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Abstrac t .  This paper studies 3-D orthogonal grid drawings for graphs 
of arbitrary degree, K~ in particular, with vertices drawn as boxes. It es- 
tablishes an asymptotic lower bound for the volume of the bounding box 
of such drawings and exhibits a construction that achieves this bound. 
No edge route in this unconstrained construction bends more than three 
times. 

For drawings constrained to have at most k bends on any edge route, 
simple constructions are given for k = 1 and k -- 2. The unconstrained 
construction handles the k > 3 cases, while for k = 0 (no bends), it is 
proved here that not all graphs can be drawn. 

1 I n t r o d u c t i o n  

This paper offers methods for constructing 3-D orthogonal grid drawings for 
graphs of arbitrary degree. It also contributes a lower bound result for the vol- 
umes of such drawings, establishing that one of our constructions is in some 
sense optimal. To state the main results clearly, we explain, following some ter- 
minology, the drawing conventions and volume measure used. 

A grid point is a point in R 3 whose coordinates are all integers. A grid box 
is the set of all points (x ,y , z )  in R 3 satisfying Xo < x < xl, Y0 _~ Y _~ Yl and 
z0 ~ z < zl for some integers Xo,xl ,yo,yl ,zo,zl .  A port of a box is any grid 
point of the box that  is extremal in at least one direction. A grid box is said 
to have dimensions a × b × c whenever xl = Xo + a - 1, Yl = Yo + b - 1, and 
zl = z0 + c - 1. The volume of such a box is defined to be the number of grid 
points it contains, namely abc. For example, a single grid point is a 1 × 1 × 1 box 
of volume 1. The volume of a drawing is the volume of its bounding box, which 
is the smallest volume grid box containing the drawing. Often we refer to the 
bounding box as an X × Y × Z-grid. 

Throughout  this paper, a 3-D orthogonal grid drawing of a graph G = (V, E) 
is a drawing that  satisfies the following. Distinct vertices of V are represented 

* The authors gratefully tha1~k N.S.E.R.C. for financiM assistance. 
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by disjoint grid boxes 4. An edge e = (vl, v2) of E is drawn as a simple path that 
follows grid lines, possibly turning ("bending") at grid points; the endpoints of 
the path for e are ports on the boxes representing vl and v2. The intermediate 
points along the path for an edge do not belong to any vertex box, nor do they 
belong to any other edge path. See Figure 1. In what follows, graph theoretic 
terms such as vertex are typically used to refer both to the graph theoretic object 
and to its representation in a drawing. 

I ~ l i t  
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Fig. 1. Two boxes joined by a 4-bend edge. 

For graphs drawn orthogonally in the 2-D grid, early research mainly consid- 
ered graphs of maximum degree 4 and represented vertices as single grid points. 
More recently, 2-D orthogonal grid drawings of higher degree graphs have been 
investigated, where vertices have been drawn as rectangular boxes. See for ex- 
ample [FK96], [PT96], [BMT97]. 

At present, there are few results on 3-D orthogonal grid drawings. Rosenberg 
showed that any graph of maximum degree 6 can be embedded in a 3-D grid of 
volume 0(n3/2), and that this is asymptotically optimal [Ros83]. No bounds on 
the number of bends were given. Recently, Eades, Symvonis and Whitesides gave 
a method for drawing graphs of maximum degree 6 in a grid of side-length 4v~,  
with vertices represented by single grid points and each edge having at most 
7 bends [ESW97]. They also gave a simple method for drawing such graphs in 
a grid of side-length 3n, creating at most 3 bends on each edge. Papakostas 
and Tollis have proposed a more elaborate method that produces a drawing of 
volume at most 4.66n 3 [PT97]. 

The focus of this paper is on 3-D orthogonal grid drawings of complete graphs. 
Since any simple graph G on n vertices is a subgraph of the complete graph K , ,  
a drawing of K ,  immediately provides a drawing for G, since irrelevant edges 
may be deleted from the drawing. Complete graphs are also critical for many 
lower bound arguments. 

4 This paper allows vertices to be represented by degenerate boxes, i.e., by boxes that 
have dimension 1 with respect to one or more coordinate directions. Such degenera- 
cies can be removed by adding additional grid lines, which increases the volume of 
the drawing by a rnultiplicative constant. 
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conven t ion :  From now on, the terms drawing and 3-D orthogonal grid drawing 
are used interchangably. 

In informal language, the main results of this paper are as follows. 

