
O n E m b e d d i n g a n O u t e r - P l a n a r G r a p h i n a

P o i n t S e t

Prosenjit Bose 1'2

School of Computer Science, Carleton University, 1125 Colonel By Drive, Ottawa,
Ontario, Canada, K1S 5B6. E-mail: jit@scs.carleton.ca.

2 Research supported by NSERC Grant OGP0183877 and a FIR Grant.

Abstract . Given an n-vertex outer-planar graph G and a set P of n
points in the plane, we present an O(nlog s n) time and O(n) space algo-
rithm to compute a straight-line embedding of G in P, improving upon
the algorithm in [GMPP91, CU96] that requires O(n 2) time. Our algo-
rithm is near-optimal as there is an ~(nlogn) lower bound for the prob-
lem [BMS95]. We present a simpler O(nd) time and O(n) space algorithm
to compute a straight-line embedding of G in P where log n _ d < 2n is
the length of the longest vertex disjoint path in the dual of G. Therefore,
the time complexity of the simpler algorithm varies between O(n log r~)
and O(n 2) depending on the value of d. More efficient algorithms are
presented for certain restricted cases. If the dual of G is a path, then an
optimal O(n log n) time algorithm is presented. If the given point set is
in convex position then we show that O(n) time suffices.

1 Introduct ion

The problem of deciding whether a certain combinatorial structure can be em-
bedded in the plane, as well as computing an embedding of that structure has
been a recurrent theme in many fields but particularly in graph drawing. From
a graph drawing perspective (see [DETT94] for a survey of graph drawing), the
traditional questions ask whether a graph can be embedded in the plane such
that some criterion is satisfied e.g., that the area of the resulting embedding is
small [CP95, KLTT93], that the symmetry present in the graph is revealed in
the embedding [MA88], or that the graph is isomorphic to a proximity graph
JEW94, MSgl, BDLL95, BLL96] of the points in which the vertices are embed-
ded.

The embedding problem that we address has a slightly different perspective:
both the point set and the graph are given as input. We want to determine if
the input graph can be straight-line embedded in the input point set. We say
that an n-node graph G -- (V, E) can be straight-lithe embedded onto a set of n
points P, if there exists a one-to-one mapping ~: V --, P from the nodes of G
to the points of P such that edges of G intersect only at nodes. That is, edges

n = 0, for all 1vl # u2v2 e E.
The definition of a straight-line embedding implies that G must be a planar

graph in order for a straight-line embedding of G onto P to exist. However, even
if G is planar, there exist point sets that do not admit a straight-line embedding

26

of G. See Figure 1 for such an example. This raises an interesting open question:
Given a planar graph G and a point set P, can G be straight-line embedded in
P? We believe that this problem is NP-complete. Although the question when
G is a planar graph remains unanswered, progress has been made when G is
restricted to a subclass of planar graphs.

•

Input Graph G Input Point Set P

Fig. 1. A graph that cannot be straight-line embedded in a point set.

When the class of graphs is restricted to trees, Perles at the 1990 DIM_kCS
workshop on arrangements posed the following question: Given n points P in
general position and an n-node tree T rooted at node •, can T be straight-line
embedded in P with v at a specified point p E P? Peries showed that this was
always possible if p was on the convex hull of P, which is the smallest convex
set containing the points P. Pach and TSr6csik [PT93] showed that it could
if p was not the deepest point of P, obtained by repeatedly discarding points
on the convex hull. Subsequently, Ikebe et. ai ~IPTT94] showed that there was
always such an embedding using a quadratic time algorithm. In fact, all three
algorithms use quadratic time. Finally, Bose et. al [BMS95] proved an JT(n log n)
lower bound for the problem and provided a matching O(n log n) time embedding
algorithm.

With the embedding problem being resolved when the input graphs are re-
stricted to trees and unresolved when the input graphs are planar, a natural
question to ask is what is the largest subclass of planar graphs that admits
a straight-line embedding on any point set. Gritzmann et ai. [GMPP91] first
showed that the class of outer-planar graphs is the largest class of graphs that
admits an embedding in any point set and provided an embedding algorithm
that runs in O(n 2) time (Castafieda and Urrutia [CU96] later rediscovered this
theorem).

