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Abs t r ac t .  This paper presents an analysis-by-image-synthesis frame- 
work of shape and pose estimation of 3D multi-part objects, whose pur- 
pose is to map objects in the real world into virtual environments. In 
general, complex 3D multi-part objects cause serious self-occlusion and 
non-rigid motion. To deal with the occlusion among them, we employ 
both multiple calibrated cameras and time-varying sequences, since there 
is enough information to estimate the parameters in the sensory data.. In 
our framework, to minimize the error between the selected measurements 
and the estimated model parameters, we proceed model fitting process 
based on proper gradient-based minimization. 

1 Introduction 
We have been developing a system to construct easily virtual environments by 
means of seamless fusion of information obtained by observing or measuring 
complex real world objects. As one of the actual applications, we consider 3D 
animation in which various kinds of natural  creatures appear. Therefore, in our 
approach, animals are intended for the main subject,  which have scarcely been 
considered in the past studies because of its complexity. 

For designing this system, the following issue is quite important .  

Required information to map the real world objects into a virtual environment 
consists of two kinds of information: one is a priori object model, or a priori 
knowledge of the objects; the other is the result of a posteriori observation, or 
measured object parameters. To construct an efficient or easy-to-use mapping 
system, the most important point is where we establish the boundary between a 
priori object model and a posteriori observation. 

To simplify a posteriori observation, we need a precise object model in advance, 
which causes the difficulty in constructing the object model. On the contrary, 
when we assume a simple a priori object model, a posteriori observation becomes 
difficult, i.e., we have to solve very difficult CV problems. 

For this problem, our approach adopted here is as follows: 

A p r i o r i  o b j e c t  m o d e l :  each object consists of parts represented in deformable 
superquadrics[6], which are connected via articulation points one another. 
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A posteriori  observation:  estimation of parameters of each deformable su- 
perquadrics. 

We give a priori object model, the approximated shape of parts and their 
connection structure, to the system interactively, referring to the initial frames 
of image sequences, taken by multiple cameras. To simplify this process, we 
have constructed a GUI-based model description system, whose details we will 
be omitted here. 

A posteriori observation means here recovering 3D shape and pose parameters 
from images, which is an ill-posed probleru without proper constraints as a priori 
object model. Generally, there are two types of approaches to solve this problem: 

- direct 3D matching between a 3D geometric model and the measurements 
acquired by 3D shape recovering techniques such as shape from X techniques. 

- 3D estimation from 2D matching between the 2D projected model data and 
the 2D measurements. 

In the former approach, there is no method to reliably recover 3D shapes yet. 
Therefore, we have adopted the latter approach. Although it often takes huge 
computation time, once we get camera, parameters, we can solve it as a direct 
problem under the projection geometry. Our approach is based on analysis-by- 
synthesis approach[12], and has the following two advantages: 

- Non-rigid multi-part objects, which are essential in the "real world," can be 
handled by using deformable superquadrics models, while most of existing 
approaches for 3D shape and pose estimation assume their rigidness. 

- A multiple camera system is employed to handle self-occlusion among the 
parts of the object. While a multiple viewpoint image analysis is getting 
popular to solve the ill-posed problem[4] [8][9] [7][11], no method solving 
self-occlusion problem properly is proposed, except for [10]. 

This paper shows our framework for shape and pose parameter estimation of 
3D multi-part objects focussing on model description and parameter estimation. 
Some experimental results are shown. 

2 F r a m e w o r k  fo r  S h a p e  a n d  P o s e  P a r a m e t e r  E s t i m a t i o n  

2.1 Principles of our  Analysis-by-Image-Synthesis  

The general principle of analysis-by-image-synthesis is described as follows: 

1. Project a model into the same dimension as the measurements to detect the 
error between the projected model data and the measurement space. 

2. Minimize the error by means of adapting the model parameters to the ob- 
served data. 
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To estimate the model parameters from the measurements is generally an 
ill-posed problem because of the lack of the a.ccuracy and of the noisy data. 
Therefore~ 2. should be solved by using proper optimization techniques. 

In our analysis-by-image-synthesis, the models are represented in 3D param- 
eterized geometric models, and the measurements are real 2D image data, which 
is actually expressed in image features. In this sense, the principle is generally 
called appearance-based matching. As we consider the object models consist of 
multi-parts, the problem is not simple, i.e., the model fitting process for each 
part may interfere one another. The interfere, in tile projection, is observed as 
self-occlusion. However, since the self-occlusion relationship can be acquired from 
multi-part model structure in advance, we can select only a set of corresponding 
pairs of the visible model sample data  and the measured points. 

2.2 O u t l i n e  o f  3D Track ing  M u l t i - p a r t  O b j e c t s  

Based on the above framework, an outline of 3D tracking multi-part objects is: 

1. Acquire an initial model, using initial multi-viewpoint frames: Build the 
model structure of the object and then estimate initial model parameters by 
means of semi-automatic modeling 1. 

2. Track image features from the previous frame to the current frame in every 
viewpoint "9. 

3. Estimate model parameters of every part. 
4. Refine the model parameters in accordance with the result of 3. 
5. Iterate 2-4 in the succeeding frames. 