- For all sufficiently large n, Ks  has no bend-free drawing. 
- Any drawing of K~ has volume f2(n2'5). 
- Kn can be drawn in O(n 3) volume with at most k = 1 bend per edge. 
- Kn can be drawn in O(n 3) volume with at most k = 2 bends per edge. 
- K~ can be drawn in O(n 2"~) volume with at most k = 3 bends per edge. 

Note that  for k _> 3, the upper and lower bounds on the volume match 
(within a constant factor) when a maximum of k bends per edge is allowed. 
The constructions of this paper have reasonably small constant factors for the 
volume. Only for the h = 1 and k = 2 cases do the bounds not match; in each 
of these cases we give an O(n 3) volume drawing of K.~ and leave as an open 
problem whether this drawing indeed has asymptotically optimum volume. 

The results can be restated more precisely with the following terminology. 

def in i t ion :  Let vol(n) denote the minimum possible volume of any drawing of 
K~, and let yolk(n) denote the minimum possible volume for drawings of K~ 
that  have k or fewer bends on any edge. 

In these terms, the main results axe that  volo(n) is undefined for large n, 
vol(n) is in £2(n2"5), voll(n) and vol2(n) are in O(n3), and volk(n) is in O(n 2"5) 
for k > 3. 

2 N o  B e n d s  

The main result of this section is that there exist graphs that  have no 0-bend 3-D 
orthogonal drawing. If no bends are permitted in the drawing, then the edges 
correspond to axis-parallel visibility lines between pairs of boxes. Such visibility 
representations have been studied in 2-D by Wismath [Wis85] and by Tamassia 
and Tollis [TT86], and in 3-D with 2-D objects [BEFLMRSW93], [FHW96]. A 3- 
D orthogonal drawing of a graph with no bends splits the edges into three classes, 
depending on the direction of visibility. Each class of edges forms a graph that  
has a visibility representation using only one direction of visibility. Our lower 
bound result depends on the fact that / (56 has no such visibility representation, 
as shown by [FHW96]. 

The 3-Ramsey number R(r, b, g) is the smallest number such that  any arbi- 
t rary colouring of the edges of KR(~,b,g) with colours red, blue and green induces 
either a red K~, or a blue Kb, or a green Kg as a subgraph. This number exists 
and is finite; see for example [GRS80]. 

T h e o r e m  1. For all sufficiently large n (e.g., n >_ R(56, 56, 56)), Kn has no 
bend-free 3-D orthogonal grid drawing. 

One consequence of the previous theorem is that  ~?(n ~) bends are required 
in any 3-D orthogonal grid drawing of K~. Details are omitted. 
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3 A Lower B o u n d  on the  V o l u m e  

Recall that vol(n) is the minimum possible volume for a drawing of K~. This 
definition is valid since, as later sections show, every K~ has a drawing if edges 
are allowed to bend. 

A z-line is a line that is parallel to the z-axis; y-lines and x-lines are defined 
analogously. A z-plane is a plane that is orthogonat to the z-axis; x-planes and 
y-planes are defined analogously. 

T h e o r e m 2 .  voI(n) C ~(n2'5). 

Proof. The constants that appear below were chosen for convenience arid have 
no special significance other than that they give a simple proof. We make no 
attempt here to produce a large constant multiplier for the n 25. 

Consider a drawing of K~ in a grid of dimensions X × Y × Z. 

Case 1: A line intersects  many  vertices 
Assume there exists a z-line intersecting at least t vertices, where t is even and 

t > i n .  Let v l , . . . ,  vt be any t of the vertices intersected by the z-line, listed in 
order of occurrence along the line, and let Pz be a z-plane (not necessarily with 
integer z-coordinate) that intersects none of these t vertices and that separates 
the first half of them from the second half. 

Since the ¼t 2 edges connecting these two groups must cross the plane Pz, 
this plane must contain at least ¼t 2 points having integer x- and y-coordinates. 

1 2 Hence X Y  >_ ~t > ~ n  2. Also, Z > ~ n  since the z-line intersects at least 
1 n 3 ~ n  vertices. Thus vol(n) > ~ . 

Case 2: A plane intersects  m a n y  vertices 
Assume now that no x-line, y-line or z-line intersects as many as ~ n  vertices, 

but that there exists a z-plane P~ intersecting at least ¼n vertices. 
A vertex is left of an x-plane Px if all the points in its grid box have x- 

coordinates less than x. The notion of right of P.~ is analogous. As P~ is swept 
from smaller to larger values of x, the y-line determined by its intersection with 
P~ intersects fewer than i n  vertices, by assumption. As x increases, an integer 
x = Xo is encountered where, for the last time, there are fewer than ~ n  vertices 
left of P~ and intersecting P .  

