
Incremental Orthogonal Graph Drawing in 
Three Dimensions 

Achilleas Papakostas and Ioannis G. Tollis '~ 

Dept. of Computer Science 
The University of Texas at Dallas 

Richardson, TX 75083-0688 
emaih papakost~utdallas.edu, tollis@utdallas.edu 

Abstract .  We present, two algorithms for orthogonal graph drawing in 
three dimensional space° For graphs of maximum degree six~ the 3-D 
drawing is produced in linear time, has volume at most 4.66n ~ and each 
edge has at most three bends. If the degree of the graph is arbitrary, the 
vertices are represented by solid 3-D boxes whose surface is proportional 
to their degree. The produced drawing has two bends per edge. Both 
algorithms guarantee no crossings and can be used under an interactive 
setting (i.e., vertices arrive and enter the drawing on-line), as well. 

1 Introduction 

Graph drawing addresses the problem of automatically generating geometric 
representations of abstract graphs or networks. For a survey of graph drawing 
algorithms and other related results see the annotated bibliography of Di Bat- 
tista, Eades, Tamassia and ~Ibllis [6]. Various algorithms have been introduced 
to produce orthogonal drawings of planar [1, 10, 20] or general [1, 10, 13, 15, 19] 
graphs of maximum degree three or four. For drawings of general graphs, the 
required area can be as little as 0.76n 2 [13, 15], the total number of bends is 
no more than 2n + 2, and there are at most two bends any edge [1, 13, 15]. 
There has been a recent trend in Graph Drawing to visualize graphs in the three 
dimensional space [2, 3, 5, 7, 8, 9, 17, 18]. Although the number of applications 
that require such a representation for graphs is still limited [2, 9, 12, 18], there 
is no doubt that 3-D Graph Drawing will find many applications in the future. 

In [4] it is shown that  any n-vertex graph has a 3-D drawing in a n × 2n × 2n 
grid, so that all vertices are located on grid points, and no two edges cross. 
In the same paper, a technique to convert an orthogonal 2-D drawing of area 
H × V to a 3-D straight-line drawing of volume [vf-H] × Iv/HI × V is also pre- 
sented. Graph drawing in three dimensional space Naturally, orthogonal drawing 
in three dimensional space has also received attention recently [7, 8, 9, 17]. A 
3-D orthogonal drawing typically has the following properties: 

- vertices are points with integer coordinates in three dimensional space, 

* Research supported in part by NIST, Advanced Technology Program grant number 
70NANB5H1162o 



53 

- each edge is a polyline sequence of consecutive straight line segments; each 
one of these line segments is parallel either to the z-axis, y-axis, or z-axis, 

- the meeting point of two consecutive straight line segments of the same edge 
is a bend and has integer coordinates, and 

- line segments coming from routes of two different edges are not allowed to 
overlap. 

A very interesting upper bound on the volume for 3-D orthogonat drawings 
of graphs of maximum degree six is shown in [8]. More specifically, the volume 
for such drawings is at most O(vrff) x O(v~)  x O(Vrn-), while each edge has at 
most seven bends, and no two edges cross. This improves the result in [7], where 
the volume upper bound was the same but the drawings allowed up to 16 bends 
per edge. If we require that each edge have at most three bends, then another 
algorithm is presented in [8] that requires volume exactly 27n  3 (the produced 
drawings have no crossings). Both algorithms run in O(n~) time. Note that 
Kolmogorov and Bardzin [11] show an existential lower bound of ~2(n~) on the 
volume occupied by 3-D orthogonal drawings. 

In this paper we present one algorithm for producing 3-D orthogonal draw- 
ings of graphs of maximum degree six, and a second algorithm that produces 
3-D orthogonal drawings of graphs of arbitrary degree. Note that there has not 
been any previous work that dealt with the theory of 3-D orthogonal draw- 
ing of graphs of arbitrary degree. Both algorithms are based on the "Relative- 
Coordinates" paradigm for vertex insertion [14, 16]. As such, both algorithms 
support interactive environments where vertices arrive and enter the drawing 
on-line. An important feature of this work is that both algorithms guarantee no 
edge crossings. 

