
Drawable and Forbidden Minimum Weight 
Triangulations * 
(Extended Abstract) 

William Lenhart 1, Giuseppe Liotta 2 

1 Department of Computer Science, W~Uiamq College, WUliam~town, MA 01267. 
lonhart@ca, villiams, odu 

Dipartimento eli Informatica e Sistemistica, Universit~ di Roma 'La Sapienza', via 
Salaria 113, 1-00198 Roma, Italia. 

liott L@dis. uniroyal, it 

Abstrac t .  A graph is minimum weight drawable if it admits a straight- 
line drawing that is a minimum weight triangulation of the set of points 
representing the vertices of the graph. In this paper we consider the prob- 
lem of characterizing those graphs that are minimum weight draw~ble. 
Our contribution is twofold: We show that there exist infinitely many 
triangulations that are not minimum weight drawable. Furthermore, we 
present non-trivial classes of triangulations that are minimum weight 
drawable, along with corresponding linear time (real RAM) algorithms 
that take as input any graph from one of these classes and produce as 
output such a drawing. One consequence of our work is the construction 
of triangulations that are minimum weight drawab|e but none of which 
is Delaunay drawable--that is, drawable as a Delaunay triangulation. 

1 Introduction and Overview 

Recently much attention has been devoted to the study of combinatorial prop- 
erties of geometric graphs such as Delaunay triangulations, minimum spanning 
trees, Gabriel graphs, relative neighborhood graphs, ~-skeleton graphs, and rect- 
angle of influence graphs. This interest has been motivated in part by the im- 
portance of these structures in numerous application areas, including computer 
graphics, pattern recognition, computational morphology, communication net- 
works, numerical analysis, computational biology, and GIS. 

Geometric graphs are 2-dimensional straight-line drawings that satisfy some 
additional geometric constraints. The problem of analyzing the combinatorial 
properties of a given type of geometric graph naturally raises the question of 
the characterization of those graphs which admit the given type of straight-line 
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drawing. This, in turn, leads to the investigation of the design of efficient algo- 
rithms for computing such a drawing when one exists. Although these questions 
are far from being resolved in general, many partial answers have appeared in 
the literature. We give two such examples below. 

A Gabriel graph (a~o called Gabriel drawing in the graph drawing literature) 
is a straight-line drawing such that two vertices u and v are adjacent if and only 
if the disk having u and v as antipodal points does not contain any other vertex 
of the drawing. Trees that admit a Gabriel drawing are characterized in [3]. 
Lubiw and Sleumer [25] show that every maximal outerplanar graph is Gabriel 
drawable. In [19] the characterization is extended to all outerplanar graphs. The 
area required by Gabriel drawings is investigated in [24]. 

Delaunay triangulations are planar straight-line drawings with all internal 
faces triangles and such that three vertices form a face if and only of the the 
disk passing through them does not contain any other vertex of the triangula- 
tion. To our knowledge, no complete combinatorial characterization of Delannay 
drawable triangulations has been given to date. Di Battista and Vismara [7] 
give a characterization based on a non-linear system of equations involving the 
angles in the triangulation. Dillencourt has shown that all Delaunay drawable 
triangulations are 1-tough, and have perfect matchings [11], and that all maxi- 
mal outerplanar graphs are Delaunay drawable [10]. Dillencourt and Smith [12] 
show that any triangulation without chords or non facial triangles is Delan- 
nay drawable. A survey on the problem of drawing a graph as a given type of 
geometric graph can be found in [5]. 

In this paper we consider a special type of straight-line drawing, a minimum 
weight drawing, whic~ has applications in areas including computational geom- 
etry and numerical analysis. Let C be a class of graphs, let P be a set of points 
in the plane, and let G be a graph such that 

1. G has vertex set P, 
2. the edges of G are straight-line segments connecting pairs of points of P, 
3. G E C, and 
4. the sum of the lengths of the edges of G is minimized over all graphs satisfying 

1-3. 

We call such a graph G a minimum weight representative o[ C. Given a graph 
G E C, we say that G has a minimum weight drawing for class C if there exists 
a set P of points in the plane such that G is a minimum weight representative 
of C. For example, a minimum spanning tree of a set P of points is a connected, 
straight-line drawing that has P as vertex set and minimizes the total edge 
length. So, letting C be the class of all trees, a tree G has a minimum weight 
drawing if there exists a set P of points in the plane such that G is isomorphic 
to a minimum spanning tree of P. A minimum weight triangulation of a set P is 
a triangulation of P having minimum total edge length. Letting C be the class 
of all planar triangulations, a planar triangulation G has a minimum weight 



drawing if there exists a set P of points in the plane such that G is isomorphic 
to a minimum weight triangulation of P. 

The problem of testing whether a tree admits a minimum weight drawing is 
essentially solved. Monma and Suri [27] proved that each tree with maximum 
vertex degree at most five can be drawn as a minimum spanning tree of some set 
of vertices by providing a linear time (real RAM) algorithm. In the same paper it 
is shown that no tree having at least one vertex with degree greater than six can 
be drawn as a minimum spanning tree. As for trees having maximum degree equal 
to six, Eades and Whitesides [13] showed that it is NP-hard to decide whether 
such trees can be drawn as minimum spanning trees. The representabflity of 
trees as minimum spanning trees in three-dimensional space was studied in [23]. 

Surprisingly, little seems to be known about the problem of constructing 
a minimum weight drawing of a planar triangulation. Moreover, it is still not 
known whether computing a minimum weight triangulation of a set of points in 
the plane is an NP-complete problem (see Garey and Johnson [14]). Several pa- 
pers have been published on this last problem, either providing partial solutions, 
or giving ei~cient approximation heuristics. See, for example, the work by Meijer 
and Rappaport [26], Lingas [22], Keil [15], Dickerson et al. [8], K£rkpatrick [16], 
Aichholzer et al. [I], Cheng and Xu [4], and Dickerson and Montague [9], Lev- 
copoulos and Krznaric [21, 20]. 

The problem examined in this paper is that of characterizing those triangu- 
lations that admit a minimum weight drawing. In [18, 171 it was shown that all 
maximal outerplanar triangulation are minimum weight drawable and a linear 
time (real RAM) drawing algorithm for computing a minimum weight drawing 
of these graphs was given. 

Our contributions here are the following: 

1. Exploit the relationship between locally minimum weight triangulations and 
minimum weight triangulations to construct classes of triangulations that 
are not minimum weight drawable. 

2. Exhibit an ~nflnRe class of triangulations that can be drawn as minimum 
weight triangulations but not as Delannay triangulations. 

3. Establish the minimum weight drawabUity of several non-trivial classes of 
triangulations, including wheels, spined triangulations, and nested triangu- 
lations. (For definitions see Section 2) 

4. Investigate the combinatorial structure of minimum weight triangulations by 
means of the notion of skeleton of a triangulation, that is the graph induced 
by the set of its internal vertices. We show that any forest can arise as the 
skeleton of a minimum weight drawable triangulation. 

5. Present linear time, real RAM algorithms that accept as input a minimum 
weight drawable triangulation of one of the types mentioned above and pro- 
duce as output a minimum weight drawing of that triangulation. 

Our algorithmic techniques generalize drawing strategies that have been 



devised in recent years to compute proximity drawings of graphs (see, e.g., 
[2, 6, 19]). 

For reasons of space, the proofs have been omitted in this extended abstract. 

2 P r e l i m i n a r i e s  

We first discuss some terminology and define classes of triangulations that are of 
interest in this paper. We then recall some basic properties of m!nimum weight 
triangulations. 

Many classes of graphs arise from using some geometric constraint to de- 
fine edges on a set of points in the plane. Three such classes, Gabriel graphs, 
Delaunay triangulations and minimum weight triangulations, have already been 
mentioned. Given a certain class C of graphs defined by such a method, we can 
define a graph G as being O drawable if G is isomorphic to some member of C. 
Thus in the rest of the paper we will refer to certain triangulations as being, for 
e~ample, Delaunay drawable, minimum weight drawable, locally minimum weight 
drawable (see below for a definition) and so forth. 

We make particular use of some special types of triangulations. A fan consists 
of a cycle a, vl ,v2, . . .  ,v,~ along with edges from a to each vertex v~. The vertex 
a is called the apex of the fan, and the vertices v~ are called the neighbors of a. 
The edges av~ are called the radial edges of the fan. 

A wheel graph (or wheel, for brevity) is a triangulation consisting of a cycle 
and a single vertex c, called the center of the wheel, adjacent to all vertices on 
the cycle. The edges from c to the vertices of the cycle are called the spokes of 
the wheel. 

The class of k-nested triangulations can be recursively defined as follows. A 
three-cycle is a 0-nested triangulation. For k > 0, a k-nested triangulation is 
defined to be one having a triangular outer face, the deletion of which results in 
a k - 1-nested triangulation. Figure 1 (b) shows a 3-nested triangulation. 

Another family of triangulation we will study in this paper is the class of 
k-spined triangulations. Each element of the class is obtained by k-spining K4. 
Let ao, ax, a2 be the vertices on the outer face and let c be the interior vertex of 
K4. k-splnlng K4 consists of replacing edge ca2 with a path of k vertices such 
that each new vertex is adjacent to both ao and al. The resulting triangulation 
is a k-spined triangulation. Figure 1 (c) and (d) show a 1-spined and a 2-spined 
triangulation, respectively. The Delaunay drawability of spined triangulations is 
studied in [10]. 

The skeleton of a triangulation is the graph induced by the set of its internal 
vertices. For example, the skeleton of a maximal outerplanar graph is the empty 
graph, the skeleton of a wheel graph consists of just one vertex (the center of 
the wheel). Figure 1 (a) shows a triangulation whose skeleton is a tree. In the 
figure, the skeleton is highlighted. 
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(a) (b) (c) (d) 

Fig. I. (a) A Triangulation whose skeleton is a tree, (b) A 3-nested triangulation, (c) 
A 1-spinsd triangulation, and (d) A 2-spined triangulation. 

We list some basic properties of minimum weight triangulations. 

P r o p e r t y  2.1 A minimum weight triangulation of a set S of points in the plane 
always includes the shortest edge between two points of S and the all edges of 
the conve.z hull of S. 

Property 2.2 The minimum weight triangulation of a set S of points in the 
plane need not contain the minimum spanning tree o.f S as a subgraph. 

If T is a triangulation, and abd and bed are two triangles of T which form 
a convex quadrilateral, then the operation of replacing edge bd with edge ac is 
called an edge flip. A triangulation T is locally minimum weight if no single edge 
flip reduces the weight of T. 

P r o p e r t y  2.3 If  a triangulation cannot be drawn as a locally minimum weight 
triangulation, then it cannot be drawn as a minimum weight triangulation. 

In this paper we will explore the relationship between minimum weight draw- 
able triangulations and Detaunay drawable triangulations. To our knowledge, 
no complete combinatorial characterization of Delaunay drawable triangulations 
has been to date given [10, 12, 11]. Di Battista and Vismara [7] give a charac- 
terization based on a non linear system of equations involving the angles in the 
triangulation. Dillencourt [10, 11] gives a set of necessary conditions for Delau- 
nay drawability of a triangulation. In the following theorem, T is a triangulation, 
P a subset of the set S of the vertices of T, IPI is the cardinality of P, and T -  P 
is the graph obtained by removing P (and all attached edges) from T. 



T h e o r e m  1. [10, 11] If a triangulation T can be drawn as a Delaunay triangu- 
lation, then for any given P C_ S the following two conditions hold. 

I. T is 1-tough, that i s ,  T - P has at most IPI components. 

2. T - P contains at most IP] - 2 components that do not contain any vertez. 
of the outer face of T.  

3 Forbidden Triangulations 

In Section 3.1 we show classes of minimum weight forbidden triangulations, i.e. 
triangulations that are not minimum weight drawable. Interestingly, the trian- 
gulations in these classes are also Delaunay forbidden, that is, they cannot be 
drawn as Delaunay triangulations. This observation leads us to compare mini- 
mum weight and Delaunay forbidden triangulations. In Section 3.2 we show an 
infinite family of triangulations that are minimum weight drawable and Delaunay 
forbidden. 

3.1 Minimum weight forbidden triangulations 

Our first lemma gives a set of necessary conditions that a triangulation must 
satisfy in order to be a locally minimum weight triangulation. 

To any vertex v and incident face f of a triangulation T, we associate a 
variable a = a(v, f )  called the angle of f at v; collectively these variables are 
called the angles of T. Any straight-line drawing of T determines values for 
these variables, and thus certain relations among the angles of T must hold. If 
the triangulation is to be locally minimum weight, additional relations among the 
magnitudes of the angles must hold. We define the magnitude of ~ by re(a) = 1 
if (~ is obtuse and m((~) = 0 otherwise. 

Lernma 2. Let T be a locally minimum weight triangulation. Then there exists 
an assignment of values to the angles of T such that the following condition 
holds: 

For each pair of faces f t  and f2 o f T  that share an edge e, the two angles al  
in f l  and a2 in fz opposite e satis~ re(a1) + m(c~2) < 1. 

We can thus use Property 2.3 and Lemma 2 to identify forbidden triangula- 
tions. 

Theorem 3. Any triangulation containing either the graph of Figure 2 (a) or 
the graph of Figure 2 (b) as an induced subgraph is minimum weight forbidden. 



(a) (b) 

Fig. 2, Two examples of triangulations that cannot be drawn as minimum weight 
triangulations. 

3.2 M [ - i m u m  weight  d rawab le  a n d  D e l a t m a y  fo rb id d en  
t r i a n g u l a t i o n s  

Lernrna  4. Every graph in the class described by Theorem 3 is also Delaunay 
forbidden. 

The above lemma motivates us to investigate the relationship between De- 
launay forbidden and minimum weight forbidden triangulations. 

L e r n m a  5. The triangulation of Figure 3 is Delaunay forbidden and minimum 
weight drawable. 

The result of Lemma 5 can be generalized to an infinite class of triangulations 
that  are Delaunay forbidden and minimum weight drawable. 

T h e o r e m  6, There exists an infinite class of triangulations that are Delaunay 
forbidden and minimum weight drawable. The graphs of this class are obtained 
by k-spining some K4 in the triangulation of Figure 3 (a) for k > O. 

Figure 3 (c) shows an example of a triangulation that  belongs to the class 
described in Theorem 6, obtained by 1-spining in Figure 3 (a) the / (4  induced 
the set of vertices {no, c, al, b}. 

4 Classes of Minimum Weight Drawable Triangulations 

In this section we construct several classes of minimum weight drawable triangu- 
lations. The first two subsections discuss triangulations whose skeleton is either 



az a~ 

aO a l  ~0 a !  

(a) (b) (c) 

Fig. 3. (a) A triangulation T that is Delatmay forbidden, (b) A drawing of T that is 
a minimum weight triangulation, and (c) A forbidden Delaunay and minimum weight 
drawable triangulation obtained by 1-spiaing the subgraph of T induced by the vertices 
{no, e, al, b}. 

a forest (Subsection 4.1) or a set of nested triangles (Subsection 4.2). Wheel 
graphs are a special case of the first class of triangulations. The last subsection 
(Subsection 4.3) is devoted to k-spined triangulations. 

4.1 Wheel Graphs and Skeletons 

In the previous section we established that a triangulation T may contain a sub- 
graph which prevents T from being drawn as a minimum weight triangulation. 
This lea& us to examine the structure of the skeleton of the triangulation. We 
show here that any forest can occur as the skeleton of a minirnum weight trian- 
gulation. This is accomplished by describing methods for drawing any fan as a 
minimum weight triangulation, extending a minimum weight drawing of a fan 
by adding an additional fan, and repeating the previous step to build rnlnimllrn 
weight drawings the skeletons of which are arbitrary forests. 

The simplest fan of interest to us is a kite: a fan with apex a having exactly 
three neighbors b, c, d. Clearly such a graph is minimum weight drawable; in fact 
any fan is minimum weight drawable. We will be interested in a certain type 
of minimum weight drawing of a fan. Let d(x, y) denote the Euclidean distance 
between points z and y in the plane. 

LemmaT.  Let F = {a, vx, . . .  ,v,,} be a fan with apex a, Consider a drawing o] 
F such that v l , . . . , v n  are collinear and.for all 1 <_ i < j < k <_ n, d(vi, v~) > 
d(vj, a). Then there exists r > 0 such that if each v~ is moved away from a along 
the line via by a distance of at most r so as to form a convex drawing of F, the 
drawing so formed is a minimum weight drawing. 



Using this lemma, a minimum weight drawing of any wheel can be obtained 
as follows: Delete one of the exterior vertices of the wheel, draw the fan that 
remains as in the preceding lemma, then replace the deleted vertex suitably far 
away from the rest of the fan. 

We now describe a method for joining a minimum weight drawing of a given 
triangulation to one of a fan; it will be of use in our later constructions. Let 
F be a fan with apex a having neighbors {v l , . . . ,  v,} which has been drawn 
according to Lemma 7. Fix a particular vertex vi, 1 < i < n and let 0,7 > 0 be 
any angles satisfying the following conditions: 

1. 0 + r  is no larger than /v i - lv iv i+ l ;  
2. if i _> 3 then 0 + t.vi-2v~-lvi < lr; and 
3. if i _ n - 2 then r +/v~-2vi+lvi < 7r 

where all angles are internal angles of F .  Let L~-I be the line through vi-1 
maBng counterclockwise angle 8 with segment vi-lui, and let L~+I be the line 
through vi+l making clockwise angle r with segment vi+lvi. Let R be the quadri- 
lateral region bounded by Li-1, Li+1, vi-lvi,  and vi+lv~, and let Dr(v1) be the 
circle of radius r centered at nl, where r satisfies 

1 
r < ~ min{d(v~, v~) - d(vy, a) : 1 <_ i < j < k < n}. 

Finally, S(r, O, r) = Dr(v1) n R; S(r, O, r)  is called a safe region of F at vi. 

L e m m a S .  Let F = {a,v~,. . .  ,v,,} be a fan with apex. a, let 8(r,8,~-) be a safe 
region of F at vi, 1 < i < n, and let X be a finite subset of S(r, O, "r). Then a 
minimum weight triangulation of P-= {a, vl, .. . , v,,} U X can be obtained as the 
union of a minimum weight drawing of F ,  any minimum weight triangulation of 
X U {vl}, and all edges from vi-1 and m+l to X U {vi} which cross no edge of 
the triangulation of X U {vi}. 

Observe that the preceding lemma can be used on a fan consisting of a single 
kite; this gives a second method for constructing a wheel having n > 3 spokes: 
just attach a fan having n - 3 radial edges to a kite. Note also that given any 
fan F,  we can choose X in the preceding lemma such that the only minimum 
weight triangulation of X U {vi} is isomorphic to T .  Thus we can view Lemma 8 
as providing a method for gluing any fan F with apex u to another fan F at 
(non-apex) vertex v by identifying u with v. The ideas contained in the proof 
of the lemma can also be used to design an efficient algorithm for producing 
a minimum weight drawing of a wheel. Since constructing a minimum weight 
drawing of a wheel with three spokes is trivial, it is straightforward to establish 
the following result. 

T h e o r e m  9. Every wheel is minimum weight drawable, and its minimum weight 
drawing ran be computed in linear time in the real RAM model of computation. 
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In order to prove that every forest can occur as the skeleton of a minimum 
weight triangulation, we require a method of attaching several triangulations to 
an existing fan. The preceding lemma, along with the next definition, will give 
118 one. 

DeAnltion 10. Let L be a set of line segments in the plane. Two regions A and 
B of the plane are mutually invisible with respect to L if for each pair of points 
a E A and b E B, segment pcI intersects some segment of L. 

L e m m a l l .  Let F = {a, vx , . . .  ,v,~} be alan with apex a, let F' C F be a set of 
pair~ise non-adjacent neighbors of a such that vx,vn ~ F', and for each vi E F', 
consider the kite {vi- l ,v i ,  vi+1,a} in F.  Choose r > 0 as in Lemma 8, and, for 
each vl e F f, choose {01,v i} so that the safe regions S(r, Oi,ri) are mutually 
invisible with respect to F. Finally, .for each v~ e F*, let X~ be a finite subset of 
S(r, 0i, •). Then a minimum weight triangulation of P = (a, v l , . . . ,  vn} U {Xi : 
vi E F '}  can be obtained as the union of a minimum weight drawing of F, any 
minimum weight triangulations of the seta X~kJvi, for each v~ E F ,  and all edges 
from each vi-1 and v~+l to X~ U v~ which cross no edge of the triangulation of 
X~ U v~. 

T h e o r e m  l2.  Any forest can be realized as the skeleton of some minimum 
weight triangulation. 

4.2 k-nested Triangulations 

L e m m a  13. Let T be a triangulation u~th triangular outer face, and let T' be 
the triangulation obtained by deleting the vertices on the outer face of T. If T'  
has a triangular outer face and is minimum weight drawable, so is T. 

An application of Lemma 13 is the following. 

Theorem 14. Every k-nested triangulation is minimum weight drawabIe, and 
its minimum weight drawing can be computed in linear time in the real RAM 
model of computation. 

4.3 k-spirted Triangulations 

L e m m a  15. Let T be a triangulation with triangular outer face fo, and let T ~ 
be obtained by adding a vertex v in the outer ]ace of T and connecting v with all 
vertices of fo. If  T is minimum weight drawabte, so is T'. 

An application of Lemma 15 is the following. 
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T h e o r e m  16. Evew k-spined triangulation is minimum weight drawable, and 
its minimum weight drawin 9 can be computed in linear time in the real RAM 
model of computation. 

5 Open Problems 

Several problems remain open towards characterizing which graphs admit a min- 
imum weight drawing; among the most relevant are: Does every triangulation 
whose skeleton is a forest admit a minimum weight drawing? Are there any De- 
launay drawable but minimum weight forbidden triangulations? Are there other 
necessary conditions of the type expressed by Lemma 2. 
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