
Development of Self-Learning Vision-Based Mobile Robots
for Acquiring Soccer Robots Behaviors

Takayuk i N a k a m u r a

Nara Inst. of Science and Technology Dept. of Information Systems
8916-5, Takayama-cho, Ikoma, Nara 630-01, Japan

t akayuki@is.aist -nara.ac.jp

A b s t r a c t . An input generalization problem is one of the most impor-
tant ones in applying reinforcement learning to real robot tasks. To cope
with this problem, we propose a self-partit ioning state space algori thm
which can make non-uniform quantization of the multidimensional con-
tinuous state space . This method recursively splits its continuous s tate
space into some coarse spaces called tentat ive states. It begins by suppos-
ing that such tentat ive states are regarded as the states for Q-learning. It
collects Q values and stat ist ical evidence regarding immediate rewards r
and Q values within this tentat ive s ta te space. When it finds out tha t a
tentat ive s ta te is relevant by the stat ist ical test on minimum description
length criterion, it parti t ions this coarse space into finer spaces. These
procedures can make non-uniform quantization of the s ta te space. Our
method can be applied to non-deterministic domain because Q-learning
is used to find out the optimal policy for accomplishing the given task.
To show that our algorithm has generalization capability, we apply our
method to two tasks in which a soccer robot shoots a ball into a goal and
prevent a ball from entering a goal. To show the validity of this method,
the experimental results for computer simulation and a real robot are
shown.

Key Words: Self-organizing algorithm, Reinforcement learning, Vision-
based mobile robots, Soccer robots.

1 I n t r o d u c t i o n

R o b o C u p (The W o r l d Cup R o b o t Soccer) gives a number of research issues for
AI and robo t i c s researchers . Such issues involve (1) l ea rn ing scheme by agents ,
(2) rea l - t ime p lanning , (3) rea l - t ime image processing, (4) c o o r d i n a t i o n or co-
ope ra t ion be tween agents and so on [1, 2]. A m o n g these t echn ica l issues, we
cur ren t ly focus on self- learning scheme by ind iv idua l agents .

Recent ly , m a n y researchers in robo t i c s [3] have pa id much a t t e n t i o n to rein-
forcement lea rn ing m e t h o d s by which a d a p t i v e , reflexive and pu rpos ive b e h a v i o r
of r o b o t s can be acqu i red w i t h o u t m o d e l i n g i ts env i ronmen t and i t s k i n e m a t i c pa -
r amete r s . A p rob l em in app ly ing re in fo rcement lea rn ing m e t h o d s to real r o b o t
t asks which have cont inuous s t a t e space is t h a t the value func t ion 1 m u s t be

1 value funct ion is a prediction of the return available from each s tate and is impor tant
because the robot can use it to decide a next action. See section 2.1 for more details.

258

described in a domain consisting of real-valued variables, which means that it
should be able to represent the value in terms of infinitely many state and action
pairs. For this reason, function approximators are used to represent the value
function when a closed-form solution of the optimal policy is not available.

One approach tha t has been used to represent the value function is to quan-
tize the s tate and action spaces into a finite number of cells and collect reward
and punishment in terms of all s tates and actions. This is one of the simplest
forms of generalization in which all the states and actions within a cell have
the same value. In this way, the value function is approximated as a table in
which each cell has a specific value (e.g., [31). However, there is a compromise
between the efficiency and accuracy of this table tha t is difficult to resolve at
design time. In order to achieve accuracy, the cell size should be small to pro-
vide enough resolution to approximate the value function. But as the cell size
gets smaller, the number of cells required to cover the entire state and action
spaces grows exponentially, which causes the efficiency of the learning algorithm
to become worse because more da ta is required to est imate the value for all
cells. Chapman et. al [4] proposed an input generalization method which splits
an input vector consisting of a bit sequence of the states based on the already
structured actions such as "shoot a ghost" and "avoid an obstacle." However,
the original states have been already abstracted, and therefore it seems difficult
to be applied to the continuous raw sensor space of real world. Moore et. al [5]
proposed a method to resolve the problem of learning to achieve given tasks in
deterministic high-dimensional continuous spaces, t t divides the continuous s tate
space into cells such tha t in each cell the actions available may be aiming at the
neighboring cells. This aiming is accomplished by a local controller, which must
be provided as a prior knowledge of the given task in advance. The graph of cell
transitions is solved for shortest paths in an online incremental manner, but a
minimax criterion is used to detect when a group of ceils is too coarse to prevent
movement between obstacles or to avoid limit cycles. The offending ceils are
split to higher resolution. Eventually, the environment is divided up just enough
to choose appropriate actions for achieving the goal. However, the restriction of
this method to deterministic environments might limit its applicability since the
real environment is often non-deterministic.