Given an n-vertex graph G of maximum degree six, our first algorithm pro- 
duces a 3-D orthogonal drawing of G whose volume is at most 4.66n 3, in linear 
time. Moreover, each edge of the drawing has at most three bends. Hence, our 
algorithm outperforms the algorithm of [8] in terms of both running time and 
volume of the drawing. Our second algorithm uses solid three dimensional boxes 
to represent vertices. The surface of each such box is proportional to the degree 
of the represented vertex. The produced 3-D orthogonal drawings have at most 
two bends per edge, and volume O( (~  + O(n))3), where m is the number of 
edges of the drawing. 

2 Prel iminaries  

Clearly, for each graph of maximum degree six, there is a 3-D orthogonal drawing. 
The system of coordinates typically used in three dimensional space is based on 
three axes z, y, z so that each one of them is perpendicular to the other two (see 
Fig. la). Three different planes are formed by the three possible ways we can 
pair these axes: The zz-plane is defined by the z, z-axes, the yz-plane is defined 
by the y, z-axes, and the zy-plane is defined by the z, y-axes. Each one of these 
planes is called a base plane; each base plane is perpendicular to the other two. 



54 

left V~,f v 

X ~ o  right 

(a) ~ (b) 

Fig. 1. (a) Coordinates system for 3-D drawing, (b) possible directions from where an 
edge can enter v. 

Each vertex of a 3-D drawing has six possible directions around it from where 
incident edges may enter the vertex. The two directions parallel to the z-axis are 
top (extending towards the positive part of the z-axis) and bottom (extending 
towards the negative part of the z-axis). Front and back directions are parallel 
to the y-axis and they extend towards the negative and positive parts of the 
y-axis, respectively. The remaining two directions are parallel to the x-axis and 
are called left (extending towards the negative part of the x-axis) and right. See 
also Fig. lb. 

Two directions parallel to the same axis are opposite directions. Two direc- 
tions parallel to two different, axes are orthogonal directions. If there is no edge 
entering a vertex v from a specific direction of v, this direction is called free 
direction of v. A plane free direction is a lef L right, front, or back flee direc- 
tion. Consider vertices Vl, v2, '"Vr, where r ~ 2, having plane free directions 
fdl ,  fd2 , . . ,  fd~ which extend towards the same direction (e.g., they are all left 
free directions). The set of the fdi's forms a beam. If the fdi's are left (resp. 
right, front, back) free directions, then their beam is a left (resp. right, front, 
back) beam. Vertices Vl,V2,...v~ are the origins of the beam. Two beams are 
opposite (resp. orthogonal) if the free direction of one beam is opposite (resp. 
orthogonal) to the free direction of the other. 

The volume of a 3-D drawing is the volume of the smallest rectangular paral- 
lelepiped that  encloses the 3-D drawing. Also recall [14, 16] the following termi- 
nology: The current drawing is the drawing before the insertion of a new vertex 
v; the number of vertices of the current drawing that  will be connected with v 
through new edges, is v's local degree. We call these vertices adjacent vertices of 
V. 

3 Drawing  Graphs  wi th  M a x i m u m  D e g r e e  Six 

In this section we present our incremental algorithm for producing orthogonal 
drawings of graphs of maximum degree six in the three dimensional space. The 
incremental nature of our algorithm comes from the fact that  a user is allowed 
to insert vertices (along with edges to other existing vertices) into the current 
drawing in any order. The algorithm supports such vertex insertions at any 
moment t, as long as each request observes the following rules: 



55 

- we start  the drawing from scratch, that  is the very first current drawing is 
the empty graph, 

- the degree of any vertex of the current drawing at any t ime t is at most six, 
and 

- the graph represented by the current drawing is always connected. 

Our technique follows the Relative-Coordinates scenario [14, 16]. This means 
that  the decision about  where to place a new vertex and how its incident edges 
will be routed depends entirely on the free directions around the adjacent ver- 
tices. The properties of the Relative-Coordinates scenario [14, 16] are also prop- 
erties of the 3-D drawings produced by our algorithm and guarantee a "smooth" 
transition from the current drawing to the next. The notation u --+ p --+ p' means 
that  from vertex u we draw a straight line segment that  intersects plane p per- 
pendicularly, and from the intersection point we draw another segment to plane 
pl that  intersects p/ perpendicularly as well. We use the notation p~,~, where 
a : x, y, or z and v some vertex, to denote the plane which is perpendicular 
to the a-axis and contains vertex v. As we will see later, our 3-D orthogonal 
drawing is built in an upward fashion (i.e., it grows along the positive z-axis). 
For this reason, we always keep the following basic rule during the interactive 
drawing process: 
B a s i c  Ru le :  No vertex has a bot tom free direction in any current drawing. 

