
Graph Drawing and Manipulation with LINK

Jona than B e r r # Nathaniel Dean 2 Mark Goldberg 3
Gregory Shannon a Steven Skiena ~

1 Elon College (berryj@numen.elon.edu)
2 Bell Laboratories Innovations (nate@research.bell-labs.com)

3 Rensselaer Polytechnic Institute (goldberg@cs.rpi.edu)
4 Milkyway Technologies (shannon@milkyway.com)

SUNY Stony Brook (skiena@cs.sunysb.edu)

Abs t r ac t . This paper introduces the LINK system as a flexible tool for
the creation, manipulation, and drawing of graphs and hypergraphs. We
describe the basic architecture of the system and illustrate its flexibility
with several examples. LINK is distinguished from existing software for
discrete mathematics by its layered interface, including a graphical user
interface tied into an object-oriented Scheme language interface with
access to Tk, and an extensible underlying set of C + + libraries. We
conclude by briefly discussing roles LINK has played in research and
education.

1 Background

Over the past several years, there have been several efforts to construct software systems
for discrete mathematics, and in particular, for the manipulation of graphs. None,
however, has resulted in a product with influence comparable to the familiar symbolic
mathematics packages.

Some notable existing systems for discrete mathematics are Combinatorica [14],
Steven Skiena's extension package for Mathematica, NETPAD [11] due to Nathaniel
Dean and others at Bellcore, SetPlayer [1], due to Mark Goldberg and his students at
Rensselaer Polytechnic Institute, and Gregory Shannon et. al.'s GraphLab [13]. For var-
ious reasons, none of these systems has the potential to be a widely-useful environment
for both graph manipulation and computation. The authors of these systems recog-
nized this and proposed the development of LINK, which was to be a freely-available
and portable software system for discrete mathematics overcoming the various short-
comings of existing systems. After three years of development, the system is now freely
available from the LINK web site:

http://dimacs.rutgers.edu/Projects/LINK.html.

LINK features a 200 page on-line manual and an on-line tutorial.
LINK's design philosophy placed flexibility as the highest priority, and this led

to the selection of STk, Erick Gallesio's object-oriented Scheme language interface
to John Ousterhout's portable, interpretive Tk graphics system. [12][6]. Tk enables
involved graphics programming without any knowledge of the X-window system, and
offers the advantages of interpretation and portability at the cost of speed. This means
that the system is not appropriate for viewing massive data sets. Graph views with

426

a few thousand objects have been used, but these took several minutes to load on a
Sparcstation 5.

Several other graph manipulation systems have been designed using Tk, including
Graphlet 6 which is built on top of the LEDA C + + library [10]. However, these systems
rely on Tcl, a language more similar to operating system shell scripting languages than
high-level programming languages. LINICs command interface, on the other hand,
offers the mathematician or computer scientist a high-level Scheme language interface
with an object-oriented front-end to Tk. Scheme is a compact, standardized dialect of
Lisp, a functional language useful for symbol manipulation.

The remainder of the paper is broken into sections describing LINK's layered in-
terface, then illustrating its flexibility with examples, and finally giving examples of its
roles in research and education..

2 LINK's Templated C + + Libraries

Underlying the LINK system is a set of object-oriented C + + libraries which designed
to offer a rich and coherent set of graph and collection objects to support programming
in the pursuit of research.

2.1 Collections a n d Containers

The basis of the LINK system is a set of classes grouped into two hierarchies: Col-
lection and Container. The Collection hierarchy consists of multisets (bags), sets, and
sequences, while the Container hierarchy is subdivided into data structures such as lists
and arrays and keyed dictionary structures such as binary heaps, red-black trees, etc.
As in the Standard Template Library, the glue that binds all container and collection
objects is the Iterator. LINK's Iterator object can be used to retrieve the elements of
any Collection or Container, and has been used to create a robust set of construc-
tors and assignment operators which allow the easy transfer of data between any two
collection or container objects.

