
G R A V I S - - System Demonstration

Harald Lauer, Matthias Ettrich and Klaus Soukup

Universit£t Tiibingen, Sand 13, 72076 T~ibingen, Germany
Email: {lauer, ettrich, soukup}@informatik.uni-tuebingen.de

Abst rac t . GRAVIs is a powerful, interactive graph visualization system,
designed to be generally usable in research and practical applications.
The implementation of GRAVIs is based on a flexible object-oriented sys-
tem architecture, portable to many platforms. The intuitive and efficient
user interface is completed by the ability of the base system to meet the
requirements of future applications.

1 F e a t u r e s o f GRAVIs

Graph drawing research and practical applications working with structured data
sets represented as graphs demand a powerful visualization tool. Common fbr
both areas is, that the graph drawing tool must be interactive, extensible and
flexible to cover the wide range of application domain specific requirements found
in research and praxis. Together with a robust and maintainable realization, this
would result in the ideal tool for graph drawing. GRAVIS aims to fulfill as many
of the above requirements as possible.

Asking practitioners using graph visualization within their applications about
their needs reveals a very broad spectrmn of requirements covering performance,
ease of use, graphical attributes, layout tools and many more. The requirements
analysis and thus the design of GRAVIS is based on such a "wishlist" [9], therefore
the design philosophy of GRAVIS is to be a generally usable tool for information
visualization, only restricted to data representable as graphs. The following list
shows a collection of the main features of GRAVIS realizing this design goal:

- Highly modularized architecture.
- Complete set of graphical attributes for all graph elements.
- Easy to use program interfaces to implement extension modules.
- Dynamic loading of extension modules at runtime.
- Multiple views on the same graph structure.
- Highly optimized visualization component.
- 2- and 3-dimensional graph visualization.
- Support for hierarchical graphs.
- Intuitive graphical user interface.
- Active nodes, which perform user defined actions when pressed.
- Unlimited undo and redo.
- Zoom to arbitrary levels.
- Various input /output formats (including GML [8] and PostScript).

345

There is a number of other grapheditors available, created mostly in the
context of research projects. An example of a commercial product is the Graph
Layout Toolkit [10] by Tom Sawyer Software. Other systems include, but are not
limited to, Graphlet [8], daVinci [6], GD-Workbench [2] and the VCG tool [15].

Fig. 1: The graphical frontend of GRAVIs displaying a graph using various bitmaps
instead of the standard node types (circle, rectangle, rhomb, etc.).

2 G r a p h i c a l U s e r I n t e r f a c e

Much work has gone into the design of the user interface of GRAVIs, to produce an
intuitively and efficiently usable tool for the interactive manipulation of arbitrary
graphs. The philosophy of the user interface of GaAVIs is different from the
traditional approach taken by tools like Graphlet [8] and the Graph Layout
Toolkit [10] in on e important aspect: although GRAVIs supports various input
modes, the main mode for editing is not further split into modes for node/edge
creation, attribute editing and more.

Instead, each frequently executed input or manipulation function is in the
edit mode of GRAVIs directly accessible by a context sensitive mouse operation.
The benefit of this approach is that there is no need for time consuming and
concentration breaking mode changes, forcing the user to search for a "mode
change" button if he for example wants to create nodes and edges in an arbitrary
order. The context of the mouse event is sufficient to unambiguously decide which
operation is requested by the user and is defined by

1. the mouse location (over a node, edge, bend, selection or free space) and
2. the mouse movement (a simple click or dragging the mouse after clicking).

346

Less frequently needed operations are accessible by the standard menu structure
or by buttons arranged around the drawing area. Users of GRAVIs however, are
seldomly forced to search for menu entries, since even functionality often found
in additional panels are available directly at the object in the drawing canvas.
Figure 2 for example shows how graph elements can be resized.

Fig. 2: Resize button in the lower right corner of the selected node, which allows
resizing the node to an arbitrary height and width. The edge offsets can be
moved from their default position (node center) using a similar mechanism.

Fig. 3: The 3D graph viewer of GRAVIS. Below the drawing area is a mini-view
of the graph, displaying the relative user position (indicated by the eye).

347

Fig. 4: Active nodes functioning as buttons with associated commands. GRAVIs
can be used to layout object-oriented class diagrams and automatically load
classes into an editor when the corresponding node is activated. In this case, the
class EDGE (part of the Graph cluster of GRAVm; the screenshot shows a fraction
of the cluster) is now loaded in the editor after the node EDGE has been clicked.