Most of the edges we route follow one of five fundamental  routes, described 
below, depending on their available free directions. Assume that w and w ~ are 
two vertices of the current drawing and w has higher z-coordinate than w ~. In 
the first three fundamental  routes, edge (w ~, w) always enters w ~ from its left 
(or other plane) free direction. In the remaining two fundamental  routes, edge 
(w ~, w) enters w / from its top free direction. Note that  these fundamental routes 
can generalize to other situations (besides the examples shown in Fig. 2). 

/ Y w  ~ ~ w a  
Ira, . f  # :  ~ I / v , 

' W 

(a) (b) (c) i "  I e w '  (e) $ w '  

(d) w ~' * w '  

Fig. 2. (a) First, (b) Second, (c) Third Fundamental Routes, (d) Same-Plane, (e) 
Over-The-Top Routes. 

- F i r s t  F u n d a m e n t a l  R o u t e :  Edge (w', w) enters w from its left free di- 
rection. We open up a new plane p to the left of the teftmost plane of 



56 

the current drawing. Edge (w ~, w) is routed with" three bends as follows: 
w r --~ p --+ py ,w  --+ pz ,w  --+ w .  This is shown in Fig. 2a. The small empty 
circles of this figure denote the three bends of the route. 

- Se c ond  F u n d a m e n t a l  R o u t e :  Vertex w has lower x-coordinate than w ~, 
and edge (w I, w) enters w from its right free direction. We open up a new 
plane p parallel to the yz-plane and one unit to the right of w. Edge (w/, w) is 
routed with three bends (see Fig. 2b), as follows: w I --~ p ~ py,~, --+ Pz,~, -+ 

W. 

- T h i r d  F u n d a m e n t a l  R o u t e :  Vertex w has lower x-coordinate and higher 
y-coordinate than w ~, and edge ( w ' ,  w )  enters w from its front free direction. 
No new plane is opened up and we route edge (w ~, w) with two bends (see 
Fig. 2c) as follows: w / -+ p,,~ ~ pz,~ ~ w. 

- S a m e - P l a n e  R o u t e :  Edge (w ~, w) may enter w from any one of its plane free 
directions° We draw a straight line segment from w ~ intersecting plane pz,w 
perpendicularly. The remaining portion of edge (w ~, w) is routed exclusively 
in pz,w, and may enter w from any one of its plane free directions with at 
most two bends (if two bends are required, then a new plane parallel either 
to the x z  or yz-plane has to be inserted). This means that  the whole route 
has at most three bends. In Fig. 2d we show three examples of the portions 
of three routes in plane Pz,w. 

- O v e r - T h e - T o p  R o u t e :  Edge (w ~, w) enters w from its top free direction. 
A new plane p parallel to the xy-plane is inserted in the drawing, one unit 
above w. Edge (w', w) is routed with three bends (see Fig. 2e) as follows: 
w ~ ---)" P --+ P , , w  --~ Py ,~  -'+ w .  In other words, we draw a straight line segment 
intersecting p perpendicularly, route the edge in p bringing it directly on top 
of w with one bend, and then just draw the line segment from that point to 
W .  

3.1 O ve rv i e w  o f  t h e  A l g o r i t h m -  P r e p r o c e s s i n g  

Assume that we start with an empty graph. The following gives an overview of 
the algorithm for placing the next vertex v in the current drawing. The steps of 
this algorithm are analyzed in this and the following subsections. Let Vl be the 
first vertex to be inserted. Vertex vl has local degree zero. If v2 is the second 
vertex to be inserted, then v2 has local degree one and is connected with vl. In 
Fig. 3a, we show the first two vertices inserted in an empty drawing. There are 
three observations to make about Fig. 3a. First, edge (Vl, v2) has three bends. 
Second, a total of seven new planes are inserted in the empty drawing. Third, 
neither Vl nor v2 has a bottom free direction. 