The hierarchies of Collection and Container classes give library programmers a com-
mon interface for performing simple operations such as copying, assignment, insertion,
deletion, extraction, comparison, display of values, and the set primitive operations.
Also available are standard queries such as membership and whether or not the struc-
ture is empty, sorted, a permutation, or a subset of another.

Collection objects are templated by both element type and hnplementation struc-
ture (a Container object) to allow programmers to experiment with different set and
sequence implementations. This close relationship between Collections and Contain-
ers supports a reference counting scheme which allows Collection objects to be passed
around efficiently without the unnecessary copying of elements.

Extension classes of the Collection hierarchy offer functionality including the ma-
nipulation of power sets, combinations, cartesian products, and permutations.

2 .2 T h e Graph H i e r a r c h y

The Collection hierarchy allows the definition of a rich variety of graph objects. These
are also arranged into a hierarchy so that objects from different graph classes can
interact. As in the Collection hierarchy~ objects of the Graph hierarchy can be copied
and assigned gracefully. The classes of the Graph hierarchy will be introduced below.

6 See http:/ /fmi 'uni-passau'de/hims°lt /Graphlet '

427

Fig. 1. A "mixed" hypergraph

Graph T y p e s Central to LINK's design philosophy axe the goals that many different
graph types should be available to the user and that algorithms need only be written
once to work on many types of graph. The Collection hierarchy has been used exten-
sively to meet the both goals, with the result that LINK users may now select between
12 types of graph by specifying the edge type. An edge is a collection of vertices, and
the Collection hierarchy enables us to offer graph types, classified by the following
pertinent questions:

- M u l t i g r a p h or n o t ? Multiple edges between the same vertices can be allowed or
not.

- B i n a r y G r a p h or H y p e r g r a p h ? Edges can be defined as groups of two vertices
or not. Relaxing this restriction results in hypergraph objects.

- Direc t ed , U n d i r e c t e d , or M i x e d G r a p h ? Each edge is either a multiset or a
sequence of vertices. Graphs can either limit their edge sets to undirected edges
or directed edges, or they can make no such restriction. The result of the latter is
a set of graph types in which a single graph object instance might contain both
directed and undirected edges.

A directed hyperedge has been defined to be a set of vertices in which one vertex is
specified to be a %ink," and the other vertices are assumed to precede that vertex [8].
We give a more general definition: a directed hyperedge is simply a sequence of vertices.
A "mixed" hypergraph is shown in Figure 1, and a "mixed" binary graph with multiple
edges is shown in Figure 2. Figure 1 is particularly interesting since it illustrates the
two different modes of displaying hyperedges. Edge el has been thickened for clarity,
and edge e0 is drawn using star draw mode, in which edge segments radiate from a
central, draggable edge label. The other two edges are displayed using path draw mode,
in which identically-labeled edge segments connect the vertices of the hyperedge. The

428

! . . .~ l~.~,~i, =.~i~. ~.~ ~. . .~. ! ~ ! : :~= • ~ . ~ ;~.~7 :~=,~i%$i,:~;~::~,~!~/.. ~ % , . ~: • .~

r ,w,- L7 e9

=4 e6

.~0

elO

[8 e8

~3

i5 e7

BZ el l

)6

:4

Fig. 2. A "mixed" binary multigraph

complete order of vertices within a directed hyperedge, however, will only be visible if
the path draw display mode is used. The graphical user interface described below in
Section 3.2 allows the user to change the edge display mode for the whole graph or
some selected subset of the edges.

Graph M e t h o d s All graph objects have the same core functionality, and the member
functions implementing this functionality can be broken roughly as follows:

- Vertex and edge manipulation routines such as the insertion and deletion of vertices
and edges, either as individuals or in groups.

- Vertex and edge access routines which return specified individual or groups of
vertices and edges.

- Queries to determine the order and size of the graph, whether or not it is directed,
binary, simple, etc., whether or not two vertices are adjacent, and whether or not
the graph is isomorphic to another. The latter test uses nauty, Brendan McKay's
well-known and practical isomorphism testing tool. [9].

