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Abs t rac t .  This paper is devoted to the study of graph embeddings in 
the grid of non-planar surfaces. We provide an adequate model for those 
embeddings and we study the complexity of minimizing the number of 
bends. In particular, we prove that testing whether a graph admits a 
rectilinear (without bends) embedding essentially equivalent to a given 
embedding, and that given a graph, testing if there exists a surface such 
that the graph admits a rectilinear embedding in that surface are NP- 
complete problems and hence the corresponding optimization problems 
are NP-hard. 

1 I n t r o d u c t i o n  

Drawings of graphs on the rectilinear grid have been studied because of their 
applications in VLSI planning. In this context, three important  optimization 
subtasks related to theoretical problems in Graph Theory arise in VLSI design 

- To minimize the number of holes to be made in the board in order to avoid 
inappropiate intersection. 

- To minimize the number of bends. 
- To minimize the area. 

This paper is related to diverse aspects of the second problem. The first task 
is one of the most important  problems in Topological Graph Theory, where it is 
known as the genus of a graph, and, in 1990 C. Thomassen proved that  this prob- 
lem is NP-hard [8]. Nonetheless, several heuristics have been presented obtaining 
good aproximations to the optimal solution (see [6]). The other two problems are 
NP-hard problems even if there exists no fixed embedding of the graph (see [4] 
and [1]). In practice, the heuristics mentioned above provide actual embeddings 
of the graphs in certain surfaces. Thus, it remains as an open question to find 
a polynomial algorithm providing the minimum number of bends when a fixed 
embedding in a surface is given. In this sense, Tamassia proves that  if the em- 
bedding is in the plane that  algorithm exists [7], but nothing is known in other 
surfaces. And, actually in most practical situations, the graph that  modelizes 
the design is non-planar. In this paper, we establish the basis to the study of 
grid drawings of graphs in orientable surfaces defining a good model (a grid in 
each surface of genus n) that  allows to considerate the same topics as in the 
plane, and we prove that  the two following related problems are NP-complete: 
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- Testing whether a graph admits a rectilinear (without bends) embedding 
essentially equivalent to a given embedding. 

- Given a graph, testing if there exist a surface such that the graph admits a 
rectilinear embedding in that surface. 

Hence, the corresponding bend-minimization problems are NP-hard. 
In this paper, we assume standard concepts on NP-completeness [3]. 

2 A m o d e l  t o  s t u d y  g r i d  e m b e d d i n g s  in  n o n - p l a n a r  

s u r f a c e s  

In order to consider grid embeddings of graphs in non-planar surfaces, we need 
to give an appropiate representation of a surface of genus n. Of course, the first 
attemp to achieve that goal must be to use the well-known Classification of 
Surfaces (see, for instance [2]). 

T h e o r e m  1. [2] Every closed, connected, orientable surface is homeomorphic to 
one of the standard polygonal surfaces. 

The standard polygonal surfaces are obtained by identifying the sides of a 
4n-gone following the scheme described in Figure 1. 

Fig. 1. One of the handles in a surfaces of genus n. 

On the other hand, we can observe that in our problem the existence of an 
orthogonal system is fundamental. Nevertheless, the standard polygonal repre- 
sentation of surfaces lacks that system. However, it is possible to give another 
representation of surfaces. As a consequence of Theorem 1 we get the following 
classification theorem. 

T h e o r e m  2. Every closed, connected, orientable surface is homeomorphic to one 
of the standard orthogonal surfaces. 

Where the standard orthogonal surface of genus n is obtained by identifying 
the sides of a rectangle with n -  1 small rectangles deleted in its interior following 
the scheme described in Figure 2. 

Observe that in the standard orthogonat surface of genus n there exist two 
distinguish directions (horizontal and vertical, those directions parallel to the 
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Fig. 2. The standard orthogonal surface of genus n. 

Fig. 3. A grid of the surface of genus 3. 

sides of the external rectangle). The horizontal direction will be called the di- 
rection of the parallels and the vertical direction will be called the direction of 
the meridians. Thus, any set of parallels and meridians will be called a grid of 
the standard orthogonal surface. Figure 3 shows an example. 

Now, it is possible to say that a grid drawing (or embedding) of a graph in 
a surface of genus n maps each edge to a chain of segments parallel to the sides 
of the external rectangle in the standard orthogonal surface and no two edges 
intersect except at a common vertex. A change of direction (from a parallel to 
a meridian) in an edge is called a bend. A rectilinear drawing is a grid drawing 
where each edge is either a horizontal or a vertical segment (i. e. a grid embedding 
without bends). 

