
Graph Clustering I." Cycles of Cliques 
( E x t e n d e d  A b s t r a c t ) *  

F. J. Brandenburg 

Lehrstuht fiir Informatik 
Universit/it Passau 

94030 Passan, Germany 
emaih brandenb@informatik.uni-passau.de 

Abst rac t .  A graph is a cycle of cliques, if its set of vertices can be 
partitioned into clusters, such that each cluster is a clique and the cliques 
form a cycle. Then there is a partition of the set of edges into inner edges 
of the cliques and interconnection edges between the clusters. Cycles of 
cliques are a special instance of two-level clustered graphs. Such graphs 
are drawn by a two phase method: draw the top level graph and then 
browse into the clusters. In general, it is NP-hard whether or not a graph 
is a two-level clustered graph of a particular type, e.g. a clique or a planar 
graph or a triangle of cliques. However, it is efficiently solvable whether 
or not a graph is a path of cliques or is a large cycle of cliques. 

I n t r o d u c t i o n  

Graph clustering is a new direction in graph drawing. Several winners of last 
year's graph drawing competition have used this technique [9]. The Circular 
Library in the Graph Layout Toolkit of Tom Sawyer Software [5] clusters graphs 
and then displays them e.g. as a circle of circles. 

There is a general need for clustering techniques. As the amount of informa- 
tion to be visualized becomes larger, more structure is needed on top of the 
classical graph model. There is the need for abstraction and reduction. Flat 
graphs no longer suffice. When graphs become huge, classical graph drawing 
algorithms behave poorly or even fail. The further dit~cutty comes from the in- 
herent complexity of large graphs. The computational complexity of the graph 
drawing algorithms is directly effected by the size of the graphs. There is a need 
for etficient algorithms in graph drawing. Here, graph clustering brings us a step 
forward. Now, time consuming graph drawing algorithms can be applied to small 
portions only, and the overall running time still remains satisfactory. However, 
this can work only, if the partition into clusters can be computed efficiently. 

* Partially supported by the Deutsche Forschungsgemeinschaft, Forschungsschwer- 
punkt "Effiziente Algorithmen ffir diskrete Probleme und ihre Anwendungen". 
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Several recursive clusterings have been proposed recently, such as higraphs [12], 
compound graphs [23], hierarchical and clustered graphs [7] and [8] or Hgraphs 
[14]. For directed acyclic graphs special hierarchical decompositions have been 
introduced in [11,20], or in [22]. These techniques impose a tree structure on 
top of the graphs. Ultimately, such approaches lead to graph grammars, where 
the derivation trees define a hierarchical structure and give raise to clusterings 
based on a finite set of rules, see [3, 18]. 

Graph partitioning is a ct~sical topic in graph theory (see e.g. [2]) and an im- 
portant issue in the design of networks, VLSI, and parallel algorithms [18]. There 
are vertex and edge partitions of graphs, e.g. partitions into triangles, cliques or 
isomorphic graphs, and there are partitioning algorithms aiming at small sets 
of separators see, e.g., [1, 18]. Partition is a classical NP-hard domain. Many 
of the graph partition problems stated above are welt-known in the theory of 
NP-completeness, see GT10-GT16 in [10]. Generalized versions of NP-complete 
graph partition problems habe been studied in [2,6, 13, 15]. 

Our approach towards two-level clustered graphs considers graph partitions in 
more detail and aims at structural properties of the clusters and of the cluster 
graph. This graph is generally ignored. A graph is a two-level clustered graphs, 
or more precisely, an X-graph of Y-graphs, if the clusters from the partition of 
the vertices induce a Y-graph, and if the graph of the clusters is an X-graph. 
Examples are cycles of cliques or path of cliques. Every bipartite graph with a 
nonempty set of edges is an edge of two discrete graphs, and every rectangular 
grid is a (horizontal) path of (vertical) paths. Two-level clustered graphs are 
defined by graph projections. A graph projection is a mapping between graphs, 
which is different from other common mappings on graphs, such as graph em- 
beddings and graph homomorphisms. In terms of generalized embeddings, graph 
projections have a high load, dilation one, and a shrinking expansion. As graph 
homomorphisms, projections are onto for the vertices and they require a mem- 
bership property for the clusters. 