- Routines to find the neighbors and incident edges of vertices. These routines use
Collection functionality to return appropriate answers for undirected, directed, and
mixed graphs. Also included are routines to return the sequence of edge objects
associated with a path of vertices and vice versa.

- Input and output operations for graphs, vertices, and edges, both to and from files
and the screen.

- Conversion and construction operations which take sets of" vertices and edges and
produce graph objects. This set of routines also can convert into adjacency or
incidence matrix representation.

429

- Edge comparison routines - two edges are comparable if they contain the vertices
of the same name in the same order. Inequalities are resolved using lexicographic
ordering.

Multigraphs also feature subgraph collapsing and extracting methods which are
suppor ted by the graphical user interface. These are useful when studying properties
such as the chromatic polynomial, which are defined in terms of graph contractions.

2 .3 A t t r i b u t e s

LINK provides a mechanism for creating and manipulat ing at tr ibutes of graphs, ver-
tices~ and edges. The default a t t r ibutes for all graph objects (including vertices and
edges) are currently name, direction, width, size, weight, x, y, color, label, mark, type,
starttime, finishtime, back, low, distance, pred, and forefather. To save space, the at-
t r ibute mechanism stores a single copy of each a t t r ibute for the entire graph until
individual a t t r ibutes are changed (at which point an individual copy is made for the
affected object). Some of the default at t r ibutes are used by the graphical user interface,
and some are used by fundamental graph algorithms. If different a t t r ibutes are desired,
however, defining new at t r ibutes is simple, both for the l ibrary programmer and the
interface user.

STk> (describe (graph (current-graph-view)))
[< dbingraph *> #p63f5cc] is an ir~s~ance of class <~ dbingraph *>
SloSs are:

val={p 2 s 4 5 6] (<12> < 1 6 > < 2 5 > <s 4> <5 s> <5 6>}}
I
STk> (map color (vertices (current-graph-view)))
("black" "black" "black" "black" "black"
"black")

STk> (define vg(car (vertices (current-graph-view))))
#[undefined]
STk> (set! (color vg) "green")
~ [undefined]
STk> (map color (vertices (current-graph-view)))
("green" "black" "black" "black" "black"
"black')

Fig . 3. This Scheme code segment retrieves and manipulates the graph of the current
graph-view (window) after the user has constructed a graph in it.

3 T h e S T k In t e r f ace

STk is a complete programming environment in itself, and LINK inherits all of its
functionality. In addition to a s tandard R4RS Scheme interpreter, STk provides an
object-oriented extension based on the Common Lisp Object System called STklos, as

430

well as operating system shell access, regular expression processing, and Unix socket
handling. The STklos extension enables the scheme programmer to define classes and
generic functions, and LINtCs interface takes full advantage of this power. All of the
basic LINK objects have been "wrapped" into the STk interpreter so tha t users can
create, manipulate, and destroy them, and LINtCs graphical user interface consists
exclusively of new STklos classes so that users may take advantage of high-level, object-
oriented functionality to manipulate their data.

3 .1 LINK's S T k l o s O b j e c t s

STk> (define gv (show-graph (graph '(1 2 3) '((1 2) (2 3) (1 3)))))
#[undefined]
STk> (define g (graph gv))
#[undefined]
STk> (define eg (ear (edges gv)))
#[undefined]
SWk> (define e (edge eg))
#[undefined]
STk> eg

#[<edge-item> #p64ba68]
STk> e
#[<edge*> #p64cTaO]
STk> (set! (weight eg) 3.21)
#[undefined]
STk> (find-double-at tr ibute 'weight e)
3.P1
STk> (set-double-attribute! 'weight 2.1 e)
#[undefined]
SWk> (weight eg)
2.1

Fig . 4. Fundamental a t t r ibute operations

The LINK interlace user has access to graph objects at both the graphical user
interface level and the Scheme command language level. LINICs manual contains dozens
of Scheme programming examples, and we will include some below. Figure 3 contains
Scheme code to retrieve the colors of the vertices that a user has created using the
graphical interface. The example subsequently changes the color of the first vertex,
a change reflected graphically on the screen. Note that vg is an STklos object which
contains both a graphics field (displayed on the screen) and a reference to an underlying
LINK vertex object. STklos gives users the considerable convenience of setting fields
(or "slots") using the set/primitive. The expression (co lo r vg) is a shorthand way of
extracting the "color" field from the vertex.