3 M o d e l i n g  M u l t i - p a r t  o b j e c t s  

3.1 Interactive 3D Modeling Tool 

For adapting the system for various objects, as is the above mentioned, it requires 
a priori models of them. In usual systems, however, only system developers can 
make their models, which causes the lack of system flexibility-. Therefore, it is 
better that  users can participate the modeling process, or that they can give de- 
sirable models a priori, and simultaneously determine initial model parameters. 

On the other hand, since the modeling process requires a great deal of skill, 
the users' intervention should be minimized from the viewpoint of "easy addition 
of a priori knowledge". Therefore, we are developing a GUI-based interactive 3D 
shape modeling tool so as to alleviate the burden imposed on the users as little 
as possible. 

1 We employ an interactive 3D shape modeling tool. 
2 We assume that. it should be able to achieve this process by mea.ns of using reasonable 

low-level feature detection and its tracking method, which is omit.ted in this paper. 
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3.2 Object Model Description 

In our method, any 3D model description can be introduced only if it is rep- 
resented in parameterized-form. As a 3D parametric model here, we consider 
deformable superquadrics(we call DSQ). Although the various types of DSQ are 
designed so far[l] [5][6][13], we employ the one developed in [6], which has an ad- 
vantage in the sense that  it can be represented by a small number of parameters 
and can represent deformations such as tapering and bending. 

DSQ G e o m e t r y  When (q,~) is a. material coordinate system, a. point on SQ 
e is[l]: 

f ei(rl, ~) a l - C ,  r ~- 
e(0,w) ---= | e2 (~ ,w)  = a a .2 .C;  1. S~f , (1) 

w h e r e - ~  _< 7/ _ g , <  ~ and -re_c0< < ~r, and a, a l ,a2 ,  a3 are scale parameters, 
= s,gn(cos~)lcoswl and and q ,  e2 are squareness parameters, and where C'~ " e, 

S ;  = sign(sin w)l sin wl ~. 
Using e on SQ, a point on DSQ s is expressed as [6]: 

s =  s~ = .~o~ +1)c2  , (2) 
S3 e3 

where tl,  t2 are tapering parameters, and bl, b2, b3 are bending parameters. 
From the above definitions, the shape and pose parameters of each part can 

be expressed as: 

q = (a, a l ,  a2, a3, el, ~2, t l ,  t2, 51, b2, 53, r l ,  r2, r3, cl, c2, c3) T (3) 

where rl,  r2, r3 are rotation parameters, and cl, c2, c3 are translation pa.ra.m- 
eters for each part. 

Multi-part G e o m e t r y  In our method, multi-part object models consist of the 
3D deformable parts(DSQ) and the structure is represented in a hierarchica.1 tree 
structure(See Section 4.2). 

4 P a r a m e t e r  E s t i m a t i o n  o f  M u l t i - p a r t  O b j e c t s  

4.1 Acquiring Initial Model 

Using the modeling tool, we can build model structure and make registration of 
part i on the initial multi-viewpoint frames f~,(0) (v = 1 , - - . ,  V; i = 1, - - - ,  N) 
where V is the maximum number of viewpoint and N is the maximum number 
of constituent parts. The registration gives: 

1. Initial shape and pose parameters. 
2. The correspondence between the initial model data and the initial measure- 

ments for tracking in the succeeding frames, to determine to which model 
sample on a part the measurement corresponds. 
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4.2 Es t imat ion  Strategy  

In general, multi-part objects essentially include some constraints based on their 
structure, which are useful to reduce the search space. In a proposed method, we 
use a simple top-down strategy under the structural constraints to reduce the 
computation time. We impose the following structure constraints on objects: 
1) Usual objects can be expressed as hierarchical tree structures of parts; 2) 
these constituent parts are connected via articulation points one another. As a 
result, pose parameters of a part have an influence on its descendant parts, and 
consequently, it leads to the quasi-optimal solution. 

1. Set i = root. 
2. Estimate the parameters of part;. 
3. If it has child parts, then estimate their parameters recursively(goto 2). 
4. If not, stop the recursion. 

4.3 Parameter  Est imat ion  of  Each Part 

M o d e l  F i t t i n g  P r o b l e m  In our analysis-by-image-synthesis approach~ the pa- 
rameter estimation can be reduced into the model fitting of the measurements 
based on a proper numerical analysis. When the error between the model and 
the measurements is represented by d j, in general, the objective function E is 
defined as the follows: 

(wjp(dj)) (4) 
J 

In this paper, we simply used p(x) = x 2, wj = 1 and mctrie is min. Therefore, 
we define the error between the model sample points and the measured points 
as the following equation, and minimize it: 

E (s) v (5) 

where vpi is the number of corresponding pairs on part~ from viewpoint v and 
s is a computation time to minimize. 