In this paper, we present an O(n log s n) time and O(n) space algorithm to
compute a straight-line embedding of an n-vertex outer-planar graph G in a set
P of n points in the plane. Since a tree is an outer-planar graph, the ~(n log n)
lower bound for trees [BMS95] also holds in this case, thereby implying that our
algorithm is optimal to within a polylogarithmic factor. We present a simpler
O(nd) time and O(n) space algorithm to compute a straight-line embedding
of G in P where logn < d < 2n is the length of the longest vertex disjoint

27

path in the dual of G. Therefore, the time complexity of the simpler algorithm
varies between O(n logn) and O(n~). More efficient algorithms are presented for
certain restricted cases. If the dual of G is a path, then an optimal {9(n log n)
time algorithm is presented. If the given point set is in convex position then we
show that O(n) time suffices.

2 Notation and Preliminaries

We begin by defining some of the graph theoretic and geometric terminology
used in this paper. For more details see IBM76] and [PS85].

A graph G = (V, E) consists of a finite non empty set V(G) of vertices, and
a set E(G) of unordered pairs of vertices known as edges. An edge e E E(G)
consisting of vertices u and v is denoted by e = uv; u and v are called the
endpoints of e and are said to be adjacent vertices or neighbors.

A drawing of a graph G = (V, E) is a function which maps the vertices of G
to points in the plane and edges of G to curves in the plane such that for each
edge e = uv, the endpoints of the curve corresponding to e are the points in the
plane corresponding to u and v. A drawing of G is called a planar drawing if
no curve intersects itself or any other curve, except possibly at its endpoints. A
graph is said to be planar if it admits a planar drawing. A straight-line drawing
of a graph G is a drawing in which each edge corresponds to the line segment
between its endpoints. All planar graphs admit straight-line planar drawings
[F~4S].

An outer-planar graph is a planar graph where every vertex is on the ex-
ternal face. A maximal outer-planar graph is an outer-planar graph that is no
longer outer-planar with the addition of a single edge. Each internal face of a
maximal outer-planar graph is a triangle. Note that an algorithm that can em-
bed a maximal outer-planar graph can embed any outer-planar graph G simply
by adding extra edges to G making it maximal, embedding the maximal graph
and then removing the extra edges. Therefore, in the remainder of the paper, all
outer-planar graphs are considered maximal.

Let G be a maximal outer-planar graph. Let Ext(G) represent the external
face of G. We adopt the convention that the vertices of a maximal outer-planar
graph G are labelled {Vo,Vl,...,v,~-l} as they appear on Ext(G) (i.e. v~ is ad-
jacent to vi+l,i = 0, . . . ,n - 1 addition taken modulo n). An edge e e Ext(G) is
an external edge of G.

The dual G* of a maximal outer-planar graph G = (V, E) is defined as
follows. Each triangle or face (excluding the outer face) of G is a vertex of G*.
Two vertices of G* are adjacent if the corresponding faces in G have an edge in
common. Since G is maximal outer-planar, G* is a tree with maximum vertex
degree 3. See Figure 2 for an illustration.

All planar point sets are assumed to be in general position, i.e. no three
points are collinear. Let P be a set of n points in the plane. Given a, b E P, the
open and dosed line segments defined by a and b are denoted by (a, b) and In, b],

28

Fig. 2. A maximal outer-planar graph and its dual.

respectively. Given three points a, b, c E P, by L(a, b, c) we mean the clockwise
angle between [b, a] and [b, c] (see Figure 3).

L

C

Fig. 3. Illustration of the angle (a, b, c).

(a,b,c)

3 Embedding Algorithm Outline

We begin by outlining a few of the ideas presented in [GMPP91] and [CU96]. A
key concept in their embedding algorithms is the (r, s)-triangle. There are two
types of (r, s)-triangles (defined below), one defined on a maximal outer-planar
graph and the other defined on a point set.

In the discussion to follow, G is an n vertex maximal outer-planar graph and
P is a set of n points in the plane.

Definition 1. Let u, v, w be three mutually adjacent vertices of G. Triangle
A(u, v, w) is an (r, s)-triangie of G provided that uv is an external edge of G
and the two components of G \ ~u, v, w} have r and s vertices, respectively, such
that r + s -- n - 3.

29

In Figure 2, A(u, v, w) is a (5, 3)-trian~e of the graph.

Def in i t ion 2. Let r and s be two non-negative integers with r + s = n - 3. Let
a and b be two consecutive vertices on the convex hull of P and c E P. Triangle
A(a, b, c) is an (r, s)-triangle of P provided the following holds:

1. No point of P lies in A(a, b, c).
2. There is a line Ic through c that intersects the interior of A(a, b, c) such that

there are r points of P \ {a, b, c} on one side of lc and s points of P \ {a, b, c}
on the other side of l~. These sets are denoted as P~ and Ps, respectively.

$ • • •

• $ • • •

• • 0 0 i • •

Fig. 4. An (8, 7)-triangle.

In Figure 4, A(a, b, c) is an (8, 7)-triangle of the point set.
The main idea behind the embedding algorithm is to find an (r,s)-triangle

in G and map it to an (r, s)-triangle in P. The existence of an (r, s)-triangle in
G follows from the fact that the dual of G is a binary tree. The proof of the
existence of an (r, s)-triangle in P forms the basis of an embedding algorithm.
A proof of the following lemma appears in [GMPP91] and [CU96]. We provide
a similar but alternate proof in section 4.

L e m m a 3. [GMPP91] For any r, s >_ 0 such that r + s = n - 3 and any two
consecutive vertices a, b on the convex hull of P , there always exists a point c E P
such that A(a, b,c) is an (r,s)-triangle of P .

L e m m a 4. [GMPP91] Let G be an n-node mozimal outer-planar graph and P
be a set of n points in the plane. Let a and b be two consecutive vertices on
the convex hull of P . Let e = vivi+l be an external edge of G. There exists a
straight-line embedding of G on P with the added constraint that vi maps to a
and vi+l maps to b.

30

Proof. We proceed by induction on the number of vertices of G. The result holds
triviany if G has three vertices.
Inductive Hypothesis (k < n, n > 3): Let G be a k-node maximal outer-
planar graph and P be a set of k points in the plane. Let a and b be two
consecutive vertices on the convex hull of P. Let e = vivi+l be an external edge
of G. There exists a straight-line embedding of G on P with the added constraint
that vi maps to a and Vi+l maps to b.
Inductive Step (k = n): Let G be an n-node maximal outer-planar graph and
P be a set of n points in the plane. Let a and b be two consecutive vertices on
the convex hull of P. Let e = vivi+l be an external edge of G.

Since G is maximal outer-planar, there is a unique vertex v~ adjacent to both
v~ and v~+l. The node in the dual G* representing the triangle A(v~, v~+l, v~) has
degree at most two since edge v~v~+l is an external edge. This implies that the
removal of A(v~, v~+l, vk) decomposes G into two components with cardinalities
r and s respectively with r + s = n - 3. Therefore, A(v~,v~+l,v~,) is an (r,s)-
triangle of G.

By lemma 3, there is a triangle A(a, b, c) that is an (r, s)-triangle of P . Let
lc be the line through c as defined in definition 2. Map vi to a, v~+l to b and v~
to c. By construction, the edge [ac] is on the convex hull of P~ and the edge [bc]
is on the convex hull of P~.

Let/ / i and H2 be the subgraphs of G induced by {vk,..., v~} and {v~+l,. •., v~ }.
Both / /1 and H~ are maximal outer-planar, and edge vivk is an external edge
of/'/1 and edge v~+lvk is an external edge of/-/2. Since both/ ' /1 and H2 have
less than n vertices, by the inductive hypothesis,//1 can be embedded in P~
with edge v~vk mapping to [ac] and H2 can be embedded in P~ with edge V~+lVk
mapping to [bc]. The result follows.

As is often the case with inductive proofs, the proof of Lemma 4 directly
implies an algorithm to embed an outer-planar graph on a point set. The main
steps of the algorithm are outlined in Figure 5. The maximal outer-planar graph
to be embedded is G. All index manipulation is done modulo n. The time taken
by this algorithm depends on the time taken to perform steps 1-6. In essence,
the time can be expressed recursively as T (n) = T (n - k) ÷ T (k) ÷ ¢(n), with
1 < k < n - 1 and where ¢(n) represents the time taken to perform steps 1-6.