The fundamental STklos graph objects of the LINK system correspond to the graph
types described in Section 2.2: vertez, edge, graph, bingraph, dbingraph, ubingraph, hy-
pergraph, uhypergraph, dhypergraph mbingraph, mdbingraph, mubingraph, mhypergraph,
muhypergraph, and mdhypergraph. These and their most important methods are avail-
able to the LINK interface user, and detailed in the manual.

431

STk> (define gv (show-graph (graph '(1 2 3)
,((1 2) (2 3) (~ 3)))))

#[undefined]
STk> (map weight (edges gv))
(1.0 1.0 1.0)
STk> (random-edge-weights (graph gv))
[< ubingraph *> #p63c0c0]
STk> (map weight (edges gv))
(33.0 53.0 13.0)
STk> (define mst (kruskal (graph gv)))
#[undefined]
$Tk> (describe rnst)
#[(set(edge*>> ~p6flc98] is an instance of class <sct<cdge~>>
Slots are:

,at = {{1 2} {2 S}}
I
STk> (map (lambda (x) (find-double-attribute 'weight x))

(set-edge- >list rast))
(38.0 13.0)

Fig. 5. Scheme code to call an algorithm and examine the results.

The LINK objects mentioned above are mirrored by special STklos graphics ob-
jects. The most important correspondences are those between classes representing the
fundamental graph objects. The three most important STklos classes in LINK are:

- graph-view: a window which contains a LINK graph object.
- vertex-item: a class containing an STklos oval graphics object and a LINK vertex

object.
- edge-item: a class containing (potentially many) STklos line graphics objects and

a L I N K edge object.

Figure 4 illustrates the difference between STklos graphics objects and LINK objects.
In this example, a graph is defined and displayed in a graph-view window called gv. The
method (graph gv) returns the L I N K graph object associated with this graph-view. The
example then extracts the first edge-item from the graph-view and extracts the edge
associated with that edge-item. STklos supports "virtual" data within a class, and the
L I N K interface takes advantage of this by inseparably linking the attributes of the edge
to those of the edge-item. W'hen the user evaluates or modifies an attribute of the edge-
item, such as its weight, that request is translated into an evaluation or assignment to
the corresponding attribute of the underlying edge. For example, In figure 4, changes
to the edge-item's weight attribute are reflected in the edge's weight attribute and vice
versa.

Figure 5 shows a more detailed example in which a graph is created and displayed,
its edges are assigned random weights, and a minimum spanning tree is computed,
extracted, and manipulated. This example illustrates two different levels of attribute
retrieval: directly from a graphics object, and via a LINK object. The former method is
used in the command (map weight (edges gv)), which extracts the weight slot from each
STklos edge object in the graph window called gv. Note that rest, the variable used to

432

store the result of the spanning tree algorithm, is a LINK set object. This is converted
into a Scheme list using the set-edge--+list method (provided with all collection objects).

(define (forefather-binding graph-view)
(strongly-connected-components (graph graph-view))
(bind (slot-tel graph-view 'graph-toplevel) ~<KeyPress-f>"

(lambda (x y)
(flash (vertex-item

(find-vertex-attribute ~forefather
(slot-ref (car *link:selected-vertex-items*) ~vertex)) graph-view)))))

Fig. 6. This complete code segment binds the "f" key so that the forefather of a selected
vertex is flashed. The strongly-connected-components algorithm sets an attribute called
forefather that is subsequently retrieved to decide which vertex to flash.

