Skip to main content

Computing with evolving proteins

  • Worshop on Bioligically Inspired Solutions to Parallel Processing Problems Albert Y. Zomaya, The University of Western Australia Fikret Ercal, Universtiy of Missouri-Rolla Stephan Olariu, Old Dominion University
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1388))

Abstract

Dynamic Local Search [1] has been applied to the evolution of interactions between protein-like structures. These are composed of a randomly selected sequence of amino acids that are linked together to form linear polymers in three dimensions. The objective function chosen for optimisation is the potential energy given by a Toy protein model. Proteins fold, move and interact with other chains to minimise their objective function at a given rate, F,ote, depending on the sum of the rates for re-organisation of their structures. The interaction between different proteins gives a whole range of local attraction/repulsion regimes that result in new structures with new bonds, broken bonds and recursive loops.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amin, S., Fernández-Villacañas, J.L.: Dynamic Local Search. Proc. Galesia97 conference, Glasgow, September 1997

    Google Scholar 

  2. Lau, K.F., Dill, A.: Theory for protein mutability and biogenesis. Proc. Nat. Acad. Sci. USA 87 1990 638–642

    PubMed  Google Scholar 

  3. Unger, R., Moult, J.: Genetic Algorithms for Protein Folding Simulations. J. Mol. Biol. 231 1993 75–81

    PubMed  Google Scholar 

  4. Jaeger, J.A., Turner, D.H., Zucker, M.: Improved predictions of secondary structures for RNA. Proc. Nat. Acad. Sci. USA 86 1989 7706–10

    PubMed  Google Scholar 

  5. Quian, N., Sejnowski, T.J.: Predicting the Secondary structure of Globular proteins using Neural Network models. J. Mol. Biol. 202 1988 865–884

    PubMed  Google Scholar 

  6. Fariselli, P., Compiani, M., Casadio, R.: Predicting Secondary structures of Membrane proteins with Neural Networks. Euro. Biophys. J. 22 1993 41–51

    Google Scholar 

  7. Calabretta, R., Nolfi, S., Parisi, D.: An Artificial Life model for predicting the Tertiary Structure of unknown proteins that emulates the folding process. Proc. of Third European Conference of Artificial Life, Granada 1995

    Google Scholar 

  8. Stillinger, F.H., Head-Gordon, T., Hirsfield, C.L.: Toy model for protein folding. Physical Review E 48 2 1993 1469

    Article  Google Scholar 

  9. Fernández-Villacañas, J.L., Fatah, J., Amin, S.: Evolution of Protein Interactions. Proc. BCEC'97 Bio-Computing and Emergent Behaviour, Skövde, Sweden, September 1997

    Google Scholar 

  10. Berstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T., Tasumi, M.: The protein data bank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 112 1977 535–542 *** DIRECT SUPPORT *** A0008D07 00008

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Rolim

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernández-Villacañas, J.L., Fatah, J.M., Amin, S. (1998). Computing with evolving proteins. In: Rolim, J. (eds) Parallel and Distributed Processing. IPPS 1998. Lecture Notes in Computer Science, vol 1388. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-64359-1_690

Download citation

  • DOI: https://doi.org/10.1007/3-540-64359-1_690

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64359-3

  • Online ISBN: 978-3-540-69756-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics