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Abs t rac t .  Known realizations of geometric representations of graphs, 
like contact, intersection, etc., are "continuous", in the sense that the 
geometric objects are drawn in Euclidean space with real numbers as 
coordinates. In this paper, we initiate the study of dicrete versions of 
contact and intersection graphs and examine their relation to their con- 
tinuous counterparts. The classes of graphs arising appear to have in- 
teresting properties and are thus interesting in their own right. We also 
study realizability, characterizations as well as intractability questions 
for the resulting new classes of graphs. 
1980 Mathemat ics  Subjec t  Classification: 68R10, 68U05 
C R  Categories:  F.2.2 
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1 I n t r o d u c t i o n  

Classes of graphs having realizations either as intersection or contact graphs of 
given geometric objects have at t racted the attention of several researchers in the 
literature, e.g. see the extensive literature cited in [9, 12]. Problems raised include 
realization, characterization, as well as intractability. Graphs thus realized have 
interesting applications ranging from scheduling theory [9] to motion planning 
[1]. 

Known studies of such graph-classes have only been concerned with "con- 
tinuous" realizations of the concepts of "intersection" and "contact", in which 
the contact or intersection points have real numbers as coordinates. However, 
practical realizations of these concepts would seem to require the more natural 
concepts of discrete "intersection" and "contact" points, in the sense that  the 
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contact or intersection points have rationals or even "integers with a restricted 
range" as coordinates. By this we mean that the geometric objects have a prede- 
termined set of points and only these points can serve as contact or intersection 
points among the objects. 

A coin is a closed circular disc in the plane. Coin graphs are constructed 
from discs with disjoint interiors. Vertices of the graph are the coins. Two coins 
are adjacent if they touch each other. Such graphs are planar and have been 
considered previously in the literature [12]. A remarkable theorem attributed to 
P. Koebe by H. Sachs [12] states that every finite simple planar graph is a coin 
graph. The most recent proof of this theorem is given in [4]. It is intersesting to 
note that the discs required in the above representation of the planar graph are 
of arbitrary size. In addition, a related result in [7] shows that planaa" graphs are 
precisely the contact graphs of isosceles triangles. 

Another class of graphs we will study are discrete intersection graphs. Among 
these are interval and unit square graphs which have been studied extensively in 
the literature [9]. Linear recognition algorithms for these graphs have appeared 
in [9, 5, 6], etc. 

1.1 Pre l iminar ies  and n o t a t i o n  

The class of coin graphs considered here are constructed from a single size coin. 

Defini t ion 1. The class of coin graphs, denoted by C, is defined as follows. 
Vertices are represented by unit discs such that the interiors of any pair of such 
discs have empty intersection. Two discs are adjacent if they touch. 

Clearly the graphs in C are planar. The problem of recognizing whether a given 
graph is in the class C has been shown recently to be NP-complete [3]. 

Another class of graphs we will consider in this paper is the class of unit 
interval graphs (all intervals considered in the sequel are closed). 

Defini t ion 2. The class of unit interval graphs, denoted by Z, is defined as 
follows. Vertices are represented by unit intervals. Two intervals are adjacent if 
they have a nonempty intersection. 

It is known that unit interval graphs are precisely the interval graphs contain- 
ing no induced copy of K1,3 [9]. Thus the discrete unit interval graphs are a 
refinement of the unit interval graphs. 
N o t a t i o n .  
From now on and for the rest of the paper if 0 denotes a class of graphs then 
0 ~ denotes the set of graphs in ~ with exactly n vertices. For example, we have 
the classes Z~,C ~, etc. 

1.2 R e s u l t s  o f  t h e  paper  

In this paper we initiate the study of dicrete versions of the above mentioned 
classes of graphs. The classes of graphs arising appear to have interesting prop- 
erties and are thus interesting in their own right. We also study realizability, 
characterizations as well as intractability questions for the resulting new graphs. 
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2 D i s c r e t e  C o i n  G r a p h s  

In the sequel we define new classes of planar coin graphs. For each integer k > 3 
consider a regular k-gon Pk- 

Defini t ion 3. The class of polygonal coin graphs, denoted by Pk is defined as 
follows. Vertices are represented by isothets of the regular k-gon P~ such that 
the interiors of any pair of such k-gons have empty intersection. Two k-gons are 
adjacent if they touch at a polygon vertex. 

Clearly the graphs in the class Pk are planar. We can prove the following theo- 
rem. 

Fig. 1. The polygonal transformations required to prove that all polygonal coin graphs 
are coin graphs, for the case of equilateral triangles and hexagons. 

T h e o r e m 4 .  All polygonal coin graphs are coin graphs, i.e. 7~k C C, for all 
integers k. 

PROOF (OUTLINE) of Theorem 4. The theorem is easy for k even. Consider 
the layout of regular k-gons representing a given graph. Inscribe each polygon 
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in a disc. Since k is even the resulting discs have mutually disjoint interiors. 
Moreover, the contact graph realized by these discs is identical to the contact 
graph realized by the k-gons. (See also Figure 1.) Therefore, we need only prove 
the assertion ~P~ c_ C in the case k is odd. 

In the sequel it will be convenient to use the notation 7)~ e as identical to 
the notation Pk in order to indicate that adjacency is determined by polygons 
touching on a plygon vertex. It will also be convenient to consider "adjacency" 
for polygonal layouts in which two k-gons are adjacent if they touch at a whole 
edge. More precisely we have. 

Defini t ion 5. The class ~ d  is defined as follows. Vertices are represented by 
isothets of the regular k-gon Pk such that the interiors of any pair of such k- 
gons have empty intersection. Two k-polygons are adjacent if two polygon edges 
match. 

Thus, by definition we have 7)~ d =- 0, if k is odd. We can prove the following 
lemma which easily implies Theorem 4. 

L e m m a  6. For each integer k > 3 we have that 

1. i f  k is even then 7)~ e C_ p ~ ,  for all integers l, 
2. if  k is odd then 7)~ ~ = P2k,ed 
3. if  k is even then p~e = 7)~d 

PROOF of Lemma 6 Consider a side of the k-gon Pk. The side adjacent to it 
forms an angle 27r/k with it (see Figure 2). Let a, b be the exterior angles formed 
by two k-gons intersecting at a vertex. It is clear that a + b = 4~r/k. I f  follows 
easily from angle considerations of the corresponding k-gons that if k is even 
then a = b = 2~/k ,  while if k is odd then one of the angles is r / k  while the 
other is 37r/k. 

Fig. 2. The angles a, b of two touching polygons. In the picture to the left k is even, 
while in the picture to the right h is odd. 

Now we can give the proof of the lemma. We transform the given polygon 
Pk into a new polygon Qk. For given l, we inscribe Pk into a regular k/-gon Qkl 
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such that the vertices of Pk are also vertices of Qkz. Now suppose that Pk and 
P~ are two touching k-gons. We consider separately the case where k is even and 
k is odd. It is easy to show that if k is even then the kl-gons Qkl and Q~l touch 
at a vertex if and only if the k-gons Pk and P~ touch at a vertex. This implies 
that if k is even then P ~  C_ P ~ ,  for all integers I. If k is odd and the polygons 
Pk and P~ touch at a vertex then the previous observations imply that one of 
the exterior angles at the contact point of the polygons is ~r/k while the other 
is 3r /k .  It follows that the corresponding polygons Qkl and Q~l have nontrivial 
intersection. Moreover, this intersection is a polygon edge exactly when l = 2. It 
follows that if k is odd then p~e C_ 7)~ d. 

To prove that P~k d _C 7)~ e we essentially reverse the above argument. For a 
given 2k-gon P2~ inscribe a k-gon as follows: form the k-gon Qk with vertices the 
mid-points of the edges of P2k. It follows that two 2k-gons P2k and P~k touch at 
an edge if and only if the k-gons Q~ and Q~ touch at a vertex. Which completes 
the proof of the assertion. 