Two-level clustered graphs have been defined in a syntactic way by the ®- 
operation of Kratochvfl et. al. [17]. For two disjoint graphs G and G' let G @ G' 
be a graph obtained by the union of the sets of vertices and edges and adding 
an arbitrary set of matching edges between the two sets of vertices. Thus, the 
Q-operation is nondeterministic and does not define G @ G' uniquely. In their 
"Stringing Lemma", Kratochvfl et. al. [17] have applied their @-operation to 
complete graphs, such that the graph of clusters is planar. In our terminology 
these graphs are the planar graphs of cliques. Planar graphs of cliques seem 
to be inherently nondeterministic. Their synthesis uses the nondeterministic @- 
operation and their recognition is NP-complete [16]. 

Obviously, the recognition and representation problems are the major problems 
for two-level clustered graphs. Given a graph G and two classes of X-graphs 
and Y-graphs. Then the recognition problem is, whether G is an X-graph of Y- 
graphs. Thus, one must find an X-graph G' and a projection of G onto G' such 
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that  every cluster is a Y-graph. However, these problems are NP-hard, in general. 
This is somewhat expected, since many classical graph partit ion problems can 
be defined in these terms, such as partit ion into triangles, partit ion into cliques, 
etc., see [10]. Here the top-level X-graphs are arbitrary graphs, and the Y-graphs 
are triangles or cliques etc. Kratochvfl's result [16] restrict the top-level to the 
planar graphs, but still there is NP-completeness. We add some further NP- 
completeness results, such as the recognition of a triangle of cliques or a clique 
of cliques. However, there are O(n 3) resp. O(n ~) algorithms to decide whether 
or not a graph is a path of cliques or is a cycle of cliques of length at least six. 
The latter looks surprising, since it is NP-hard whether a graph is a triangle of 
cliques, i.e. a cycle of length three. 

This is our first paper on graph clustering. In forthcoming papers we'll investige 
all relevant classes of graphs, including paths, cycles, trees, grids, planar graphs, 
and cliques, and vary the depth of the clustering to more than two levels. 

Basic Not ions  

First, we recall some basic notions on graphs and establish our notation. 

A graph G = ( E  E) consists of a finite set of vertices V and a finite set of edges 
E. Edges are denoted as pairs of vertices (u, v). We consider simple, undirected 
graphs without self-loops and multiple edges. Su& edges are erased by a clean-up 
procedure. 

The neighbors of a vertex u are the vertices neigh(u) = {v G Vl(u, v) C E}. 
neigh(u) does not include u itself. Let neigh[u] = {u} W neigh(u). Accordingly, 
for a set of vertices U, let neigh(U) = {v E V - UI(u, v) E E for some u E U} 
and neigh[U] = U U neigh(U). The subgraph induced by a set of vertices U is 
denoted by Gtg. The complement of G is G = (V,E) with /) = {(u,v)lu, v E 
V:u # E}. 

A graph G = (V,E) with V = {Vo . . . .  ,vn-1} is a path, if E = {(vi,vi+l)li = 
0 , . . . ,  n - 2}. G is a cycle, if E = {(v~, v~+l)li = 0 , . . . ,  n - I rood n} and is the 
elique Kn, if E = {(vi, vy)li ¢ j}. 

The size of a graph is size(G) = n, where n = tVI. For convenience, we shall 
assume the neighbors of a vertex and the set of neighbors neigh(U) can be 
computed in time proportional to the sizes of U and neigh(U). Usually, the 
computation t ime also takes the number of edges into account. Then a scan of 
G takes O(n 2) instead of O(n). 