The adjacancy information of the graph G can be stored in a standard data
structure such as the doubly-connected edge list (DCEL) [PS85]. However, in
the algorithm, there is no need to modify the adjacency information, but merely
record the indicies of the vertices in the input graph in the recursive calls. All
adjacency queries, such as those made in step 1 of the algorithm are made on
the DCEL of G. Since each edge in G is adjacent to two triangles, the vertex vk
in step 1 can be found in constant time by identifying the unique vertex whose
index k falls in the range delimited by/~ and I~.

Step 2 can also be computed in constant time since the cardinalities of the two
sets can be computed from indicies of the three vertices forming the triangle. Step
5 is a constant time operation. Finally, step 6 is also a constant time operation,
given the indicies of the three vertices forming the triangle.

31

Embed(L, L, v~, vi+l, P, a, b)
Is and It are the start and end indicies of the vertices on the external face of the graph.
The edge mm+l is an external edge of the outer-planar graph.
P is a point set with points a,b on its convex hull.

1. Find the unique vertex vk in G (where k lies in the interval defined by L and I~)
adjacent to vl and vi+l.

2. Since/X(vi, re+l, vk) is an (r, s)-triangle of G, compute the cardinalities r and s.
3. Find c E P, such that triangle A(a,b,c) that is an (r,s)-triangle of P.
4. Compute P~ and Po, the sets on either side of the line l~, respectively.
5. Map vi to a, v~+l to b, and v~ to c.
6. Let HI and/ /2 be the subgraphs of G induced by {v~,.. . ,v~} and {v~+l,...,vh}.

The start and end indices for H1 are k and i, respectively and for//2 are i + 1 and
k, respectively.

7. If the number of vertices in H1 :> 3 then Embed(k, i, vk, v~, P~, a, c).
8. If the number of vertices in/-/2 _> 3 then Embed(i + 1, k, vi+l, v~, Po, b, c).

Fig, 5. Outline of algorithm to embed G in P.

Therefore, the main difficulty comes from steps 3 and 4: computing an (r, s)-
triangle in a point set. The complexity of the whole algorithm depends on these
two steps since the other four steps are constant time operations. In the next
section, we present a method for computing an (r, s)-triangle in a point set in
O(n) time with no preprocessing which will form the basis of our embedding
algorithms.

4 Simple Embedding Algorithm

In this section, we present a simple method for finding an (r, s)-triangle in a
point set and show how it is used in the simple embedding algorithm.

Let P be an n point set with a and b two adjacent vertices on the convex hull
of P. In the discussion to follow, for any line I through a and not b, the open
half-plane containing b shall be referred to as the right half-plane of l; similarly,
for any line l through b and not a, the open half-plane containing a shall be
referred to as the left half-plane of I.

L e m m a 5. For any r, s >_ 0 such that r + s = n - 3 and any two consecutive
vertices a, b on the convez hull of P , there always e~is~s a point c E P such that
/k(a, b, c) is an (r, s)-triangle of P.

Proof. Let 11 be a fine through a with s + 1 points of P (excluding b) in the
right half-plane of 11. Let L(a) represent these s + 1 points. Let 12 be a line
through b and a point c from L(a) such that the left half-plane of 12 contains no
points of L(a) (refer to Figure 6). Let 13 be the line through a and c. Triangle
A(a, b, c) is an (r, s)-triangle of P . Since there are at least s points of P m the
fight half-plane of/2 and at most s points in the right half-plane of/3 there must

32

be a line Ic through c intersecting the interior of A(a, b, c) with r points to one
side and s points to the other (excluding a, b, c).

/

~ e right of 13

Fig. 6. Computing an (r, s)-triangle.

From the proof of lemma 5, the steps involved in finding point c E P and
line lc such that A(a, b, c) is an (r, 8)-triangle of P are summerized below:

1. Find the line I1 through a.
2. Compute the set L(a).
3. Find the line I2 through b, identifying point c.
4. Find the line lc.