Another approach for representing the value function is to use other types
of function approximators, such as neural networks (e.g., [6]), statistical mod-
els [7, 8, 9, 10] and so on. The approach consists of associating one function
approximator to represent the value of all the states and one specific action.
Many researchers have experimented with this approach. For examples, Boyan
and Moore [11] used local memory-based methods in conjunction with value
iteration; Lin [6] used back-propagation networks for Q-learning; Watkins [12]
used CMAC for Q-learning; Tesauro [13] used back-propagat ion for learning the
value function in backgammon. Asada et al. [9] used a concentration ellipsoid as
a model of cluster (state) of input vectors, inside which a uniform distribution
is assumed. They define a state as a cluster of input vectors from which the
robot can reach the goal s tate or the state already obtained by a sequence of
one kind action primitive regardless of its length. However, actual distributions
are not always uniform. Ideally, situations that input vectors to be included in
their model are not included and vise versa should be avoided.

This paper proposes a new method for incrementally dividing a multidimen-
sional continuous state space into some discrete states. This method recursively
splits its continuous state space into some coarse spaces called tentative states.
I t begins by supposing tha t such tentat ive states are regarded as the states for
Q-learning. I t collects Q values and statistical evidence regarding immediate re-
wards r and Q values within this tentat ive state space. When it finds out that a

259

tentative state is relevant by the statistical test on minimum description length
(hereafter, MDL) criterion [14], it partitions this coarse space into finer spaces.
These procedures can make non-uniform quantization of the s tate space. Our
method can be applied to non-deterministic domain because Q-learning is used
to find out the optimal policy for accomplishing the given task.

The remainder of this article is structured as follows: In the next section, We
outline the generalization techniques for reinforcement learning algorithm and
give our motivation to the approach described in this paper. In section 3.2, we
describe our method to automatical ly construct the sensor spaces. In section 5,
we show the results of the experiments with a simple computer simulation and
reM robot in which a vision-based mobile robot tries to shoot a ball into a goal
and tries to prevent a ball from entering a goal. Finally, we give discussion and
concluding remarks.

2 Generalization Techniques for Reinforcement Learning
Algorithm

2.1 Basics of Reinforcement Learning Algorithm

One step Q-learning [12] has a t t racted much at tent ion as an implementat ion of
reinforcement learning because it is derived from dynamic programming [15].
Here, we briefly review the basics of Q-learning [16].

In Q-learning algorithm, it is assumed that the robot can discriminate the
set S of distinct world states, and can take one from the set A of actions on
the world. The world is modeled as a Markovian process, making stochastic
transitions based on its current s tate and the action taken by the robot. Let
T(s, a, s') be the probabil i ty that the world will transit to the next state s' from
the current state-action pair (s, a). For each state-action pair (s, a), the reward
r(s, a) is defined. The general reinforcement learning problem is typically stated
as finding a policy that maximizes discounted sum of the reward received over
time. A policy f is mapping from S to A. The value function Vf(s t) associated
with a given policy f is defined as:

where st is the state of the system at step t and rt is the reward received at
step t given that the agent s tar ted in state s~ and executed policy f . 3' is the
discounting factor, it controls to what degree rewards in the distant future affect
the total value of a policy and is just slightly less than 1. The value function
measures the expected discounted sum of rewards or expected rewards the robot
will receive when it s tarts from the given state and follows the given policy.