We now come to the central definition of our approach. A graph projection is 
a mapping between two graphs. However, it is different from other well-known 
mappings between graphs and imposes a two-level structure on the graphs, de- 
fined by the host graph and by the induced subgraphs. 
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Definit ion 
A projection of a graph G = (V, E) onto a graph G' = (V', E') is a mapping 
f : G --+ G' such that f : V -+ V' is many-to-one and onto and there is an edge 
(u', v j) E E'  if and only if there are vertices u, v E V with f(u) = u', f(v) = v' 
and (u, v) E E. 

Since f is onto, every vertex v' E W induces a subgraph of G defined by the set 
of vertices f - I ( v ' ) .  Every vertex v' resp. the set f - l ( v ' )  is called a supervertex 
of G and the induced subgraph GI~, = ( f - l (v ' ) ,  E N (I -~(v  ') x f - l (v ' ) ) )  is 
called a cluster. The supervertices define a partition the set of vertices V into 
pairwise disjoint sets. The set of edges E is partitioned into inner and intercon- 
nection edges. An edge. e = (u, v) E E is an inner edge, if f (u)  = f(v).  Then 
f(e) becomes a self-loop, and is omitted by our convention. An edge e is an 
interconnection edge, if f (u)  # f(v).  Then there is an edge (f(u), f(v)) E E' 
connecting the supervertices. Conversely, for every edge (u', v') E E'  there is an 
interconnection edge e = (u, v) such that f (u)  = u' and f(v) = v'. Conversely, 
every partition of the set of vertices V defines a mapping between graphs, which 
is a projection, if it is onto and has a representative for every interconnection 
edge. 

Definit ion 
Let f : G -+ G' be a projection of G onto G'. If G' is a graph from a class X and 
for every v' E V', the clustered graph Giv, is from some class Y', then G is a an 
X-graph of Y-graphs. More generally, G is called a two-level clustered graph. 

Two-level clustered graphs can be defined in a syntactic way by the nondetermin- 
istic Q-operation introduced by KratochviI, et al. [17]. For graphs G1 = (V1, El) 
and G~ = (V.~, E2) with V1NV2 = 0 let GI®G2 = {~t O V2, E2UE2UM} ,  where 
M C V1 U V2 is an arbitrary matching. G1 (9 G2 is not uniquely determined. This 
operation is extended to tuples of graphs by defining G1 (9 (G2 (9 .. • (9 G~). 

Kratochvfl et al. have considered graphs of the form G = G1 <9 G2 G . . .  Q G~, 
where each Gi is a complete graph, and the graph of representatives G is planar. 

= ( { a l , . . . , G n } [  ~;} and there is an edge (Gi,Gj) in E if and only i f i  # j 
and there are vertices vi E ~ and v d E Y] such that {vi, v d} is an edge in G. 
Kratochvit (personal communication) has observed, that  graphs of the above 
form are exactly the planar graphs of cliques. In [17] it has been shown that  
the complete bipartite graph Ks,s is not a planar graph of cliques and that  
every such graph is a string graph, i.e. the intersection graph of curves. In [16] 
Kratochvfl has proved the NP-compleness of the recognition problem for planar 
graphs of cliques. This results shall we improved to triangles of cliques. 

How shall we draw two-level clustered graphs? How shall we draw a an X-graph 
of Y-graphs? This comes naturally with the definition. On the top level, draw 
the graph G' by your favorite algorithm for X-graphs. The algorithm may draw 
G' with variable size nodes reflecting the sizes of the induced subgraphs. We do 
not, display the graph G as a whole; instead we browse into the vertices of G' and 
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display the clusters by drawing the induced subgraphs as Y-graphs. This can be 
extended to pairs of supervertices u ~, v' E V' and then displaying the clusters 
as Y-graphs together with the interconnection edges between the vertices of the 
clusters. For a nice display, the clusters should be drawn such that the endpoints 
of interconnection edges appear on the outer boundary of the drawn Y-graphs. 
Graph drawing algorithms of that kind are not yet around. 