Recall that selecting the i th smallest element in an unsorted list of n elements
can be ac~eved in O(n) time (see [CLR90 D. Let x E P be the point such that
Z(x, a, b) is the (s + 2) '~d smallest. The point x can be found in O(n) time
using linear selection. The line 11 through a and x has s + 1 elements (excluding
b) in the right half-plane. The set L(a) can be constructed in O(n) time once
11 is found. Given L(a), notice that 12 is simply the through b and the point
y E L(a) such that /(a, b, y) is the smallest over all points in L(a). Therefore,
12 can be computed in O(n) time. Finally, lc can be found in O(n) time by
computing the point z E P such t h a t / (z , c , b) is the (s + 1) "~ among all points
in P. Therefore, given a set of n points, an (r, s)-triangle can be computed in
O(n) time. This immediately gives an O(n 2) time and O(n) space algorithm
for embedding an outer-planar graph in a point set since the recurrence for the
algorithm Embed(...) becomes T(n) = T(n - k) + T(k) + O(n) which solves to
O(n2).

33

Upon further consideration of the recurrence, we notice that the complexity
of the algorithm is actually dependant on the length of the longest path in the
dual of G. The algorithm is initiated with an initial invocation of Embed(O, n -
1, vi, V~+l, P, a, b). At each invocation, the algorithm embeds an (r, s)-triangle
and makes at most two recursive calls with smaller problem instances. The calling
relation forms a binary tree, which we refer to as the recursion tree for graph G,
denoted as RTa. An internal node of this tree has at least one child, and is an
instance of Embed(...) where an (r, s)-triangle is embedded with at least one of
r or s being non-zero initiating at least one recursive call. A leaf of the recursion
tree is an instance of Embed(...) where the size of the graph to be embedded is
3. The root of the tree represents the initial call and the depth of a node in the
tree represents its level of recursion. Let d be the length of longest path in the
dual tree G*. The depth of the recursion tree RTa cannot exceed d since every
root to leaf path in RTa represents a path in G*.

L e m m a 6. The depth of the recursion tree RTa does not exceed d, where d is
the length of the longest path in the dual tree G*.

Since at each level, the graph G is partitioned, the sum of the sizes of all
the problems at a particular level of RTG is O(n). The amount of time spent
in one invocation of Embed(...) excluding recursive calls is linear in the size of
the graph. All of the steps of the algorithm (refer to Figure 5) are constant time
except for the two steps involving the computation of an (r, s)-triangle, which
we showed is linear in the size of the problem. Therefore, the amount of time
spent by the algorithm is O(n) per level of RTa.

T h e o r e m 7. Given an n-vertex outer-planar graph G and a set P o.f n points in
the plane, G can be straight-line embedded in P in O(nd) time and O(n) space
where d is the length of the longest path in the dual of G.

5 N e a r - o p t i m a l E m b e d d i n g A l g o r i t h m

Our more efficient algorithm for embedding outer-planar graphs uses segments
from the convex hull to avoid intersections between embedded edges. Conse-
quently, we need efficient access to the convex hull of points. Moreover, we need
the ability to insert and delete points from the convex hull as we embed (r, s)-
triangles. Overmars and van Leeuwen's [OvL81] dynamic convex hull structure
permits arbitrary insertion into and deletion from a set of points while maintain-
ing the convex hull of the point set. Each update (insertion or deletion) costs at
most O(log 2 n) time over a sequence of O(n) updates.

If the points of P are placed in a dynamic convex hull maintenance structure
that supports insertions and deletions in O(log 2 n) time then we can find an
(r, s)-triangle without resorting to a linear time selection. We review the method
for computing an (r, .s)-triangle given the maintenance structure. CM will refer
to the convex hull maintenance structure. We can insert and delete points from

34

CM in O(log 2 n) time. Given a point x E CM, we can recover the point adjacent
to x on the current convex hull in O(logn) time.