1. IF v is the first or second vertex to be inserted, THEN place them as dis- 
cussed above. 

2. ELSE 
(a) Find v's adjacent vertices u l , . .  "ut  in the current drawing. 
(b) FOR each adjacent vertex determine its connector (use the procedure 

described below). 



57 

(c) Find which Routing Case (see next section) v's insertion falls into. 
(d) WITHIN a Routing Case: 

i. Determine the anchor vertex ua and the cover vertex u~. 
ii. Place v. 

iii. Route edge (ua, v). 
iv. Route the remaining edges (u~, v) except (uc, v), using the three Fun- 

damental Routes and/or  the Same-Plane Route. 
v. Route edge (u~, v). 

Let v be the next vertex to be inserted in the current drawing and l (1 < l < 
6) be v's local degree. We find the l adjacent vertices Ul, u2 , . . ,  ut of v. According 
to the Basic Rule, v must not have a bottom free direction after v is placed and 
all its l incident edges are routed. This means that  exactly one of these edges 
must enter v from the bottom. The vertex which is the other endpoint of this 
edge is called anchor vertex, and is denoted by u=. If t = 6, then the last one 
of v's incident edges to be routed enters v from its top free direction. The other 
endpoint of this edge is called cover vertex, and is denoted by uo  

j vT Tv2./ u a . 
(a) " Ua (d) 

Ul / ///Dn 4 (C) 

(b) 

Fig. 3. (a) Inserting the first two vertices, (b) a Routing Case 1 example, (c) (u~, v) 
of Routing Case 1 when u~ does not have top connector, (d) (u~, v) of Routing Case 2 
when uc does not have top connector. 

For each adjacent vertex ui, we must pick one of its free directions which will 
be used for routing edge (ui, v). The free direction picked for each u~ is called u~'s 
connector. Once a connector for an adjacent vertex ui is determined, it remains 
the same throughout the whole process of placing v and routing its incident 
edges. If a connector of some ui is a right (left, front, back, top) free direction, 
then it is called right (left, front, back, top) connector. Opposite, orthogonal, 
and plane connectors are defined in the same way as for free directions. Also, a 
beam of connectors is defined similarly to the beam of free directions. Let ci be 
ui's connector. We run the following procedure to determine the connector of 
each u~. 



58 

1. Choose a free direction fdl for each u~ so that: 
(a) The number of pairs < fdi, fdj > (i # j and 1 < i, j < l) where fdi and 

fdj are opposite, is the smallest possible. 
(b) fdi is top free direction, only if ul has only this free direction left. 

2. IF there are no two opposite beams among the fdi's, THEN 
(a) FOR each u~: 

i. ci := fdi. 
3. ELSE IF there are two opposite beams B1 and B2, THEN 

(a) Consider the beam with the smallest cardinality; say B1. 
(b) FOR each origin ui of BI: 

i. IF ui's top free direction is available, THEN ci := top connector. 
ii. ELSE c~ := fdi. 

(c) FOR each ui that  is NOT an origin of BI: 
i. c~ := fdi. 

3.2 Vertex Placement and Edge Routing 

As we will see in this subsection, many of v's incident edges are routed using 
the fundamental routes. When this is the case, vertex v corresponds to w, and 
the adjacent vertex ui, which is the other end of the route, corresponds to w ~. 
Depending on the types of connectors that  v's adjacent vertices have, we dis- 
tinguish three Routing Cases, which are briefly discussed below (see [17] for a 
detailed description): 

Routing Case  I :  There is no beam among connectors ci. Anchor Ua is 
selected among the adjacent vertices with top connectors. Edge (ua, v) is a simple 
straight line segment from ua to v (see Fig. 3b). If there is no adjacent vertex 
having top connector, any adjacent vertex can be the anchor vertex ua. Then, 
edge (ua, v) is routed with two bends as shown in Fig. 3c. This generalizes to 
cases where u~ has a different plane connector, through a rotation. The remaining 
edges (ui, v) where ui is not the anchor, are routed using the fundamental routes. 