It is legitimate to ask why LINICs Collection objects are at all useful in a list-based
Scheme interpreter (why not just have all algorithms return Scheme lists?). Figure 7
provides an answer. Many of Collection's methods, including the copying, insertion,
deletion, query, and set primitive operations are available from the STklos interface.
The example in Figure 7 is a simple graph sum computation using the set primitive
operations.

STk> (define g (graph '(1 2 3) '((1 2) (2 3) (3 1))))
#[undefined]
STk> (define h (graph '(2 3 4) '((2) (2 3 4) (3 4))))
#[undefined]
STk> (define ng (graph (+ (vertices g) (vertices h))

(+ (edges g) (edges h))))
#[undefined]
STk> (describe ng)
#[<uhypergraph*> #p63e848] is an instance of class <uhypergraph*>
Slots are:

vat = { [i e341 {{I 2} {1 3} {2} {23} {e3~} {3~}}}
#1

Fig . 7. An example which uses Collection methods

3.2 Graphical User Interface

STklos provides a core set of graphics classes (windows, labels, buttons, etc.) which
make interface customization a high-level operation, and LINICs graphical interface
consists of a set of classes which inherit from these. The result is that s tandard graph

433

i 17f1~

5/6 9/10

Fig. 8. Forefather finding with finishing times depicted

operations such as graph creation, insertion and removal of vertices and edges, execu-
tion of algorithms, and animation viewing are both point and click features and high-
level STklos operations. Multiple graph windows can be viewed at once, and multiple
algorithm animations can be stepped through side-by-side for comparison. Graphics
attributes such as world coordinates, size, arrow shape, label, color, text-color, stipple,
outline width, outline color, and font can be evaluated and changed easily.

It is irr~portant to note that any command in the graphical user interface corre-
sponds to a STklos command that could have been typed into the command line prompt.
This makes L I N K a powerful environment for systematically constructing, executing,
viewing, modifying, and rerunning experiments. This interface has been used in several
research projects, and two wilt be abstracted in Section 5.

3 .3 F l e x i b i l i t y

Consider the following example of the interface's flexibility. When describing the strongly
connected components of a directed graph, it is important to relate the concept of the
forefather of a vertex. Simply stated, the forefather ¢(v) of a vertex v with respect to
a depth-first search is the vertex reachable from v which has the maximum finishing
time in the depth-first search. LINK's interface can easily be tailored to illustrate the
concept intuitively. Figure 6 shows, in its entirety, the STKlos code necessary to "bind"
the f key on the keyboard to a function which will flash the forefather of a vertex se-
lected with the mouse. Figure 8 shows a graph-view in which a depth-first search has
been run and the discovery and finishing times of the vertices are displayed. Selecting
a vertex, then pressing the f key highlights a vertex's forefather by flashing it several
times.

434

3.4 A n i m a t i o n s

!

11

Fig. 9. The animation controller

When LINK algorithms are added to the C++ libraries, they can be augmented
with special animation commands which modify the attributes of the graph's vertices
and edges. These commands are executed if the algorithm is run from the interface (as
opposed to being run from a standalone C++ prog~:am). Algorithms selected from a
graph-view bring up an animation controller/debugger which allows the user to step
through the algorithm forwards and backwards, set breakpoints, continue, and restart.
An example animation of a depth-first search is shown in Figure 9.

4 Algorithms, Generators, and Layouts

LINK's libraries include several fundamental algorithms for manipulating, generating,
and drawing graphs, including depth and breadth-first search, Kruskal's and Prim's
minimum spanning tree algorithms, Gotdberg & Tarjan~s maximum flow algorithm,
strongly connected components, generators for random graphs, cycles, complete graphs
and grid graphs, and circular, random, grid, spring, and component-wise layout algo-
rithms. This algorithms library will certainly grow as the system develops and new
versions are distributed. If the reader is interested in contributing to this e~ort, please
contact Jonathan Berry at berryjOnumen, elon. edu.

5 Research Examples

LINK has already demonstrated its usefulness in research, and its role in two recent
projects will be summarized below.