Given definitions of the transition probabilities and the reward distribution,
we can solve the optimal policy, using methods from dynamic programming [15].
A more interesting case occurs when we wish to simultaneously learn the dynam-
ics of the world and construct the policy. Watkin ' s Q-learning algorithm gives us
an elegant method for doing this. Let Q*(s, a) be the expected return or action-
value .function for taking action a in a situation s and continuing thereafter with
the optimal policy. It can be recursively defined as:

* a Q (s ,) = r (s , a) + 3 ' ~ T (s , a , s ') m a x Q * (s ' , a ') .
a ' r A

s' 6S

260

Because we do not know T and r initially, we construct incremental estimates of
the Q values on line. Starting with Q(s,a) at any value (usually 0), every time
an action is taken, update the Q value as follows:

r]
Q(s,a) ¢= (1 - a)Q(s,a) + a | r (s , a) + ~;maxQ(s',a')|

a~E A J ' [

where a is a leaning rate (between 0 and 1) and 7 is the discounting factor which
controls to what degree rewards in the distant future affect the total value of a
policy (between 0 and 1).

2.2 P r e v i o u s G e n e r a l i z a t i o n T e c h n i q u e s a n d M o t i v a t i o n

As shown in the previous section, basic reinforcement learning algorithm as-
sumed that it is possible to enumerate the state and action spaces and store
tables of values over them. In a large smooth state space, we generally expect
similar states to have similar values and similar optimal actions. Surely, therefore,
there should be some more compact representation than a table. Most problems
will have continuous or large discrete state spaces; some will have large or contin-
uous action spaces. The problem of learning in large spaces is addressed through
generalization techniques, which allow compact storage of learned information
and transfer of knowledge between "similar" states and actions.

One method to allow reinforcement-learning techniques to be applied in large
state spaces is to use a function approximator so as to represent the value func-
tion by mapping a state description to a value. The following explanation orig-
inated from [17]. We follow this literature in order to explain the necessity of
non-uniform resolution model for representing a function approximator.

Although there have been some positive examples, in general there are unfor-
tunate interactions between function approximation and the learning rules. In
discrete environments there is a guarantee that any operation that updates the
value function (according to the Bellman equations) can only reduce the error
between the current value function and the optimal value function. This guar-
antee no longer holds when generalization is used. These issues are discussed by
Boyan and Moore [11], who give some simple examples of value function errors
growing arbitrarily large when generalization is used with value iteration. Their
solution to this, applicable only to certain classes of problems, discourages such
divergence by only permitting updates whose estimated values can be shown to
be near-optimal via a bat tery of Monte-Carlo experiments. Several recent results
[18, 19] show how the appropriate choice of function approximator can guaran-
tee convergence, though not necessarily to the optimal values. Balrd's residual
gradient technique [20] provides guaranteed convergence to locally optimal solu-
tions.

Perhaps the gloominess of these counter-examples is misplaced. Boyan and
Moore [11] report that their counter-examples can be made to work with problem-
specific hand-tuning despite the unreliability of untuned algorithms that prov-
ably converge in discrete domains. Sutton [21] shows how modified versions "of
Boyan and Moore's examples can converge successfully. An open question is
whether general principles, ideally supported by theory, can help us understand
when value function approximation will succeed. In Sutton's comparative experi-
ments with Boyan and Moore's counter-examples, he changes some aspects of the
experiments. Boyan and Moore sampled states uniformly in state space, whereas
Sutton's method sampled along empirical trajectories. This change must cause
different results. Therefore, more careful research associated with this point is
needed.

261

3 S e l f - P a r t i t i o n i n g S t a t e S p a c e A l g o r i t h m

3 .1 F u n c t i o n A p p r o x i m a t o r w i t h N o n - u n i f o r m R e s o l u t i o n M o d e l

There are some reasons why designing non-uniform function approximators may
be more beneficial than designing uniform ones.

- In case tha t the designers know, up to a certain degree, prior knowledge of
the sys tem (for example, what regions of the s ta te-act ion space will be used
more often.), it m a y be efficient to design the function approx imato r such
tha t it may use many resources in more heavily t ransi ted regions than in
regions of the state space tha t are known to be visited rarely.