3 Layout Modules

GRAVIS is dynamically extensible with new modules using well defined interfaces.
Such modules can provide services of any kind, ranging from simple graph to
sophisticated layout algorithms and even interfaces to external applications. A
number of modules are included in the current version of GaAVm and more are
in development by the GaAVIs project group. Among these modules are:

- The layout algorithm for orthog~nal, high-degree graphs Kandinsky [4].
- Interactive orthogonal graph layout based on [13] using extensions from [3].
- Symmetric layout (simplified version) based on [11] (see figure 5).
- Layout of series-parallel digraphs according to [1].
- Tree-based layout of general graphs (eg. for object-oriented class diagrams).
- Several graph generators.
" The Gem Springembedder [5] and a tree layout algorithm from GraphEd [7]

demonstrating the interface to external applications and libraries.

348

Fig. 5: A t0 x 10 grid drawn using the symmetric layout algorithm from [11].

GRAVIS

Qt
Eiffel

Window System
Operating System

Fig. 6: Dependencies of GanVm on the programming language (Eiffel) and user
interface toolkit (Qt). Details of the operating and the window system (eg. X
Windows) are hidden from the implementation of GRAVIS.

4 Platforms and Portability

Realizing the object-oriented paradigm used in the design phase of GaAVIs, the
system itself is implemented in the object-oriented programming language Eif-
fel [12]. Since one of the features of Eiffel is the abstraction of hardware or
operating system specific issues and a well defined standard for kernel libraries,
GRAVIs is portable to any platform supported by a compiler vendor, which covers
most Unix systems and Microsoft Windows 95/NT.

Limiting the portability of graphical applications is often the access to win-
dow system functions for display purposes. GRAVIS however, uses the Qt li-
brary [14] for all user interface related pa~ts of the system, which itself is available
for many systems including the platforms mentioned above. The combination of
the programming language and the user interface toolkit hides hardware and
OS-specific details from the implementation of GRAVIS (see figure 6).

349

5 Conclusion

GaAVIs is freely available for research purposes and individual, non-commercial
use. The most recent and all subsequent versions are available at our ftp site

f tp. informatik, uni-tuebingen, de in/pub/PR/gravis

Updated and more general information about the ongoing GRAVIS project can
be found at the GI~AVm homepage located at the URL:

http://www-pr, inf ormat ik. uni-tuebingen, de/Research/GraVis/

Helpful comments and suggestions have been provided by Michael Kauf-
mann and Ulrich FSt3meier. This research was partially supported by DFG-Gran t
Ka812/4-1, "Graphenzeichnen und Animation".

References

1. P. Bertolazzi, R. F. Cohen, G. Di Battista, R. Tamassia, and I. G. Tollis. How to
draw a series-parallel digraph. In Scandinavian Workshop on Algorithm Theory,
volume 621 of LNCS, pages 272-283, 1992.

2. L. Buti, G. Di Battista, G. Liotta, E. Tassinari, F. Vargiu, and L. Vismara. GD-
workbench: A system for prototyping and testing graph drawing algorithms. In
Graph Drawing, volume 1027 of LNCS, pages 111-122, 1995.

3. U. FSBmeier. Interactive orthogonal graph drawing: Algorithms and bounds. To
appear in Graph Drawing '97.

4. U. FSi~meier and M. Kaufmann. Drawing tfigh degree graphs with low bend num-
bers. In Graph Drawing, volume 1027 of LNCS, pages 254-266, 1995.

5. A. Frick, A. Ludwig, and H. Mehldau. A fast adaptive layout algorithm for undi-
rected graphs. In Graph Drawing, volume 894 of LNCS, pages 388-403, 1994.

6. M. FrShlich and M. Werner. Demonstration of the interactive graph visualization
system daVinci. In Graph Drawing, volume 894 of LNCS, pages 266-269, 1994.

7. M. Himsolt. Graphed: A graphical platform for the implementation of graph al-
gorithms (extended abstract and demo). In Graph Drawing, volume 894 of LNCS,
pages 182-193, 1994.

8. M. Himsolt. The grapb]et system (system demonstration). In Graph Drawing,
volume 1190 of LNCS, pages 233-240, 1996.

9. H. Lauer. Grapheditoren - - eine Wunschliste. Technical Report WSI-95-5, Uni-
versit£t Tfibingen, 1995.

10. B. Madden, P. Madden, S. Powers, and M. Himsolt. Portable graph layout and
editing. In Graph Drawing, volume 1027 of LNCS, pages 385-395, 1995.

11. J. B. Manning. Geometric Symmetry in Graphs. Phi) thesis, Purdue University,
1990.

12. B. Meyer. Eiffel: The Language. 1992.
13. A. Papakostas and I. G. Tollis. Issues in interactive orthogonal graph drawing. In

Graph Drawing, volume 1027 of LNCS, pages 419-430, 1995.
14. Qt. Information about Qt is available at http://www.troll.no.
15. G. Sander. Graph layout through the VCG tool. In Graph Drawing, volume 894

of LNCS, pages 194-205, 1994.