4 3 5

5.1 L a t k a T o u r n a m e n t s

In the first project, Brenda Latka, while visiting DIMACS from Lafayette College, used
LINK to assist in her s tudy of infinite antichains of tournaments (complete directed
graphs). An antichain of tournaments is a set for which it is impossible to embed
any tournament in the set within any other. Latka is interested in the construction
of infinite antichains of tournaments. [5, T]. Arguments to prove tha t a given set of
tournaments is an antichain typically show that a specific sub-tournament of any given
tournament cannot be mapped to any sub-tournament of any other tournament in that
class. A crucial element of these arguments is the use of a non-trivial edge at tr ibute:
the number of directed 3-cycles in which an edge participates. Sub-tournaments [tbh]

.,, ~ "~ ~.~ :,,

,1?~" ! j
.b~ .~2~ %,,,

/ /
. . J "

Fig . 10. A Latka tournament and an induced subgraph extracted with LINICs graph-
ical user interface

and these edge at t r ibutes are easily visualized using LINICs features: the former can
be extracted by clicking on vertices and selecting a menu option, while the lat ter can
be computed (and the edges colored) by small programs writ ten in LINICs command
language. Figure 10 shows an instance of a special class of tournaments defined by
Latka (see [5, 7] for details), and an induced sub-tournament extracted by pointing
and clicking (see the LINK web page for a color image).

Once LINK functionality had been used to generate Latka Tournaments, compute
the edge at t r ibutes, and color their edges accordingly, Latka and Jonathan Berry used
LINK to visualize dozens of these tournaments and variations upon them. Soon pat-
terns began to emerge, leading Latka to conjecture that adding an extra parameter to
her initial tournament construction would reveal the first known infinite set of infinite
antichains of tournaments. The conjecture, still unproven, will be detailed in a future
paper.

During this time, Jonathan Berry was also serving as a mentor for Chris Bur-
rows, a part icipant in the the NSF Research Experience for Undergraduates (REU) at
DIMACS. He used LINK to s tudy isomorphisms of certain sub-tournaments by imple-
menting some special invariants described by Latka and using LINICs point and click
access to nauty. During this process, we observed that one of the Latka tournaments
also happened to be a Paley tournament. ~ Burrows then used LINK to find two ad-

7 The well-studied Paley tournaments consist of p vertices, where p is prime and con-
gruent to 3 mod 4. Arc (i, j) exists iff j - i is a quadratic residue rood p.

436

ditional Latka-Paley tournaments, then develop the conjecture that no other Latka
tournaments are Paley tournaments.

5.2 M a r k e t B a s k e t A n a l y s i s

In another project, a set of supermarket data compiled and studied previously at Bell
Laboratories was analyzed in a more meaningful way with LINK. Considering each
type of item in a shopper's "basket" (e.g., bananas, 2% milk, skim milk) to be a vertex,
"market-basket analysis" attempts to identify customer buying patterns by examining
receipts. Correlations between purchases identified by the analysis cart be used, for
example, to arrange products more advantageously on the shelves or manipulate prices.

When a shopper purchases a set of items at once, we must represent this grouping
somehow. An obvious approach to the problem is to place an edge between each pair
of vertices in a basket, thus producing a graph where each purchase is represented by
a clique. Given such a graph, however, the original "baskets" cannot by reconstructed.
Nathaniel Dean and Jonathan Berry used LINK to re-model the problem using hy-
pergraphs (graphs where each edge might contain more or fewer than two vertices)
where each hyperedge represents a single shopper's basket. In addition to the consider-
able space savings inherent in this solution, more real-world information is preserved.
Furthermore, the STk command language used by LINK makes it possible to pose
interactive queries such as: "find all purchases in which both a snack food item and a
beverage were purchased." A paper describing this work in more detail is available at
the LINK web site [3].