Routing Case  2: There is at least one beam among connectors ci and there 
are no two opposite beams. If there is at least one adjacent vertex with top 
connector and l = 6, then this vertex is the cover uc. If 1 = 6 and there is no 
adjacent vertex with top connector, then cover uc is the adjacent vertex with 
highest z-coordinate which belongs to a beam. Then, we find the beam Bmax 
having the highest cardinality without counting u~. Assume that  B~,~ is a left 
beam (the following discussion generalizes through rotation). Anchor ua is always 
one of B,~az's origins. More specifically, it is the vertex whose y-coordinate is 
the median of the y-coordinates of all B,~a~'S origins. Edge (ua, v) is routed with 
two bends (see Fig. 3c). 

Vertex v is connected with the rest of its adjacent vertices using the funda- 
mental routes. If cover uc does not have top connector, then, by the way it was 
chosen, it has the following properties: (a) uc has higher z-coordinate than v (see 
[17]), and (b) uc has either left (if it is an origin of Bma,), or back (if it is an 
origin of the other beam different from Bm~,) connector. If it has left connector, 



59 

it is routed with two bends as shown in Fig. 3d (routing is similar when uc has 
back connector). 

R o u t i n g  Case  3: There are two opposite beams among the ui's. Clearly, 
in this routing case, we have that  1 > 4. Bm,~ is the beam with the highest 
cardinality. Let us assume that Bma~ is a left beam (the discussion generalizes 
through rotation). Let B be the beam which is opposite to Bma~. Anchor ua 
is the median of the origins of beam B , ~  with respect to their y-coordinates. 
Edges connecting v with the origins of the two beams are basically routed using 
the fundamental routes. There are two exceptions to that: 

The first exception deals with the situation where exactly one edge (us,  v) 
(where UB is an origin of B) is routed on top of the current drawing, all the way 
from the rightmost to the leftmost side of the drawing (see Fig. 4a). The second 
exception deals with the situation where l = 6 and there is no adjacent vertex 
with top connector. Vertex uc is an origin of B, and edge (uc, v) is routed with 
three bends as shown in Fig. 4b. Note that  in this situation, vertex v is placed 
in plane py,~o. 

, /  
v 

%-" (a) (b) 
u ~ 

C 

Fig. 4. Routing Case 3: (a) edge routing on top of current drawing, (b) edge (uc, v) 
when uc has no top connector. 

In Fig. 5 we show the 3-D orthogonal drawing of K7 produced by our algo- 
rithm. The numbers in the vertices denote the order in which the vertices were 
inserted. The volume of this drawing is 8 x 8 x 8 =- 512 < 1.5n 3, where n = 7. 
Observe that  out of KT's 21 edges, there is one edge with no bends, 12 edges 
require two bends each, and the remaining eight edges are routed with three 
bends each. Due to space limitations, we only present our two main theorems 
for orthogonal graph drawing in three dimensions of graphs of maximum degree 
six. For more details, see the full paper [17]. 

T h e o r e m  1. There is a 3-D orthogonal graph drawing algorithm for graphs of 
maximum degree six that allows on-line vertex insertion so that the following 
hold at any time t: 

- after each vertex insertion, the coordinates of any vertex or bend of the cur- 
rent drawing shift by a small constant amount of units along the x, y, z-axes, 
effectively maintaining the general shape of the drawing, 

- there are at most three bends along any edge, 
- no two edges cross, 



60 

- the volume of the drawing is at most 4.66n3(t), where n(t) is the number of 
vertices in the drawing at time t, and 

- vertex insertion takes constant time (if the screen needs to be refreshed after 
each vertex insertion~ then it takes linear time). 

Our incremental algorithm can be used to produce a 3-D orthogonal drawing 
of a graph by first numbering its vertices and then inserting each vertex one at a 
time. By mMntaining the drawing implicitly each insertion takes constant time. 
Hence we have the following: 

T h e o r e m 2 .  Let G be an n-vertex connected graph of maximum degree six. 
There is a linear-time algorithm that produces a 3-D orthogonal drawing of G, 
so that each edge has at most three bends, no two edges cross, and the volume of 
the drawing is at most 4.66n 3. 

6r'/le i 5 
/[  --,z/I 

/ / '  
/ 

Fig. 5.3-D orthogonal drawing of K7 produced by our algorithm. 

4 Drawing High Degree Graphs 

In this section we give a very brief description of our model to support high degree 
three dimensional orthogonal graph drawing based on the Relative-Coordinates 
scenario. Our model allows vertices to arrive on-line and the degree of the ver- 
tices to increase arbitrarily. We represent vertices using three dimensional boxes. 