The number of vertices that intersect P~ and that lie left of Pxo+l is at least 
I n  but at most ~ n  - 2. Thus at least ~gn vertices intersect Pz and lie right 

1 2 edges between the vertices on the left and of Pxo+l. There are at least 2-~n 
the vertices on the right, so YZ > 2~n 2. Apply exactly the same argument in 
the y-direction to obtain X Z  _> -2~n ~. Finally, note that X Y  _> ~n,1 since P~ 

1 n5/2 intersects ~nl vertices. Consequently,. X Y Z  = v / Y Z  • X Z .  X Y  -> Vi~ • 

Case 3" No plane intersects  m a n y  vertices 
Assume now that no plane intersects as many as ¼n vertices. Consider P~ 

planes in order of increasing x value. By an argument analogous to the one in 
1 vertices lie left of P~, and Case 2, a P~ will be encountered for which at least ~n 

1 vertices lie right of P~. Consequently, P~ contains at least ~ n  2 points at least ~n 
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with integer y- and z-coordinates, and Y Z  > ~ n  2. Since the same argument 

holds for the other two directions, X Y Z  >_ ( ~ n 2 )  3/2 = ~ n  3. 

For all sufficiently large n, the bound given by Case 2 is the smallest of the 
three; hence vol(n) E ~2(n5/2). 

4 Construct ions  

The lower bound of the previous section provides a volumetric goal for layout 
strategies. This section presents a construction that  achieves this lower bound 
with a small constant factor. For the k = 1 case, two strategies axe described 
and then modified to give a drawing for the k = 2 case. A simple construction 
that  realizes the g?(n 2z) lower bound for volume is described in subsection 4.3. 
The construction generates at most 3 bends on any edge and hence is valid for 
each k > 3. Whether  the lower bound is attainable when k = 1 or 2 remains an 
open problem. 

In each of the constructions, vertices are first placed as points in a 2-D 
x, y-plane. Next, all the edges are routed in the same xy-ptane, with overlap 
and crossings of edges temporarily permitted. Then a number Z of z-planes is 
introduced, and edges are assigned to these planes so that  no edges overlap or 
cross. The vertices are stretched into segments of z-lines. 

4.1 D r a w i n g s  o f  O ( n  a) v o l u m e  for  k = 1 

In this section, we describe two strategies to draw" Ks  with at most k = 1 bends 
on any edge. The first layout scheme draws K~ in an n x n x n-grid. The second 
scheme then makes two drawings of Kn/2 (without recursion) using the first 
scheme; then it positions these drawings in an ~ x n x g-grid and supplies the 
edges between the two parts. For simplicity, assume below that  n is divisible 
by4 .  

D r a w i n g  K,~ in an  n × n × n - g r i d  for  k = 1 Enumerate the vertices as 
v l , . . . , v n .  Place vertex vi at (i , i) .  Route edge e = (vi,vj),  where i < j ,  with 
one bend via. (i,i),  ( i , j ) ,  ( j , j ) .  Note that  no vertex or part  of an edge is placed 
at a point (x, y) with y < x. 

a b v~ Now partit ion the edges of Kn into edge sets E~ ,E i ,  i = 1 , . . . ,  ~, defined 
as E?  = {(vi-~+l,v~+t)ll = 1, -~} and E~ = {(vi_l,vi+l)tl = 1, '~ 1} 

• " , 2  " ' " 2  
(all additions are modulo n). It is easy to check that  these sets indeed parti t ion 
tile edges of Kn, and that  no crossings or overlaps occur among edges in E~ nor 
among edges in E~. Hence only n z-planes are needed. See Fig. 2. This gives the 
following lemma. 

L e m m a  3. There exists a drawing of Kn in an n × n x n-grid with one bend per' 
edge such that the points {(x, y, z) : y < x} are unused. 
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Fig. 2. The sets E~, . . . ,  E 4 for Ks. 

@ 
I 

R e m a r k :  Note that  E~ arid E~ can be drawn in the same plane by reflecting the 
edges of E~ with respect to the diagonal line through the vertices. This yields 
a drawing of Kn in an n × n × ~-grid. This strategy is closely related to the 
pagenumber of a graph and in fact, may prove a useful idea for drawing sparse 
graphs. This idea yields, for example, a method for drawing planar graphs in 
O(n 2) volume in an n × n × 4-grid, since it is known that  pla~ar graphs have 
pagenumber equal to 4 (see [Yan89]). 