The assertion P l  e = ~0~ d for k even follows essentially the same ideas. One 
inscribes the given k-gon Pk into a k-gon Qk such that the vertices of Pk are 
midpoints of edges of Qk, and vice versa. Details of the proof are left to the 
reader. 

This completes the proof of Lemma 6 and hence also the proof of Theorem 
4. • 

This raises the following interesting problem. 

Problem 7. Is there a constant c such that Pk = C, for all k > c? 

We show this is impossible by proving the following theorem. 

Theorem 8. For each k, there exist an n-vertex unit-disc contact graph with 
n E O(k) which is not representable by regular k-gons. 

PROOF (OUTLINE) We consider the contact graph depicted in Figure 3. It con- 
sists of the following components. An internal circle C, straight line double chains 
L around the internal circle and at equal angles, and an external circle. Both 
internal and external circles consist of unit circles. The external circle consists 
of circular chain segments S. These parts are connected in such a way that an 
imobile structure is formed. The corresponding parts can be constructed with 
unit discs thus forming a contact disc graph. 

Let successive segments of type L be such that they are forming an angle of 
size 2r/n .  It is clear that we can achieve this by using a total of O(n) unit discs 
in the graph. If k ~ f2(n) then we note by using only regular k-gobs it wilt be 
impossible to form the graph depicted in Figure 3. • 

2.1 Complexity  of  Recognition Problem 

Theorem 9. For each k, the problem of recognizing whether a given graph is in 
the class 7~ 4k is NP-complete. 
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Fig. 3. Proving the lower bound in discretizing disc graphs. The graph is constructed 
from the components L, S and the circle C which is formed of a circular chain of unit 
discs. 

PROOF (OUTLINE) We give only the argument for the class P4. Extensions to 
the classes P4k are straightforward and will be given in the full paper. 

We show how to reduce the problem of laying out a graph on a grid with 
dilation one to the above graph recognition problem. The former problem is 
known to be NP-complete [2, 11] even for the case when the graph is restricted 
to be a tree. For a ~ven  graph G = (V, E)  we define a new graph G' = (V', E ~) 
such that 

G r E 7~4 ¢v G is embedable on a grid with dilation 1. (1) 
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It follows that the recognition problem for the class/)4 is NP-complete. Since 
G is a tree if and only if G ~ is a tree it will also follow that the problem of 
recognizing whether a given tree is in the class P4 is NP-complete. 

The graph G I is defined from G as follows. We replace each edge {u, v} with 
the following caterpillar C(u, v) 

- vertices: u,v, U l ~ U 2 ~ U 3 ~ U 4 ~  5 and Xl~X2~Yl~Y2. 

- edges: 

{u, ul},{ul,u2},{u2,u3},{u3,u4},{ua,us},{Us, V}, and 

The caterpillar itself is depicted in Figure 4. To prove the equivalence (1) observe 

( 

( 

) ( 

) 

) 
Fig. 4. The caterpillar C(u, v) replacing the edge {u, v}. 

that if the caterpillar C(u, v) is represented in P4 then the centers of the squares 
representing the verices u, v must both lie either on a vertical or horizontal line. 
This completes the proof of the theorem. • 

An interesting problem is the following. 

Problem 10. For each k, is the problem of recognizing whether a given graph is 
in the class Pk, NP-complete? 

3 D i s c r e t e  I n t e r s e c t i o n  G r a p h s  

Interval and unit square graphs have been extensively studied in the literature 
[9]. Linear recognition algorithms for these graphs have appeared in [9, 5, 6], etc. 
In the sequel we define new classes of unit interval graphs. 
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3.1 D i s c r e t i z i n g  i n t e r s e c t i o n  g r a p h s  

Intersection graphs of convex objects can be discretized by replacing intersection 
points with rational numbers which are sufficiently close to the original inter- 
section points. To illustrate this point the following argument which is stated 
for the classes of intersection graphs of unit squares can be used for intersection 
graph representation by any type of convex objects. 

T h e o r e m  11. Intersection graphs of unit squares can be realized as intersection 
graphs of unit squares all of whose corners have rational endpoints. 