For a graph G = (V, E) and graph classes X and Y the recognition problem 
is, whether or not G is an X-graph of Y-graphs, and to find a corresponding 
representation. What is the complexity of this decision problem? A solution 
of this question requires a partition of the vertices V = V1 U .. .  U Vk with 
~- N ~- = ~ such that every induced subgraph Giv ' is a Y-graph. The sets 
{ V1 . . . .  , Vk } become the vertices of the graph G'. The edges of G' must have 
representatives in the graph G. Hence, the set of edges E is partitioned into the 
sets of edges of the induced subgraphs and the set of edges representing the edges 
of G ~. This partition is many-to-one and onto and is directed by the properties 
of the graph classes X and Y. 

The question whether or not a graph G is an X graph of Y graphs is NP-hard 
for very many instances of graphs G and classes X and Y. This is particularly 
true, when X is the class of all graphs. In that case, the host graph G' has 
no particular structure and the problem of the existence of a certain projection 
reduces to a classical decomposition problem for graphs or to the existence of 
a special subgraph. The interconnection edges can be ignored, and known NP- 
hardness results apply, see [6, 10]. In particular, the well-known graph partition 
problems into triangles, isomorphic subgraphs, Hamiltonian subgraphs, forests, 
cliques, or perfect matchings and graph colorability (see GTll-GT16 in [10]) can 
be described as a graph projection onto arbitrary graphs. 
Similary, if Y is the set of graphs with a single vertex, then nothing changes and 
all NP-hard problems remain as they were. 

However, these classes of graphs seem too general and are not interesting to 
us. Our inspiration came from the circular layouts of [5] and we first consider 
cycles and paths of cliques. Surprisingly, the recognition problem can be solved 
in efficiently. 

A further consequence of our approach will be a richer classification of graphs, 
particularly for graph drawing. So far, graph drawing distinguishes four classes: 
general graphs, directed acyclic graphs, planar graphs and trees. Other classes of 
graphs are not of general interest, because either they seem too special or there 
are no appropriate graph drawing algorithms, yet. Our approach changes this 
situation. And it opens a wide field for further investigations. 

Cycles of Cliques 

For clarity we recall the definition of cycles of cliques. 
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Definition 
A graph G = (V, E) is a cycle of cliques (resp. path of cliques), if there is a cycle 
(a path) G' = (V', E') and a projection f : G -+ G' of G onto G' such that  for 
every v ~ E V ~, the subgraph induced by .f-l(v~) is a clique. 
G is a k-cycle of cliques, if G ~ is a cycle of size (or length) k. 

Hence, there is a partition of the set of vertices V = V0 U . . .  U Vk-1 with 
V i M ~  = 0 for i ¢ j such that for every i, 0 = 1 , . . . , k -  1, the subgraph 
induced by ~ is a clique. Moreover, with the proper ordering there are vertices 
u, v with u E r~}, v E ~+1 (rnod k) and (u, v) E E, and conversely, for every 
edge (u, v) E E, u E g~ implies v E l/~. or v E 1/)±1 (rood k). 

For the decision problem it must be checked whether or not the set of edges 
can be partitioned into clique edges and cycle edges, where the clique edges are 
one-to-one and the cycle edges are many-to-one. 

Cycles of cliques have a particular structure. The deletion of a supervertex cuts 
the cycle and leaves a path of cliques. Now, every supervertex except at the 
ends is a clique separator. However, not every clique separator can be used as 
a supervertex. There may be some nondeterminism, which cannot be decided 
locally. The circular saw with two defects in Fig. 1 is an example of a cycle 
of cliques. However, the triangles cannot be chosen as clusters. Because of the 
quadrilateral on top the left resp. right sides must be taken. 