D r a w i n g  K n  in an  ~ x n x R-gr id  for k = 1 Let K 1 and K 2 denote two 
drawings of K~/2 as described in the previous temma. Thus each drawing has 
an y x y x y ~ n n bounding box. Reflect the points in the box for K 2 through the 
(y = 0)-plane, so that  all points in the reflected K-" have negative y-coordinate. 
Then rotate this reflected K 2 so that  vertex vj of the rotated, reflected K 2 
overlaps the points (x, - j , j ) ,  where 1 < x < ~. See Fig. 3. 

Pig. 3. K1 a~nd K~ 
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Each vertex vi in /(1 sees each vertex vj in the rotated, reflected K 2 along 
the y-line segment [ ( i , i , j ) ,  ( i , - j , j ) ] .  Therefore, these edges can be drawn as 
straight line segments, thus producing a drawing of K~. Delete the unused y- 
plane of y-coordinate 0 to obtain a drawing with dimensions X = Z = ~ and 
Y = n. There are n2 /4  edges drawn without a bend, and all other edges have 
one bend, so the total number of bends is n2 /4  - n /2 .  

T h e o r e m  4. K~  can be drawn in a ~ x n x ~-grid with at most  one bend per 
edge and a total number  of bends equal to n'~/4 - n / 2 .  

4.2 A s m a l l e r  O ( n  3) v o l u m e  d r a w i n g  for  k = 2 

A similar strategy can be applied when a maximum of k = 2 bends on an edge 
is allowed. In this section, K~ is drawn with at most two bends per edge by 
first making two copies of a drawing for K~ and then placing them in a grid of 
side-length ~ and supplying the edges connecting the two parts. 

n D r a w i n g  i n  a n  n × ~ × n - g r i d  Enumerate the vertices as {vl, . . . .  Vn} and 
place v~ at ( x , y )  = (i, 1) in a 2-D (x,y)-plane. TO route edge e = (v~,vj) ,  where 
i < j ,  let y = [ ~ ]  and route e via the points (i, 1), (i, y), (j, y), (j, 1), creating 
two bends if y > 1 and no bends if y = 1. 

Define the edge sets E~ and E/b as above. Again there are no crossings nor 
overlaps among edges in the same set and so n z-planes suffice. Since the largest 
y-coordinate is [ ~-~2 , the bounding box has dimensions n × ~ × n. The edges 
(v~, vi+l)  for i = 1 , . . . ,  n - 1 are drawn straight; all other edges have two bends, 
so the total number of bends is n 2 - 3n + 2. 

H I,_ aa c . a  c . a  c . a  I H l ! c . a  I 

Fig. 4. The edge sets of Ks drawn with at most two bends per edge. 

L e m m a  5. The graph K~  can be drawn in an n x ~ x n-grid, with a total of 
n 2 - 3n + 2 bends and at most  two bends per edge, such that vertex vi overlaps 
the points  (i, 1, z), where 1 < z < n. 
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'~ 2 -g r i d  Let K 1 and K 2 denote two K~_'s drawn D r a w i n g  in an  ~ × ~ X 2 as 
described above. Thus each drawing has a bounding box of dimensions ~ × ~ × ~. 
Reflect K 2 through the (y = 0)-plane, so that  all points in the reflected K 2 have 
negative y-coordinate. Then rotate the reflected K 2 so that  vertex vj of the 
rotated, reflected K 2 now overlaps the points ( x , - 1 , j ) ,  where 1 < x < ~. 

Fig. 5. Two K~'s, with K 2 reflected and rotated 

Each vertex v~ in K 1 sees each vertex vj in the rotated, reflected K 2 along 
the y-line segment [(i, 1,j) ,  ( i , -1 , j ) ] .  Therefore, these edges can be drawn as 
straight lines, thus producing a drawing of K~. Removing the unused y-plane 

The total of y-coordinate 0 yields a drawing of dimensions X = Y = Z = y.  
number of bends is 2(n2/4 - ~n 2) = n2/2 - 3n + 4. 

T h e o r e m 6 .  K~ can be drawn in an ~ × ~ × ~-grid with a total o] n2 /2 - 3n + 4 
bends and at most two bends per edge. 

4.3 A n  O ( n  2"5) V o l u m e  dr awing  for k : 3 

In this section, we draw Kn with at most k = 3 bends on any edge and with 
volume O(n2"5). Case 2 of the lower bound proof suggests what general form 
such a drawing might take. For simplicity, assume below that  n = N 2 for some 
integer N. Enumerate the vertices as ordered pairs ( i , j ) ,  where 1 <_ i < N,  
1 <_ j < N,  and place vertex ( i , j )  at (2i,2j) in the 2-D x,y-plane. Suppose 
edge e joins vertex ( i l , j l )  and vertex (i2,j2). After possible renaming, we may 
assume that  il _ i2, and that  i f i l  = i2, then j l  > j2. Call e an L-edge if j l  > j2 
and a F-edge otherwise. 