Figure 4 shows a grid drawing of a graph on the standard orthogonal surface 
of genus 3. 

As usual (see [5]), it is possible to identify an embedding with a rotation 
system (a cyclic permutat ion of the edges incident to each vertex) and two 
embeddings are said to be equivalent if their rotations systems are the same 
up to cyclic permutation.  Two embeddings are said to be essentially equiva- 
lent if the two subgraphs constituted, one with the blocks with essential cycles 
(those "wrapping around" the surface or, more precisely, those homotopically 
non-trivial) and the other with the blocks without essential cycles are pairwise 
equivalent. Figures 5 and 6 show some examples. 
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Fig. 4. A grid drawing of a graph on the standard orthogonal surface of genus 3. 
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Fig. 5. (a) ¢ is an embedding on the torus of a graph with two blocks, one with essential 
cycles and the other without it. (b) This embedding is not essentially equivalent to ¢ 
because the embedding of the block with essential cycles is not equivalent. 

3 Essentially equivalent rectilinear drawing 

In this section, we prove that  the following problem is NP-complete: 
ESSENTIALLY EQUIVALENT RECTILINEAR DRAWING ( E E R D ) :  
INSTANCE: Surface S, graph G, embedding ¢ : G ) S. 
QUESTION: Does there exist a rectilinear drawing of G in S essentially equiv- 
alent to ¢? 

T h e o r e m  3. E E R D  is NP-coraplete. 

Proof. (SKETCH) E E R D  is easily seen to be in NP. For the second part of the 
proof, we transform 3-SATISFIABILITY (3SAT) to EERD. Let U = {Ul, u2,..., un} 
be a set of variables and C - -  {Cl, c2 , . . . ,  cm} be a set of clauses making up an 
arbitrary instance 8 of 3SAT. Starting from S, we construct an embedding Cs 
of a graph Gs in a suitable surface, as follows. We associate to each clause the 
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Fig. 6. (a) This embedding is not essentially equivalent to ¢ of Figure 5.(a) because the 
embedding of the block without essential cycles is not equivalent. (b) This embedding 
is essentially equivalent to ¢ of Figure 5,(a), 

embedding of the graph shown in Figure 7, where each subgraph despicted in 
Figure 8 represents one of the three literals of the clause. 

:!!! _] !! " ./ I! !!!= 

Fig. 7. Embedding associated to each clause. 
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Fig. 8. Embedding associated to each literal. 

Finally, we join the literals of the different clauses as it is shown in Figure 9, 
and we add enough handles to avoid crossings. (Figure 10 shows a complete 
example for the set of variables U -= {ul, u2, u3, u4, us} and the clauses C = 
{cl, c2, c3} with ci = {u2, u3, us}, c2 = {ul, ~44, us} and c3 = {u2, u3, ~-~}). 
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Fig. 9. (a) Union between embeddings associated to equal literals. 
(b) Union between embeddings associated to opposite literals. 

@ _ ~ r 3 3 .  r3-~ ~ _  ~ r T ~ _  _ 

Fig. 10. An example for three clauses. 

We claim that  S is satisfiable if and only if there exists a rectilinear drawing 
of Gs  essentially equivalent to e s .  

In a rectilinear drawing of Gs essentially equivalent to es ,  we say that  one 
of the subgraph associated to a literM of a clause is vertical if the two vertices 
that  have degree one in the subgraph are in the same meridian. It is horizontal 
if they are in the same parallel (those are the only possible options). Then, it is 
easy to see the following two facts: 

1. Two literals corresponding to the same variable in different clauses are one 
of them vertical and the other horizontal if and only if one is the negation 
of the other. 

2. In all graphs corresponding to clauses of $ there exists at least one vertical 
subgraph associated to one of its literals (this happens because in all rec- 
tilinear embeddings of the graph associated to a clause, the subgraph that  
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is not part  of a literal has its vertices of degree one at different heights, see 
Figure 11). 
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Fig. 11. Rectilinear embeddings of the graph associated to a clause. 

Therefore, if we assign the value True to vertical literals and False to hori- 
zontal ones we get a satisfying truth assignment for 8. 

Reciprocally, the assignation given above leads to a rectilinear drawing of 
Gs from a satisfying t ruth assignment for 8. In such a way that  true literals 
correspond to vertical subgraphs, those vertical subgraphs are always drawn 
upward if we follow the graph representing the clause from left to right as it is 
shown in Figure 12. 
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Fig. 12. Rectilinear embedding of the graph in the Figure 6. 