- If the amoun t of resources is limited, a non-uniform function approx imato r
may make bet ter performance and learning efficiency than tha t achieved
with a uniform function approximator just because the former is able to
exploit the resources more efficiently than the later.

- I t may be possible to design function approximators t ha t dynamica l ly allo-
cate more resources in certain regions of the s tate-act ion space and increase
the resolution in such regions as required to perform on-line.

3 .2 D e t a i l s o f O u r A l g o r i t h m

In this work, we define the sensor inputs , act ions and rewards as follows:

- Sensor input d is described by a N dimensional vector d = (dl, d 2 , - " , dN),
each componen t di(i = 1 ~ N) of which represents the measurement pro-
vided by the sensor i. The cont inuous value di is provided by the sensor i.
Its range R a n g e (d i) is known in advance. Based on R a n g e (d l) , a measure-
ment di is normalized in such a way tha t dl can take values in the semi open
interval [0, 1).

- The agent has a set A of possible actions aj , j = 1 ,~ M. Such a set is
called the action space.

- One of the discrete rewards r = rk, k = 1 ,-~ C is given to the agent
depending on the evaluation of the act ion taken at a state.

Our a lgor i thm works as follows:

1. I t s tarts by assuming tha t the entire environment is as if it were one state.
Initially, the tota l number of the states ISJ is one.

2. We utilize a segment tree to classify N dimensional input vector. The inner
node at i th depth in the j th level keeps the range bi (j) = [#.oto ih igh~

of a measurement provided by each sensor i. (Actually, j corresponds to
the number of i teration of this algori thm.) At each inner node in the j the
level, the range of a measurement is par t i t ioned into two equal intervals

--~ , : t h i g h ~ / 2 th igh~ For ex- b°(j) [t~ °~ (t~ °w + thigh)~2) and b~(j) [(t~ °~ 4- i / , , i /"
ample, initially j = 0, the range of each dimension i is divided into two
equal intervals b°(0) = [0.0,0.5) and b~(0) = [0.5, 1.0). When sensor input
vector d has N dimensions, a segment tree whose depth is N is built (see
F i g . l) . The leaf node corresponds to the result of classification for observed
sensor input vector d. As a result, 2 g leaf nodes are generated. These leaf
nodes can represent the si tuat ions in the agent ' s environment . The s ta te
space represented by the leaf nodes is called " ten ta t ive s tate space" T S . Let
t sk , k = 1 ,,~ 2 N be the componen t of the tenta t ive s tate space which is
called " tenta t ive state."

262

3. Based on this tentat ive state space T S , our algorithm begins Q-learning.
In parallel with this process, it gathers statistics in terms of r(a~[ts~ =
on), r(ailts~ = o f f) , Q(ailtsk = on) and Q(aiits~ = o f f) , which indicate
immediate rewards r and discounted future rewards Q in case tha t individual
s tate is "on" or "off," respectively. In this work, it is supposed tha t if a N
dimensional sensor vector d is classified into a leaf node tsk, the condition
of this node tsk is regarded as "on," otherwise (this means the case tha t d
is classified into the leaf node except ts~), it is regarded as "off."

4. After Q-learning based on the tentat ive state space is converging, our algo-
r i thm asks the question whether there are some states in the state description
such that the r and Q values for states " o n ' a r e significantly different from
such values for states "off." When the distributions of statistics of tsk in

of "on" "off" case and are different, it is determined tha t ts~ is relevant to
the given task. In order to discover the difference between two distributions,
our algorithm performs the statistical test based on MDL criterion. In the
section 4.1 and 4.2, these procedures are explained.

5. (a) I f there is the s tate ts' k adjoining the state tsk which is shown to be
relevant such tha t the statistical characteristic of Q values and actions
assigned at the adjoining s tate are same, merge these two states into one
state.