6 LINK as a n e d u c a t i o n a l t o o l

LINK's flexible interface makes it an valuable educational tool, both in the classroom
and as a vehicle for interesting assignments. The key binding example discussed above
(see Figure 6) enables the instructor to present the forefather concept as a puzzle to
engage students. This was done recently with encouraging success in an algorithms
course at Elon College. The instructor also made extensive use of LINK's graphicM
user interface and interactive algorithm animations in class. A discussion of LINK's
role in computer science education is found in [2].

7 C o n c l u s i o n

The early development and primary designers and developers of LINK are detailed and
acknowledged, respectively, in [4], while the current system is described in the manual
available from the web site. Jonathan Berry took over the direction of the project in
June, 1995, and spent a year at DIMACS preparing the public release.

Currently, LINK runs only on Unix systems (including Linux), but there is no
major obstacle preventing a port to Windows, since the graphics system upon which
LINK relies, STk [6], has already been ported. LINK for Windows is anticipated before
the end of 1997.

With further development, LINK can become a formidible tool for prototyping,
teaching, and experimentation. Development directions in the near future include im-
proving the documentation, extending the algorithms library, and improving the STklos
interface.

437

8 Acknowledgments

We would like to acknowledge the support of DIMACS and the LINK grant: CCR-
9214487. DIMACS is a cooperative project of Rutgers University, Princeton University,
AT&T Laboratories, Lucent Technologies/Bell Laboratories Innovations, and Bellcore.
DIMACS is an NSF Science and Technology Center, funded under contract STC-91-
19999; and also receives support from the New Jersey Commission on Science and
Technology. The original primary investigator of the LINK project was Daniel Goren-
stein, the founding director of DIMACS.

We would also like to acknowledge the contributions of Patricia K. Fasel of Los
Alamos National Laboratory, who was the original project leader and who helped design
the graph hierarchy and implemented many system fundamentals. Many students have
helped with the LINK effort as well, and we acknowledge their effort.

References

1. D. Berque, R. Cecchini, M. Goldberg, and R. Rivenburgh. The setplayer system
for symbolic computation on power sets. Journal of Symbolic Computation, 14:645-
662, 1992.

2. J. Berry. Improving discrete mathematics and algorithms curricula with LINK. In
SIGCSE//SIGCUE Conference on Integrating Technology into Computer Science
Education, pages 14-20, 1997.

3. J. Berry and N. Dean. Market basket analysis with LINK. submitted to Congres-
sus Numerantium, 1996.

4. J. Berry, N. Dean, P. Fasel, M. Goldberg, E. Johnson, J. MacCuish, G. Shannon,
and S. Skiena. LINK: A combinatorics and graph theory workbench for applica-
tions and research. Technical Report 95-15, Center for Discrete Mathematics and
Theoretical Computer Science (see also: http://dimacs.rutgers.edu), Piscataway,
N J, 1995.

5. G. Cherlin and B. Latka. A decision problem involving tournaments. Technical
Report 96-11, Center for Discrete Mathematics and Theoretical Computer Science,
1996.

6. E. Gallesio. The stk reference manual. Technical Report RT 95-31a, I3S CNRS,
Universit~ de Nice - Sophia Antipolis, France, 1995.

7. B. Latka. Finitely constrained classes of homogeneous directed graphs. The Jour-
nal of Symbolic Logic, 59(1):124-139, March 1994.

8. E. M~kinen. How to draw a hypergraph. International Journal of Computer Math-
ematics, 34:177-185, 1990.

9. B. McKay. Nauty user's guide. Technical Report TR-CS-90-02, Australian Na-
tional University, 1990.

10. K. Mehlhorn and S. N~hger. Leda: A platform for combinatorial and geometric
computing. CACM, 38(1):96-102, Jan 1995.

11. M. Mevenkamp, N. Dean, and C. Monma. NETPAD user's guide and reference
guide, 1990.

12. J. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.
13. G. Shannon, L. Meeden, and D. Friedman. SchemeGraphs: An object-oriented

environment for manipulating graphs, 1990. Software and documentation.
14. S. Skiena. Implementing Discrete Mathematics: Combinatorics and Graph Theory

with Mathematica. Addison-Wesley, 1990.