Figure 1 

A partition of a graph G = (V, E) into cliques is directly related to a coloring 
of the complement graph G. A graph coloring partitions the vertices such that  
there are edges only between vertices from different clusters. A partition of a 
graph into a k-cycle of cliques implies a k-coloring of the complement graph, 
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such that every pair of non-adjacent ctusters is a complete bipartite graph and 
two adjacent clusters are not complete bipartite. 

It should be noted that the Circular Layouts from Tom Sawyer's Graph Layout 
Toot [5] are not fully captured by our definition of cycles of cliques. Their exam- 
ples allow almost cycles of almost cliques. However, there is no reasonable way 
to define "almost" and to handle it efficiently. 

A vertex and an edge of cliques can be recognized easily. The case k = 3 is 
different. Then a k-cycle is a triangle. Triangles of cliques are dense graphs, and 
there may be an edge between any pair of vertices. This explains why they are 
hard to recognize. Our NP result improves the result of Kratochvfl [16] on the 
NP-completeness of planar graphs of cliques. 

T h e o r e m  1 
It is NP-complete, whether or not a graph G is a triangle of cliques, 

P roof .  
G is a triangle of cliques if and only if the complement graph G = (V, J¢) is 
3-colorable and the induced partition V = V1 U V~ U V3 is connected in G. 
The latter holds e.g. by the reduction from 3-SAT given in [19]. Hence, a 3-SAT 
expression is satisfiable if and only if G is a triangle of cliques. 

Using k-colorability, this result can be generalized to cliques of cliques. Notice 
that  a clique is a clique of cliques, but not conversely. 

T h e o r e m  2 
For k > 3 it is NP-complete, whether or not a graph G is a k-clique of cliques. 

These results suggest, that  the recognition problems for two-level clustered graphs 
are NP-hard, except for some trivial cases. Th.is is false! There are polynomial 
time algorithms for paths of cliques and also for cycles of cliques, when triangles 
are excluded. 

T h e o r e m  3 
There is an O(n 3) algorithm to decide whether or not a graph G is a path of 
cliques and to compute the corresponding representation. 

P r o o f .  
(sketch). Suppose that G = (G E) is a path of cliques with the supervertices 
V0,. . . ,  Vk-1 and V/ C_ V for i = O , . , . , k -  1. Each supervertex is a clique, and 
there are further edges between vertices of G if and only if they are in adjacent 
supervertices. Thus, we order the vertices of G from V0 to Vk-1 and orient the 
edges accordingly. 

By induction, suppose that a path of supervertices V0,.. ,, 1~}-1 has been com- 
puted, and a subset Ci of the next supervertex 1/} is known. The vertices from 
V0,.. . ,  I/)-1 have been marked as "old". Then the next supervertex V~ contains 
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the vertices from Ci and is contained in neigh[C/]. The remaining vertices in 
neigh[C/] - V~ are a subset of the next supervertex. So we define an orientation 
of the edges from a marked to a yet unmarked vertex, i.e. from ~d-1 to V/. The 
vertices from V/ are marked as "old" and we proceed to the next stage and 
compute the next supervertex ~/}+1- 

For a set of vertices U _C V define next(U) = {w e VIw e neigh(U) and w is 
not marked}. 7~ext(U) is the set of new neighbors of U. A set of vertices U C V 
forms a clique, if the induced subgraph Giu is a clique. Two disjoint cliques U1 
and U,. form. a clique, if U1 U U~ does. Otherwise, for every ul C UI there is some 
u2 C U2 such that  the edge (ul, u2) is missing in G. 