(b) Otherwise, skip this step.
6. Each leaf nodes tsk is represented by a combination of intervals each of which

corresponds to the range of a measurement provided by each sensor i. These
intervals in tsk which is shown to be relevant are bisected. As a result, in
terms of one ts~, 2 N leaf nodes are generated and correspond to tentative
states.

7. Supposing tha t these tentative states are regarded as the states in Q-learning,
our algorithm performs Q-learning again.

8. Until our algorithm can ' t find out the relevant leaf nodes, the procedures
2 ~ 7 are repeated. Finally, a hierarchical segment tree is constructed to
represent the partit ioning of the state space for achievement of a given task.

After the learning, based on Q values stored at leaf nodes, the agent takes actions
for accomplishing the given task.

4 The Relevance Test Based on M D L Criterion

Here, we explain how to determine whether a state is relevant to the task or
not. F ig . 2 shows the difference between the distributions of r or Q values
regarding to the state tsk in case that tsk is relevant or irrelevant. As shown
in upper part of this figure, when two peaks of the distributions of r or Q
values ,which correspond to pair of r(ailtsk = on) and r(a~ltsk = off), or pa i r
of Q(a~lts~ = o~) a n d Q(a~lts~ = o f f)) , can be clearly discriminated, it is
supposed that ts~ is relevant to the given task because the such state affects
the value of state more heavily than the other s tates does, therefore, it affects
how the robot should act at next t ime step. On the contrary, in case tha t two
peaks are ambiguous as shown in bo t tom par t of this figure, it is considered tha t
tsk is irrelevant to the given task. Actually, we perform the statistical test with
respect r and Q values based on MDL criterion [t4] in order to distinguish the
distribution of such reinforcement values.

263

In case of n = 3

lOW high
. ~ t i / " I ti I
i i I
] 4[i

t . t

d3 j

Freq'

off on
/ ' ~ "Relevant"

~ , rorQ

Freq.

~ ~ "Irrelevant"

r orQ

Fig. 1. Representation of state space
by a hierarchical segment tree

Fig. 2. Criterion for determining the
relevance of the state

4.1 T h e s t a t i s t i c a l t e s t for r va lue

Since the immediate reward r j is given at each trial among one of C mutually
exclusive rewards r j j = 1, 2, . • • C , the distribution of r j in the state t sk follows
a multi-nominM distribution. Let n be the number of independent trims, k~ be
the number of event E~ and Pi be the probability that the event Ei occurs where
~]i~1 P~ = 1. The probability that E1 occurs kl times, E2 occurs k2 times, ... Ee
occurs kc times, can be represented by the multi-nominal distribution as follows:

n! p)l ~
p (k l , - ' - , k c) p l , " ' , p c) - k l ! ' " k c ! P c

N E I = I "r~. where,0 < k~ < n (i = 1 c), c =

Supposing T a b l e 1 shows the distribution of immediate rewards in case that
the state tsk is "on" or "off," our algorithm tries to find the difference between
the distributions of rewards in two cases of tsk "on" and "off" based on this
table.

264

Table 1. The distribution of rewards
in tsk

Rewards
RI n(On, R1)
R2 n(On, R2)

:

Re n(On, Re)
~(o~)

On Off
n(Off, R])
n(Off, R2)

n(Of f,.Rc)
~(Off)

n(i): the frequency of sample data in the
state i (i = 1 , - . . , 8)

n(i, rj): the frequency of reward rj
(j = 1 , . . . , C) given in the state i

p(rjli): the probability that reward rj is
given in the state i

e

Z~(i,~) =~(i), ET_- ,p(~J l i)= 1,
j=l

(i = ~,... s).

The probability P({n(i, rj)}l{p(rjli)}) that the distribution of the immedi-
ate rewards are acquired as shown in Tab . 1 {n(i, rj)), (i = 1 . . . , S , j =
1,---, C), can be described as follows:

P({n(i'rj)}l{P(rjti)}) = i=aH Hej=a n(i, rj)! j=lH P(rjli)"(i:~)]

The likelihood function L of this multi-nominal distribution can be written
as follows:

s e ~ 1]i,n(i)~ }
S ~---'~-~-'--'Z. L({p(rl]i)}) = ~ ~ n(i , r i) logp(r~]i)+K, whereK = log I, rIi=a r l j= in0 , rj)!

i=1 ~ = ,

When two multi-nominal distributions in case that each tentative state tsk
is "on" and "off" can be considered to be same, the probability p(rj[i) that the
immediate reward r j is given in the state i can be modeled as follows:

MI: p(rAi) = 0(r j) i = 1 , . - - , S , j = 1 , - - - ,C .