61 

When a vertex is inserted into the drawing, it is represented by a cubic box of 
size depending on the degree of the vertex. Edges that  are adjacent to a vertex 
are attached to the surface of its box. The points on the box surface where edges 
can be attached are called connectors, and they have integer coordinates. As a 
result of edge routing, edges may require to attach to specific sides of incident 
boxes. If there are no available connectors on that  side, we need to grow the 
box creating new connectors on that side. Our model for representing vertices 
in three dimensional space supports box growing. Figure 6a illustrates how box 
growing works. Finally, note that  although the box of every vertex starts out 
having a cubic configuration, it may grow its size in various different ways in the 
course of the drawing process. 

Our algorithm produces a 3-D drawing considering and placing one vertex 
at a time. Assume that  v is the next vertex to be inserted in the current 3-D 
drawing. Let k be v's local degree, and let Ul, u2,--"Uk be v's adjacent vertices. 
For each vertex ui we find the sides of box u~ that have available connectors. 
Then we find the side of the adjacent boxes on which most of these boxes have 
at  least one available connector. This is the side where the edges connecting v 
with each ui will be attached. 

The next step is to create the box representing v and place it in the current 
3-D drawing. Box v is a cube. Each newly inserted box is placed in such a way 
so that  none of its connectors has the same x, y or z-coordinate as any other 
connector of any box of the current drawing. In [17] we describe in detail how 
v's position is computed. After v is inserted, the edges that  connect v with its 
adjacent vertices are routed. We show that  each edge can be routed with two 
bends without crossing other edges [17]. 

T h e o r e m  3. There is an algorithm to produce 3-D orthogonal drawings of graphs 
(not necessarily connected) which allows vertices to arrive on-line. The drawings 
have the following properties at any time t: 

- vertices are represented by boxes and the surface of each box is at most six 
times the current degree of the vertex, 

- each edge has two bends, 
- no two edges cross, 

the volume is O( ( ~ + n(t) )3), where re(t) and n(t) are the number of edges 
and vertices at time t, and 

- vertex insertion takes constant time. 

In practice, we expect the volume to be smaller than the upper bound given 
in the above theorem. This is because our analysis assumes that  for each vertex 
insertion the boxes of all the adjacent vertices need to grow. We expect a box 
to grow very infrequently, since each box has several connectors on its sides. If 
the each inserted vertex is adjacent to no more than 16 vertices then the volume 
is bounded by ~ 3 + 2n(t)) 3. Figure 6b shows the 3-D orthogonal drawing of 
K5 as produced by our algorithm. The box numbers denote the vertex insertion 
order. 



62 

(a) 

/ 

/ 

J 
/ 

/ 
(b) 

Fig. 6. (a) Box growing creates new connectors (denoted by solid and dotted circles), 
(b) 3-D orthogonal drawing of/(5, using boxes to represent vertices. 

5 Conclusions  and Open Problems 

We presented incremental algorithms for producing orthogonal graph drawings 
in three dimensional space. The first algorithm deals with graphs of maximum 
degree six, and the produced drawings have volume at most 4.66n 3. This im- 
proves the best known [8] volume requirement of exactly 27n 3, while maintaining 
the same upper bound for the number of bends per edge. Our algorithm runs in 
linear time. 

The second algorithm introduces 3-D orthogonal drawing for graphs of degree 
higher than six. Vertices are represented by solid three dimensional boxes whose 
surface is proportional to the degree of the vertex. The volume of the drawings 

O "~ is bounded by ( ( y  + n) 3) and each edge has only two bends. 
Improving the upper bounds on the volume while keeping the number of 

bends per edge to three or less, is an interesting open problem. 

References  

1. T. Biedl and G. Kant, A Better Heuristic for Orthogonal Graph Drawings, Proc. 
2nd Ann. European Symposium on Algorithms (ESA ~94), Lecture Notes in Com- 
puter Science, vol. 855, pp. 24-35, Springer-Verlag, 1994. 

2. M. Brown and M. Najork, Algorithm animation using 31) interactive graphics, 
Proc. ACM Syrup. on User Interface Software and Technology, 1993, pp. 93-100. 