Consider a nonempty set of vertices Ci which forms a clique. Ci is taken as 
a subset of the current supervertex V~. The first goal is to expand Ci into V/. 
However, as we shall see, this is not unique and a decision cannot be made by 
local computations. See Figure 1. There the triangles do not form the proper 
supervertices. Hence, we compute several candidates P},j for the supervertex 
%, and keep track of them and check which of them will eventually succeed to 
represent G as a cycle of cliques. A candidate fails, if it induces a set of vertices 
as a supervertex, which is not a clique. Candidates can be identified, if they 
behave similarly and induce cliques which differ not essentially. For example, if 
a vertex lies between ~ and V~'+1 and forms a clique with both, then it can be 
added to either of them. 

Let Ci C Vi and let the vertices from ~/D . . . .  , G'-I be marked. Then Ci C_ Vi U 
next(C 0 and 0 ~: next(Ci) C_ V/U ~+1. Hence, the vertices from next(Ci) must 
be partit ioned into V/ and %+1. Consider the set next(G). Since next(G) is 
covered by at most two cliques, it partitions into four mutually disjoint sets 
Ci+l, R, t? and Y. Some but not all of them may be empty. Each of them forms 
a clique. Ci+l and Ci do not form a clique. I.e. for every u E Ci+l there is some 
v E Ci such that  (u, v) is not an edge in G. Hence, the vertices from Ci+l must 
belong to the next supervertex Id+1. The sets R, B, and Y each form a clique 
with each of Ci and Ci+l. Y forms a clique with each of g and/? ,  whereas R and 
B do not form a clique. A pair (u, v) is in/~ x / ?  iff the edge (u, v) is missing in 
G. The computation of the sets Ci+l, JR, B and Y is easily done by coloring the 
complement graph G. Consider the subgraph of G induced by Ci O next(Ci). Its 
complement must be 2-colorable, such that  all vertices from Ci are colored by 
the same color. Otherwise, Ci U next(Ci) must be partitioned into at least three 
supervertices. These are either disconneced or they branch and then cannot form 
a cycle. The complement graph restricted to Ci U next(Ci) is ahnost discrete. 
However, every vertex from Ci+l is connected to some, but not all vertices from 
Ci, the "yellow" vertices from Y are isolated and the vertices from ~2 U B are 
bipartite subgraphs in G, i.e. they are colored "red" and "blue". If there are 
several components, R or B are chosen arbitrarily. 

Next, we decide the vertices from RU B, and move them into Ci and Ci+l. Mark 
the vertices from C~.Unext(Ci). For every pair u, v from RUB with u C _R and 
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v E t), compute next(u) and next(v). If next(u) C next(v), then add u to Ci 
and v U next(u) to Ci+1. Since u and v must be in distinct supervertices, there 
is no other choice. If ~ext(u) = next(v), then arbitrarily add u to Ci and v and 
next(u) to Ci+i. u and v can be interchanged. Finally, if next(u) and next(v) 
are pairwise incomparable, there is an error. The chosen Ci is false, and shall be 
ignored. If there is no alternative, then the graph G is not a path of cliques. 

Now, consider the vertices from Y. Y forms a clique with each of Ci and Ci+i. 
Thus, for the vertices of Y there is a choice between the supervertices Vi and 
E'+l. This nondeterminism cannot be solved by local computations. However, 
the vertices from Y can be ordered. 

Mark the vertices from C~ Unext(Ci). For vertices y and y' from Y, if next(y) = 
nexf(5/), then ident i~  y and 5/. If next(y) and next(5~) are pairwise incompara- 
ble, then y and 5 /must  belong to the same supervertex, Vi or V}+i. Then merge 
thern into y" with ~.ext(y") = next(y) U next(y'). Finally, if next(y) C next(y'), 
then 5/ E Ci implies y E Ci, otherwise, the next supervertex is not a clique. 
Hence, we can order the (subsets of) elements of Y according to the strict in- 
chsion of their sets of next neighbors. Let Y = (y~,. . .y~) with next(yj) C 
next(yj+i). Since Y forms a clique with Ci, r is smaller than the cliquesize of G. 