Without loss of generality, assume that s < r. Let x E P be the point such
that L(x, a, b) is the (s + 2) na smallest. The point x can be found in O(s log 2 n)
time by deleting s + 2 times the convex hull point adjacent to a starting with
b. Store the deleted points in order of deletion into L(a). The line I1 through
a and x has s + 1 elements (excluding b) in the right half-plane. Given L(a),
notice that /2 is simply the line through b and the point y E L(a) such that
/(a, b, y) is the smallest over all points in L(a). Therefore, 12 can be computed
in O(s) time since L(a) has s + 2 points. Finally, to compute le re-insert all the
points of L(a) into CM. Delete convex hull points adjacent to a starting with
b until c is adjacent to a. If there are s points (excluding b) to the right of the
line through a and c then Ic is this line. Otherwise, to find Ic continue deleting
the convex hull points adjacent to c (different from a) until s + 1 points have
been deleted in total from CM. Store all the deleted points in L(a). Notice that
CM is now a convex hull maintenance structure for Pr. There are s + 1 points
in Ps. In O(s log 2 s), a CM structure can be built for Ps. Therefore, the revised
complexity of the algorithm is T(n) = T(n - k) + T(k) + O(min (k, n - k) log ~ n)
where 1 < k < n - 1. This recurrence solves to T(n) = O(n log a n). Building the
initial CM for P cost O(nlog 2 n), therefore, we have the following theorem.

Theorem 8. Given an n-vertex outer-planar graph G and a set P of n points
in the plane, G can be straight-line embedded in P in O(n log 3 n) time and O(n)
space.

Our algorithm is optimal to within a polylogarithmic factor since an ~(n logn)
lower bound for the problem was shown in [BMS95].

6 Restr icted Case

If the dual of G is a tree, then notice that G can be embedded simply by com-
puting (r, 1)-triangles. This immediately implies that our near-optimal algorithm
will run in time T(n) = T (n - 1)+O(log 2 n) which solves to T(n) = O(nlog 2 n).
However, when computing (r, 1)-triangles, we do not need to re-insert points into
the convex hull maintenance structure in order to compute Ic. Since, we do not
need to insert points into the convex hull but simply delete them; we opt for a
deletion-only convex hull maintenance structure [Cha85, HS92], which provides
better amortized time complexities for point deletions than Overmars and van
Leenwen's method.

In [HS92], the point deletion operation removes a point from the convex hull
maintenance structure in O(log n) amortized time (amortized over the sequence
of n deletions). Consequently, by using a deletion-only convex hull structure,
the running time of the algorithm is summerized by the recurrence T(n) =
T(n - 1) + O(logn) which resolves to T(n) is O(nlogn). This is optimal since
the lower bound proved in [BMS95] still holds in this restricted case.

35

T h e o r e m 9. If the dual of the input graph G is a path, G can be embedded into
a point set P in optimal O(n log n) time.

If the input point set P is in convex position, then O(n) time and space is
sufficient. We assume that the input point set is given in an array A, ordered in
clockwise fashion as the points appear on the convex hull of P. Given an (r, s)-
triangle of G, finding an (r, s)-triangie in P can be achieved in O(1) time by
simply finding the index into array A which splits the array into two sub-arrays
of size r and s respectively. Therefore, the recurrence for algorithm Embed(...)
is T(n) = T(n - k) + T(k) + O(1) which implies that T(n) is O(n).

Theorem 10. If the input point set P is in convex position then O(n) time and
space s u i t e to straight-line embed G into P.

7 Conclusions

We presented an O(nlog 3 n) time and O(n) space algorithm to compute a
straight-line embedding of an n-vertex outer-planar graph G in a set P of n
points in the plane. Since a tree is an outer-planar graph, the g2(n log n) lower
bound for trees [BMS95] also holds in this case, thereby implying that our al-
gorithm is optimal to within a polylogarithmic factor. We presented a simpler
O(nd) time and O(n) space algorithm to compute a straight-line embedding of
G in P where log n < d < 2n is the length of the longest vertex disjoint path in
the dual of G. Finally, we showed that ff the dual of G is a path, then @(n log n)
time and O(n) space are sufficient and if the input point set is in convex position
then O(n) time and space suffice.

We conclude with two open problems:

1. Can a log s n factor be shaved off our embedding algorithm, i.e. is there an
optimal O(n log n) time algorithm to embed an outer-planar graph on a point
set?