Detai l s  of  Parameter  Est imat ion  

S t e p  1 Determine the correspondence between the model points and given mea- 
sured points from each viewpoint frames f~,(t) (v = 1 , . . . ,  V): 

(1.1)  Select visible model sample points: 
Since the object model consists of multi-parts, the projection of tile 
model includes two kinds of the occlusion: 1) self-occlusion caused by 
a part itself, 2) occlusion caused by the other parts. 
To deal with such occlusion, we have to delete model sample points do 
not appear on the projection. 
The selection process proceeds as follows: 
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1. Making the projection for all parts by using a Z-buffer technique. 
2. Collect model sample points on pat t i  from the projection. 

In this way, points which should be measured can be selected in acco> 
dance with model-based approach(top-down processing). 

(1.2) Select good measured points for tracking: 
Among the measured points on pat t i  at previous frame, select the track- 
able measured points. In addition, to deal with model sample points 
newly appeared in (1.1), extract other good measured points to track 
in the place of lost measured points. This is performed completely in a 
bottom-up way. 

(1.3) Determine corresponding pairs: 
it. Delete the corresponding pairs for the model sample points deleted 

because of new occlusion in (1.1), and non-trackable measured points 
in (1.2). 

2. Get new corresponding pairs between model sample points newly ap- 
peared because of disocclusion in (1.1) and newly found good mea- 
sured points to track in (1.2). the correspondence is determined by 
2D Euclidean distance similarity. 

We have acquired the following information at the current frames, using 
the results which are obtained at the previous frame: 
1) The correspondence between the model sample points and selected 
measured points at previous frame f~(t  - 1): 

{(~'Um}(t - 1), ~Vm}(t - 1)) T, (v Uj(t - 1), "Vj(t - 1))T}, 

2) The correspondence between tracked measured points: 

{([~(t),  !~j(t)) , 1), V)( t -1))  T} 

Using the above two consequences, we can get the initial correspon- 
dence(hypothesis) between the model sample points (v Umj (t),i "1,;,~} (t)) T 

and selected measured points (~U~(t) , ' tS i ( t ) )  T at current frame f~(t) ,  
which should be estimated: 

{C'u~}(t), ~v~j(t)) ~, C'uj(t), ~%;(t))~}. 
Step 2 Estimate the parameters iteratively: 

(3.1) Tuning each parameter ak to converge toward the orientation of gradient- 
descent: 

, 1~ O E , ( s )  a~(s + 1) = ak(s) - 3(s + *J O~i:,)' (6) 

where k E {a,.-.,ba, rl , . . . ,ca} and 8(s) is the step size. 
(8.2) Compute the objective function E~(s+l) for the following correspond- 

ing pairs between the model sample points(should be updated) and se- 
lected measured points(in the following formula, the flow number t is 
omitted, s means the iteration time): 

v t t 

w h e r e j c ~ P i  v = l , . . . , V .  
(a.a) Go to (a.1) unless the function converges. 
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5 Experimental Results 

The proposed method is performed in the following sequence: First, to acquire 
a sequence of multi-viewpoint frames, real cameras are mutually calibrated, a.nd 
then virtual cameras to make model views are set up in the same configuration. 
Then, using the interactive modeling tool, we make a model structure of a object 
and get initial model parameters. Finally, to extract the object, based on the 
initial model(and the result of registration), we estimate model parameters from 
frame to frame. In the experiment, to evaluate the basic performance of the 
proposed method, we have applied it to synthesized image data. We have created 
the synthetic data  rendered by employing three virtual cameras orthogonally 
calibrated. We have used an object having serious occlusion, i.e., one consists of 
three parts connected by two joints, like an arm. We have used a steepest descent 
method as gradient-based minimization in estimating their parameters. Fig.1 
shows the input model views acquired from virtual cameras and reconstruction 
of the estimated model views from the same viewpoint. Fig.2 shows the transition 
of the number of the corresponding pairs on middle part. Each bar represents 
the number of the corresponding pairs( the black bars are newly appeared, the 
grays are even lost and the whites are tracked). These results show that,  in case 
we must depend on a.n unstable feature tracking method, using this model-based 
approach, we can select only the proper corresponding pairs between the model 
data and the measurement. 

Fig. 1. (Left): Input views. (Right): Reconstruction of estimated model views from the 
same viewpoint. Each row indicates time-varying sequences at one time interval, and 
e~ch column indicates multi-viewpoint frames(front,left,up). 
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Number Corresponding Pairs:  Par  t 2 
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6 frame 

Fig. 2. the transition of the number of the corresponding pairs(on middle part). 

6 Conclusions 

To map efficiently the real world objects into a virtual environment, we have 
adopted two kinds of information: one is a priori object model, which consists 
of deformable parts; the other is a posteriori observation, which means recov- 
ering 3D shape and pose parameters from images. And we have explained the 
advantages in our approach is that non-rigid multi-part objects can be handled, 
and a multiple cameras are employed to deal with self-occlusion among their 
parts. The experiments using synthetic data have proved the basic performance 
of the proposed method. In future work, we plan precise experiments using real 
image data.. Moreover, to acquire more precise model, we try to introduce local 
deformation into a model. To develop a real-time system is also a future work. 
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