PROOF We consider the Manhat tan norm for points in the plane, I(x, Y)I = x + y .  
Let {S~ : u E V} be a collection of closed unit squares representing the graph 
G = ( ~  E) ,  i.e. for all vertices u ,v ,  

E(u, v ) .  S~ n S. ¢ ~. 

Let c~ be the center of the square I~. Clearly, there exists a real r > 0 such that  
for all u, v 

I ~  - ~1  < 1 ~ Ic~ - ~1  < 1 - r, and I ~  - c~l > 1 ~ I ~  - c~l > 1 + r .  

Choose a sequence {ru : u E V }  of pairs of reals such that  for all u, v, 

- Ir~J < r / 2 ,  
- c~ + ru has both components rational, and 
- if c~ - cv has both components integers then ru = r . .  

Now consider the unit squares Tu with center c~ + ru. It is easy to verify that  
this sequence of squares realizes the same graph G. Since all the corners of the 
squares are rationals it is starightforward that  we can find an integer k such that  
S ~ = S~. • 

One of the problems to be studied in this paper is the following. 

Problem 12. What  is the complexity of a discrete realization of a geometric graph 
when corresponding points are only allowed to have integer coordinates with 
"limited range"? 

3.2 D i s c r e t e  un i t  i n t e rva l  g r a p h s  

D e f i n i t i o n  13. Let k be a given integer. To define the class of k-discrete unit 
interval graphs we consider intervals of identical size over the integers. A graph 
belongs to the class 27k if it can be represented by a collection of p a i rw i se  
d i s t i n c t  intervals over the integers such that  each interval has length exactly k 
and such that  interval intersections can only occur at integer points. 

Since all intervals are of equal length it is clear that  ~k C 27, for all k. 

T h e o r e m  14. For all n there exists an integer k ~ 2 ~-1 such that 27~ = 27"~. 
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PROOF Let (I~ : u E V} be a collection of closed unit intervals representing the 
graph G = (V, E), i.e. for all vertices u, v, E(u, v) ~ I~ M Iv ¢ ~. 

We prove the existence of a unit interval realization of the graph such that  
no two endpoints of intervals of the new realization are identical. 

Let / (Z) ,  r(I) denote the left and right endpoints of the interval I .  We prove 
the existence of a unit interval representation {J~ : u E V} of the graph in such 
a way that  for all u, v, 

- t(z~) < l(I~) ~ ,  l (J~) < z(J~), 
- l { t ( J ~ ) , r ( J ~ ) :  u E v } l  = 2n,  

- for any x # y in the set {l(J~),r(J~): u E V }  we have that Ix - y] > 1. 

The proof is by induction on n. The inductive step n = 1 is trivial. Assume the 
induction hypothesis is true for interval graphs with n - 1 vertices. Remove the 
interval with the smallest left endpoint, say I~. Consider all intervals (Iu : u # a} 
intersecting I~. Since all intervals have equal lengths, it is easy to show that  the 
set (I~ : u # a, I~ N Ia # 0} forms a clique. By the induction hypothesis the set 
{J~ : u # a, I~ N Ia ~ ~} also forms a clique. In particular their left endpoints 
must lie within an interval of length 2 n-2. Since by the induction hypothesis no 
two endpoints can coincide, in follows that  these left endpoints must lie within 
an interval of length 2 n-2 - 1. Let r be the rightmost left endpoint among the 
intervals {J~ : u # a, I~ N Ia # 0}. Let J~ be the closed interval 

For each u define the intervals J~ = [2/(J~), 2r(J~)]. It is clear that  each interval 
has length 2 ~-1. Moreover, it is easy to see that  the resulting sequence {J~ : u E 
V} of intervals represents the same graph G and satisfies all the conditions of 
the inductive steps. This proves the theorem. • 

It is interesting to note that  Theorem 14 improves on Theorem 3.2 of [5] 
which implies that  for all n there exists an integer k _< n! such that  Z '~ = E~. 