For the supervertex V} we have r + 1 candidates, namely ~'},0 = Ci and Vi,j = 
Ci U {91, . . . ,y~ls  _< j , j  = 1 , . . . , r } .  Each of them is taken into consideration 
and is tested in parallel in the next phases. However, if 7" < 2, then every E,j  
uniquely determines its next supervertex V~+I,j, or the number of candidates re- 
duces, since a candidate fails or is merged with another candidate. Every can- 
didate can be associated with a vertex of G or a supervertex. Hence there are 
at most O(n) candidates, and each of them takes at most O(n) computation 
steps, when we assume that neighbors can main be computed in linear time in 
the nmnbers of vertices. Thus, the decision procedure takes O(n 2) time, which 
is o(Ivl-  IEt), if edges are taken into account. 
It remains to compute a candidate for the first supervertex. Suppose that G is 
a k-path of cliques. The cases /~- = 1 and k. = 2 are obvious. For k > 3 consider 
the set of endpoints of paths defining the diameter of G. Let Co be one of these 
sets, i.e. Co = {u] there is some vertex v such that the shortest path between it 
and v has length diarn(G)}, where diarn(G) is the diameter of G. The diameter 
of a graph and the set Co can be computed by using an "all-pairs shortest path" 
algorithm, and this takes O(na). 

Finally, we consider cycles of cliques for sufficiently long cycles. 

L e l l l l n a  
If G is a k-cycle of cliques, then the diameter of G is bounded by diam(G) <_ 
2. [k/2J + 1. 

Notice that the graphs used for the NP-completeness result of Theorem 2 have 
diameter two. 
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T h e o r e m  4 
If diam(G) > 4, then there is an O(n 2) algorithm to decide whether or not a 
graph G is a cycle of cliques and to compute the representation of G as a cycle 
of cliques. 

P r o o f .  
Suppose that G is a k-cycle of cliques with the supervertices Vo, V1 • •., Vk-1 in 
that cyclic order. Then k > 4. The idea of the proof is to cut the cycle, say 
at a supervertex V0. Then we obtain a path of cycles, and can use Theorem 5. 
Thus, we nmst compute a subset Co of the first, supervertex V0, and we must 
mark the vertices from V~-I in order to move through G in circular order. These 
marks are crucial, because then the set of next neighbors of a supervertex is 
2-coloruble in the complement graph. Otherwise, and in particular for triangles, 
three or more colors are needed. Since diam(G) >_ 4, there is a shortest path of 
length four v0 --+ vl --4 v2 -+ v3 -+ v4. Mark (or temporarily delete) v0 and its 
neighbors neigh(v0). If G is cycle of cliques, then the rest graph G - (neigh[v'o]) 
is a path of at least three cliques. Now use the construction from Theorem 3 
with the vertex (v2) as subset of the first supervertex. When the supervertices 
including (v4) are compputed, reinsert neigh[v0]. 

When the cycle is closed it is checked, that the candidate chosen as the first 
supervertex is feasible. 

The algorithm takes time O('n~), since the paths of length at least 4, the com- 
putations of Co and the main decision procedure can each be done in quadratic 
time with the assumptions made above. If a scan through a graph G = (1/; E) 
takes O(IVI + let)  time, then we obtain O(n3). 

Conc lus ion  

Graph projections and the induced graph clusterings are a field for new investi- 
gations. The partitions into cycles of cliques are a very first step. Other classes 
of interest are trees and planar graphs at the top level. For trees, there may be 
a similarity to the tree-decomposition of graphs; for planar graphs we take a 
look at planar graphs of planar graphs as a new at tempt  towards "almost planar 
graphs". E.g. the K16 can be decomposed into four •4's and thus is a planar 
graph of planar graphs; however, the K17 does not admit such a projection. 

R e f e r e n c e s  

1. C.J. Alpert and A.B. Kahng: Recent directions in netlist partitioning: a survey. 
Integration, the VLSI J. 19 (2995), 1-18. 