3. I. Bruss and A. Frick, Fast Interactive 3-D Visualization, Proc. of Workshop GD 
'95, Lecture Notes in Comp. Sci. 1027, Sprlnger-Verlag~ 1995, pp. 99-110. 



63 

4. R. Cohen, P. Eades, T. Lin, F. Ruskey, Three Dimensional Graph Drawing, Proc. 
of DIMACS Workshop GD '94, Lecture Notes in Comp. Sci. 894, Springer-Verlag, 
1994, pp. 1-11. 

5. I. Cruz and J. Twarog, 31) Graph Drawing with Simulated Annealing, Proc. of 
Workshop GD '95, Lecture Notes in Comp. Sci. 1027, Springer-Verlag, 1995, pp. 
162-165. 

6. G. Di Battista, P. Eades, R. Tamassia and I. Tollis, Algorithms for Draw- 
ing Graphs: An Annotated Bibliography, Computational Geometry: Theory 
and Applications, vol. 4, no 5, 1994, pp. 235-282. Also available via anony- 
mous f tp  from ftp.cs .brown.edu,  gdb ib l io . t ex .Z  and gdbibl io .ps .Z in 
/pub/papers/compgeo. 

7. P. Eades, C. Stirk, S. Whitesides, The Techniques of Kolmogorov and Bardzin for 
Three Dimensional Orthogonal Graph Drawings, TR 95-07, Dept. of Computer 
Science, University of Newcastle, Australia, 1995. Also to appear in Information 
Processing Letters. 

8. P. Eades, A. Symvonis, S. Whitesides, Two Algorithms for Three Dimensional 
Orthogonal Graph Drawing, Proc. of Workshop GD '96, Lecture Notes in Comp. 
Sci. 1190, Springer-Verlag, 1996, pp. 139-154. 

9. A. Garg and R. Tamassia, GIOTTO3D: A System for Visualizing Hierarchical 
Structures in 3D, Proc. of Workshop GD '96, Lecture Notes in Comp. Sci. 1190, 
Springer-Verlag, 1996, pp. 193-200. 

10. Goos Kant, Drawing Planar Graphs Using the Canonical Ordering, Algorithmica, 
volo 16, no. 1, 1996, pp. 4-32. 

11. A. N. Kolmogorov and Y. M. Bardzin, About Realization of Sets in 3-dimensional 
Space, Problems in Cybernetics, 1967, pp. 261-268. 

12. J. MacKinley, G. Robertson, S. Card, Cone Trees: Animated 3d visualizations of 
hierarchical information, In Proc. of SIGCttI Conf. on Human Factors in Comput- 
ing, pp. 189-194, 1991. 

13. A. Papakostas and I. G. Tollis, Algorithms for Area-Efficient Orthogonal Drawings, 
Technical Report UTDCS-06-95, The University of Texas at Dallas, 1995. 

14. A. Papakostas and I. G. Totlis, Issues in Interactive Orthogonal Graph Drawing, 
Proc. of Workshop GD '95, Lecture Notes in Comp. Sci, 1027, Springer-Verlag, 
1995, pp. 419-430. 

15. A. Papakostas and I. G. Tollis, A Pairing Technique for Area-Efficient Orthogonal 
Drawings, Proc. of Workshop GD '96, Lecture Notes in Comp. Sei. 1190, Springer- 
Verlag, 1996, pp. 355-370. 

16. A. Papakostas, J. Six and I. G. Tollis, Experimental and Theoretical Results in 
Interactive Graph Drawing, Proc. of Workshop GD '96, Lecture Notes in Comp. 
Sci. 1190, Springer-Verlag, 1996, pp. 371-386. 

17. A. Papakostas and I. G. Tollis, Incremental Orthogonal Graph Drawing in Three 
Dimensions, Technical Report UTDCS-02-97, The University of Texas at Dallas, 
1997. (available through www.utdallas.edu/-tollis) 

18. S. Reiss, An engine for the 3D visualization of program information, J. Visual 
Languages and Computing, vol. 6, no. 3, 1995. 

19. Markus Sch£ffter, Drawing Graphs on Rectangular Grids, Discr. Appl. Math. 63 
(1995) pp. 75-89. 

20. R. Tamassia and I. Tollis, Planar Grid Embeddings in Linear Time, IEEE ~lYans. 
on Circuits and Systems CAS-36 (1989), pp. 1230-1234. 


