the focal distance and the
principal point change between the different imaging instants. The only thing we need
to know about the cameras is the aspect ratio and/or the skew.These parameters are
defined by the geometry of the light sensitive area and need only be measured once for
each camera. In many cases it is reasonable to assume that theskew is� and the aspect
ratio is �. This is called a camera with Euclidean image plane. The other two minimal
cases, aspect ratio equal to�, called an aspect-free camera, and skew equal to�, called a
non-skew camera, are also treated and shown to give reconstructions up to an unknown
similarity transformation. Although of less practical importance, it is also shown that
it is possible to make Euclidean reconstruction if only one coordinate of the principal
point is known or if the focal length is known.

The paper contains a theoretical proof of these facts as wellas an experimental val-
idation using simulated data in the case of a camera with Euclidean image planes. In
these experiments a bundle adjustment technique has been used to estimate all undeter-
mined parameters, i.e. the reconstructed object, the relative position of the cameras and
the intrinsic parameters at the different imaging instants.
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