2. J. Bosik: Decompositions of Graphs. Kluvwer Academic Publishers, Dordrecht 
(1990). 



G8 

3. F.J. Brandenburg: Designing graph drawings by layout graph grammars. Graph 
Drawing 94, LNCS 894 (1995), 416-427. 

4. R.C. Brewster, P. Hell and G. MacGillivray: The complexity of restricted graph 
homomorphisms. Discrete Mathematics 167/168 (1997), 145-154. 

5. U. Dogrusgz, B. Madden and P. Madden: Circular layout in the graph layout 
toolkit. Graph Drawing 96, LNCS 1190 (1997), 92-100. 

6. D. Dor and M Tarsi: Graph decomposition is NP-complete: proof of Holyer's con- 
jecture. SIAM 3. Comput. 26 (1997), 1166-1187. 

7. P. Eades and Q.W. Feng: Multilevel visualization of clustered graphs. Graph Draw- 
ing 96, LNCS 1190 (1997}, 101-1t_2. 

8. P. Eades, Q.W. Feng and X. Lin: Straight-line drawing algorithms for hierarchical 
graphs and clustered graphs. Graph Drawing 96~ LNCS 1190 (1997), 113-128. 

9. P. Eades, 3. Marks and S. North: Graph-Drawing Contest Report. Graph Drawing 
96, LNCS 1190 (1997), 129-138. 

10. M.R. Garey and D.S. Jolmson: Computers and Intractability: A Guide to the 
Theory of NP-Completeness. Freeman, San Fransisco (1979). 

11. D.3. Gschwindt and T.P. Murthagh: A rec~rsive algorithm for drawing hierarchical 
graphs. Technical Report CS -89-02, Williams College, Williamstown (1989). 

12. D. Hard: On visual formalisms. Comm. ACM 31 (1988), 514-530. 
1.3. P. Hell and 3. Ne~etfil: On the complexity of H-coloring. J. of Combinatorial The- 

ory, Series B 48 (1990), 92-110. 
14. M. Himsolt: Konzeption und hnplementierung yon Grapheditoren. Shaker Verlag, 

Aachen (1993). 
15. I. Holyer: The NP-completeness of some edge partition problems. SIAM 3. Corn- 

put., 10 (1981), 713-717. 
16. J. Krat~ochvfl: String Graphs. II. Recognizing string graphs is NP-Hard. 3. of Com- 

binatorial Theory, Series B 52 (1991), 67-78. 
17. J. Kratochvfl, M. Goljan and P. Ku5era: String Graphs. Academia, Prague (1986). 
18. T. Lengauer: Combinatorial Algorithms for Integrated Circuit Layout. Wiley- 

Teubner Series (1990). 
19. U. Manber: Introduction to Algorithms a Creative Approach. Addison Wesley, 

Reading (1989). 
20. E.B. Messinger, L.A. Rowe and R.R. Henry: A divide-and conquer algorithm for the 

automatic layout of large directed graphs. IEEE Trans. Systems Man Cybernetics 
21 (1991), 1-12. 

21. R. Sablowski and A. Frick: Automatic graph clustering. Graph Drawing 96, LNCS 
1190 (1997), 396-400. 

22. F.-S. Shieh and C.L. McCreary: Directed graphs drawing by clan-based decompo- 
sition. Graph Drawing 95, LNCS 1027 (1996), 472-482. 

23. K. Sugiyama and K. Misue: Visualization of structural information: automatic 
drawing of compound graphs. IEEE Trans. Systems Man Cybernetics 21 (1991), 
876-892. 

24. IC{.E. Tarjan: Decomposition by clique separators. Discrete Math. 55 (1985), 221- 
232. 

25. S.H. Whitesides: An algorithm %r finding clique cut-sets. Inf. Proc. Letters 12 
(1981), 31-32. 