Initially route each L-edge via the points (2il, 2jl ), (2il + 1,2jl),  (2i 1 + 1, 2j~ + 
1), (2i2,2j2 + 1), (2i2, 2j2), thus with three bends. Route each F-edge via points 
(2il, 2jt) ,  (2il + 1, 2jl), (2ii + 1, 2j2 - 1), (2i2, 2j2 - 1), (2i2, 2j2). 

Split the L-edges into N ( N  - 1) groups Ed~,d~, with 0 < d~ ~ N - 1 and 
i ~ dy < N -  1. Each group Ea~,d~ consists of those edges ~ i t , j l ) ,  (i2,j2)) for 
which i2 = il + d~ and j2 = j l  - dy. These groups cover all L-edges since il < i2 
and j l  > j2 for any L-edge. 
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Now split each group Ed~ ,~ into at most d~ + dy sets of edges as follows. For 
p = 0 , . . . ,  d~ + dy - 1, let E~,d ~ be the edges in Ed~,d~ for which j2 - il  = p 

modulo (d~ +dy). In other words, the lower left "corners" of the L-edges in E~,dy 
lie on diagonals that  intersect the y-axis at the value 2/) modulo (2d~ + 2dy). See 
Fig. 6. It is easy to check that  no two edges in E~,dy overlap or intersect since the 
corners of the L's are placed on a sequence of diagonals having a vertical spacing 
of 2(d~ + dy) between adjacent diagonals. Also, note that  E ;  is non-empty d~ ,d~ 
only if p < 2N - d~ - dy 5 

i i ! i i ! ! ! , ' ~  ! ~ ~ i ) /  

" / " i " i - i - ' i - i ; i ' i i i " i i i - i  
: : : /  : : : ; : : t  : : : ; : 

Fig. 6. The edge sets E°2 and E 1 , 2 .  

Assign a z-plane to each set E ~  a. to obtain a legal drawing of the L-edges. 
Route the F edges in an analogous fashion. This doubles the number of z-planes, 
yielding a drawing of K~ in a grid with X = Y = 2N = 2v% The Z dimension 
is given by 

N-1 N-1 
2 E E min{d~ +d~,2N-d~: -dr} .  

d ~ = 0  d y - - 1  

Some analysis shows that  this sum is at most 

2 [~z lk (2k  _ 1) + (N _ 1)N] 2 ( N -  1 ) N ( 2 N -  1) 
Lk=1 : 3 - (_N - 1 ) /Y  + 2 ( N  - I ) N  

4 3 which is less than gN . Every edge has three bends. However, the 2N(N - 1) = 
2 n -  2V~ edges where d~ = 0 and dy = 1, or dx = 1 and dy = 0 can be drawn 
without a bend. So the total number of bends is 3 ( n 2 / 2  - n / 2 )  - 3 ( 2 n  - 2 v ~ )  = 

_ + 

5 A java applet demonstrating the sets and their routings for /(1oo can be found at 
http ://www. cs. uleth, ca/~wismath/ortho, html. 
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4 3 T h e o r e m T .  I f  n = N ~ is a square, then K,~ can be drawn in a 2 N  x 2 N  x g N  - 
grid (so volume ~ n  2"5) with 3n2 - ~-n + 6x/~ bends and at most three bends 
per edge. 

5 C o n c l u s i o n s  

This paper is one of the first to address volume and bend considerations for 3-D 
orthogonal grid drawings of graphs. The focus has been on Kn, since it is the 
most difficult graph on n vertices to draw in small volume or with restrictions 
on bends. In particular, we have 

-- provided a method for drawing Kn with volume that. is provably within a 
constant factor (same constant for all n) of best possible in the case that  at 
most k bends per edge are allowed, where k > 3; 

- proved the non-existence of drawings of K~ for large n in the k = 0 case, 
where no bends are permitted; 

- proved a lower bound of g?(n ~'5) and an upper bound of O(n a) on the volume 
of drawings of h'~ when k = 1 and k = 2. 

An open problem is to close the gap between the upper and lower bounds in 
the k = 1 and k = 2 cases, where at most 1 and at most 2 bends on each edge 
are permitted, respectively. The ideas and methods presented here may serve as 
a useful starting point for constructing drawings with good constant factors for 
volume and bends. 

6 A c k n o w l e d g m e n t s  

Thanks to Michael Kaufinann for discussions on orthogonal drawings. The joint 
results of this paper have also appeared as part  of the PhD thesis of T. Biedl at 
Rutgers University. 
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