As a consequence of Theorem 3, the corresponding optimization problem 
related with EERD is NP-hard, then 
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Corol la ry  4. Given an embedding ¢ : G ) S of a graph G in a surface S, 
computing a grid drawing of G in S essentially equivalent to ¢ with the minimum 
number of bends is NP-hard. 

4 R e c t i l i n e a r  d r a w i n g  o f  g r a p h s  

As it has been said in the introduction, Garg and Tamassia [4] proved that testing 
whether a graph is rectilinear planar is an NP-complete problem. In this section 
we study a problem related in some way with that, which we can establish in 
the following terms. 
RECTILINEAR DRAWING IN SURFACE (RDS): 
INSTANCE: Graph G. 
QUESTION: Does there exist a surface S and a rectilinear drawing of G in S? 

T h e o r e m  5. RDS is NP-complete. 

Proof. (SKETCH) Again, RDS is easily seen to be in NP. For the second part of 
the proof, we will transform the following well-known NP-complete problem: 
NOT-ALL-EQUAL-3SAT (NE3SAT) : 
INSTANCE: Set U of variables, collection C of clauses over U such that each 
clause c E C has Icl = 3. 
QUESTION: Is there a truth assignment for U such that each clause in C has 
at least one true literal and at least one false literal? 

In the proof of Theorem 3, we used the fact that in any rectilinear embedding 
of a given graph, there are two points that we know that are not over the same 
parallel, here we will exploit that in any vertex of degree 3 in a rectilinear 
embedding at least one of its incident edges must be vertical and at least one of 
its incident edges must be horizontal. 

Let U = {ul,u2,. . . ,u,~} be a set of variables and C = { c l , e 2 , . . . , c , , }  be a 
set of clauses making up an arbitrary instance S of NE3SAT. Starting from S, we 
construct a graph Gs in the following way: 
Each variable ui, i = 1, . . . ,  n is represented by a sequence of cycles C3 of length 
3 adjacent by different vertices to the its anterior and to its posterior. The cycles 
in an odd position in the sequence will represent the variable in its affirmative 
form and those in even position will represent the variable in its negative form. 
The length of this sequence is determined by" the number of literals where the 
variable appears in such a way that we will have enough vertices of degree 2 
to join with new vertices that will represent the clauses (increasing, in this way 
the degree of some of those vertices of degree 2 up to degree 3). Then vertices 
representing clauses will have degree 3 (Figure 13 shows the graph corresponding 
to the set of variables U = {ul, u=, ua, u4} and the clauses C = {Cl, c~, ca} with 
c i  = { u l ,  u 4 } ,  e2 = a n d  c3 = u3,  

Observe that in a rectilinear drawing of Gs it is easy to check the following 
three facts: 

1. A subgraph associated to a literal is always either vertical or horizontal. 
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Fig. 13. An example for three clauses. 

2. In the case that two literals correspond to the same variable, one of them is 
vertical and the other is horizontal, if and only if one is the negation of the 
other. 

3. Each vertex corresponding to a clause is adjacent to at least one vertical 
literal and at least to one horizontal literal. 

Therefore, if we assign the value True to vertical literals and False to hori- 
zontal ones we get a satisfying truth assignment for S. 

Reciprocally, the assignation given above leads to a rectilinear drawing of 
Gs from a satisfying truth assignment for S. In such a way that true literals 
correspond to vertical subgraphs (see Figure 14). 

As above, the corresponding optimization problem is NP-hard 

Corol la ry  6. Given a graph G, finding a surface S and an embedding ¢ of G 
in S such that ¢ minimizes the number of bends among all embeddings in any 
surface of G is NP-hard. 

5 Conclusions and Open Problems 

In this paper we give an adequate model for studying embeddings of graphs in 
the grid of non-planar surfaces, proving, moreover, that two natural problems 
arising in such embeddings are NP-complete problems, namely, testing whether a 
graph admits a rectilinear (without bends) embedding essentially equivalent to a 
given embedding; and given a graph, testing if there exist a surface such that the 
graph admits a rectilinear embedding in that surface. Hence, the corresponding 
optimization problems are NP-hard. 

Of course, the main open problem related to our work is deciding if testing 
whether a graph admits a rectilinear embedding equivalent (without the restric- 
tion of being essentially equivalent) to a given embedding is an NP-complete 
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Fig. 14. Rectilinear embedding of the graph in the Figure 9. 

problem. Moreover, it can be interesting to study the existence of approxima- 
tions to the opt imal  solutions of the corresponding optimizat ion problems. 
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