2. Given a planar graph G and a point set P, what is the complexity of deciding
if G can be embedded into P?

Acknowledgements: The author wishes to thank Kilani Ghoudi for helpful
discussions on this topic, and Janos Pach for pointing out some missing refer-
ences.

References

[BDLL95]

[BLL96]

P. Bose, G. Di Battista, W. Lenhart, and G. Liotta. Proximity constrahts
and representable trees. In R. Tamassia and I. G. Tollis, editors, Graph
Drawing (Proe. GD '94), volume 894 of Lecture Notes in Computer Science,
pages 340-351. Springer-Verlag, 1995.
P. Bose, W. Lenhaxt, and G. Liotta. Characterizing proximity trees. Algo-
rithmica, 16:83-110, 1996.

36

IBM76]

[BMS95]

lCh~S]

[CLR90]

[CP95]

[cu96]

[DETT94]

[EW94]

[Far48]

[GMPP91]

[HS92]

[IPTT94]

[KLTT93]

[MA88]

[MS91]

[OvL811

[PS85]

[PT93]

J.A. Bondy and U.S.R. Murty. Graph Theory with Applications. Elsevier
Science, New York, NY, 1976.
P. Bose, M. McAllister, and J. Snoeyink. Optimal algorithms to embed
trees in a point set. Journal of Graph Algorithms and Applications, to
appear. Also appears in Proceedings of Graph Drawing GD'95, LNCS 1027,
pp. 64-75, 1995.
B. Chazelle. On the convex layers of a planar set. IEEE Trans. on Inf.
Theory, IT-31:509-517, 1985.
T. Cormen, C. Leiserson, and R. Rivest. Introduction to algorithms. MIT
Press, Cambridge, Mass., 1990.
P. Crescenzi and A. Piperno. Optimal-area upward drawings of AVL trees.
In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proe. GD '94),
volume 894 of Lecture Notes in Computer Science, pages 307-317. Springer-
Verlag, 1995.
N. Castaneda and J. Urrutia. Straight line embeddings of planar graphs
on point sets. In Proc. Eighth Canadian Conf. on Comp. Geom., pages
312-318, 1996.
G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for
drawing graphs: an annotated bibliography. Comput. Geom. Theory Appl.,
4:235-282, 1994.
P. Eades and S. Whitesides. The realization problem for Euclidean mini-
mum spanning trees is NP-hard. In Proc. 10th Annu. ACM Sympos. Corn-
put. Geom., pages 49-56, 1994.
I. l~ary. On straight line representation of planar graphs. Acta Sci. Math.
Szeged, 11:229-233, 1948.
P. Gritzmann, B. Mohar, J. Pach, and R. Pollack. Embedding a planar

triangulation with vertices at specified points (solution to problem e3341.
American Mathematical Monthly, 98:165-166, 1991.
John Hershberger and Subhash Suri. Applications of a semi-dynamic convex
hull algorithm. BIT, 32:249-267, 1992.
Y. Ikebe, M. Perles, A. Tamura, and S. Tokunaga. The rooted tree embed-
ding problem into points in the plane. Discrete ~ Computational Geometry,
11:51-63, 1994.
G. Kant, G. Liotta, R. Tamassia, and I. Toms. Area requirement of visi-
bility representations of trees. In Proc. 5th Canad. Conf. Comput. Geom.,
pages 192-197, Waterloo, Canada, 1993.
J. Manning and M. J. Atallah. Fast detection and display of symmetry in
trees. Congressu8 Numerantium, 64:159-169, 1988.
C. Monma and S. Suri. Transitions in geometric minimum spanning trees.
In Proc. 7th Annu. ACM Sympos. Comput. Geom., pages 239-249, 1991.
M. Overmars and J. van Leeuwen. Maintenance of configurations in the
plane. Journal of Computer and System Sciences, 23:166-204, 1981.
F. P. P~eparata and M. I. Shamos. Computational Geometry: an Introduc-
tion. Springer-Verlag, New York, NY, 1985.
J~nos Pach and Jen5 TSr6csik. Layout of rooted trees. In W. T. Trot-
ter, editor, Planar Graphs, volume 9 of DIMACS Series, pages 131-137.
American Mathematical Society, 1993.