T h e o r e m  15. There exist graphs G E :/7~/2-1 \ I~/2-u,  for n > 2. 

PROOF Let n = 2m. Consider the unit interval graph with vertex set V = 
{u l , . . .  ,u ,~ ,v l , . . .  ,vm}. Edges are defined as follows. Vertex u~ is adjacent ex- 
actly to the vertices 

~ l ~ ' U 2 ,  • • . ,  U r n ,  V l ,  V2,  • .  • ,  Vi--1  

and vertex vi is adjacent exactly to the vertices 

V l  , V 2 ,  • • . ,  V m  ~ U i + l  , V i + 2  ~ • • • , U r n .  

Since the degree sequence of the graph attains m different values it is easy to 
see that  G ~ E~/2_2. The rest of the statement of the theorem is immediate. • 
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Defini t ion 16. An interesting parameter for a (unit) interval graph G is iT(G) 
which is the smallest integer m such that a discrete unit interval representation 
of the graph can be drawn with all integers of all interval endpoints in the range 

Theorem 14 implies that for any unit interval graph G, Z(G) < n2 ~-1. We can 
also prove the following lower bound. 

T h e o r e m 1 7 .  There exist graphs G E :~ such that I(G) E 52(nlogn). 

PROOF (OUTLINE) Let i(n) be the number of unit interval graphs on n vertices. 
Assume we could draw all unit interval graphs within the integer range [1,m] 
with all (pairwise distinct) intervals of length exactly k. Since unit intervals 
are uniquely determined by a unique point (say, their cenrter) it is clear that 
there exist at most (m) such graphs. Hence, i(n) _ (m). This implies that 
n!. i(n) < m n. Trivial calculations show that this implies that m E 9(n  log n). • 

An interesting problem is the following. 

Problem 18. Give an algorithm for recognizing membership in the class Ik. Is 
this an NP-complete problem? A related question is the following. For each 
graph G e Zn compute discz(G) = mink{G E I~}. A similar question is the 
following. For each graph G E I n compute I(G). Can we tighten the bounds 
cnlogn <_ I(G) < n2n-l? 

3.3 Discrete uni t  square intersect ion graphs 

Defini t ion 19. The class of unit square graphs, denoted by S, is defined as 
follows. Vertices are represented by unit squares. Two vertices are adjacent if 
they have a nonempty intersection. 

Defini t ion 20. Let k be a given integer. To define the class of k-discrete unit 
square graphs we consider squares of identical side over the integer square lattice 
of integers. A graph belongs to the class ,~k if it can be represented by a collection 
of squares over the square lattice of integers such that the side of each square is 
an interval of length exactly k. 

Since all squares are of equal length it is clear that Sk C_ S, for all k. We can 
ask similar questions as with unit interval graphs. 

T h e o r e m  21. For all n there exists an integer k < 2 ~-1 such that $~ = S~. 

PROOF (OUTLINE) Consider the two unit interval graphs formed by projecting 
the squares representing a given graph on the x and y axis. Then use the result 
of Theorem 14. • 

Problem 22. Give an algorithm for recognizing membership in the class S~. Is 
this an NP-complete problem? A related question is the following. For each graph 
G E S n compute discs(G) -- mink{G E S~}. 
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We also state without proof the following two theorems. 

T h e o r e m  23. For each graph G E 8 let G,, Gy be the unit interval graphs 
obtained by projecting the squares representing G on the x- and y-axis. Then 
max{ discz(G=), discz(Gy)} _< discs(G) _< discz(G=) • discz(Gy). • 

T h e o r e m  24. I.f G1,G2 E Z ~ such that discz(G1)= discz(G2) = k then there 
exists a graph G E , ~  suchthat G= = G1,Gy = G~ and discs(G) = k. • 

4 Conclusion 

In this paper we considered discrete realizations of contact and intersection 
graphs. Contact graphs of regular polygons form a hierarchy of planar graphs 
and the recognition problem for such graphs is NP-hard. In contrast to this, 
intersection graphs are always descretizable and bounds on the complexity of 
the resulting discetizations are given. 
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