Furthermore, its likelihood function L1 can be written by

))] LI({O(rj)})= K + E n(i, vj) logO(rj .
j----1 "=

Therefore, the maximum likelihood ML1 can be written by

MLa = L(O(rj)) = L (~=1 n(i, rj)

where O(rj) is the maximum likelihood estimation of O(rj). Therefore, the de-
scription length IMDL(M1) of the model M1 based on MDL principle is

s

IMOL(il) = - i L l + ~ - ~ log E n (i).
i----1

265

On the contrary, when two multi-nominal distributions in case of "on" and
"off" can be considered to be different, the probabili ty p(rjli) can be modeled
as follows:

M2:p(T3ti) = 0 (r j [i) i = l , - . . , S , j = : , . . . , C .

Furthermore, its likelihood function L2 can be written by

S C

= g + (i,.Dlog 0(rj li).
i=1 j = l

In the same way, the maximum likelihood ML2 can be writ ten by

ML2 = L(O(rj))= L \ n(i)]"

Therefore, the description length IMDL(M2) of the model M2 based on MDL
principle is

S
1)

= -- log E n(i)-
i----1

Based on MDL criterion, we can suppose tha t discovering the difference be-
tween two distributions is equivalent to determining which model is appropr ia te
for representing the distribution of data. In this work, the difference between the
distributions is found based on the following conditions:

if IMDL(M1) > IMDL(M2)
Two distributions are different.
if lMDL(M2) k IMDL(M1)
Two distributions are same.

4.2 T h e s t a t i s t i c a l t e s t for Q v a l u e

In order to distinguish the distribution of sampled da ta of Q values, we perform
the statistical test based on MDL criterion. Let x '~ and ym be the sample da ta
(xl , z 2 - - - , xn) and (yl, Y2"" , ym), respectively, a~ '~ and ym indicate a history of
Q(ailtsk = on) and Q(a~ltsk = off) , respectively. We'd like to know whether
these two sample data x n and ym come from the two different distributions or the
same distribution. Here, we assume the following two model for the distribution
of sampled da ta are M1 based on one normal distribution and M 2 based on two
normal distributions.

MI: N (# , a ') , M2: N (~ : , o"~), N(#2 , a '~)

The normal distribution with mean/~ and variance or is defined by

1 { (, . }
:(.:.,.,>_ 0x. i; •

If both x n and ym follow the model M1, the probabilistic density function of
these sampled da ta can be written by

m

i = l

266

The likelihood function LL1 of the model M1 can be writ ten by

n m

LL1 = E l o g f (x i : # , a 2) + E l o g f (y i : #, ~r2).
i = 1 i = 1

Therefore, the max imum likelihood MLL1 can be derived as follows:

n + m . log 2~r& 2), MLL1 - ~ (1 +

where &2 is the max imum likelihood estimated variance of cr 2 and can be esti-
mated as follows:

- - x~ + y~ , ~ - - - x~ - p) 2 + Yi - P)~
-- n + m i=1 i=1 i=1 n T m

where/2 is the maximum likelihood estimated mean of #. Therefore, the descrip-
tion length ZMDL(M1) of the model M1 based on M D L principle is

IMDL(M1) = - M L L 1 + log(n + m).

On the contrary, if x n and ym follow the model M2, the probabilistic density
function of these sampled data can be written by

t rn Oj 2) ,

i = l

The likelihood function LL~ of the model M2 can be writ ten by

Od 2 LL2 = E log f (xi : #l , o"2) + E log f (yi : ,2, ,.
i = 1 i = 1

Therefore, the max imum likelihood MLL2 can be derived as follows:

^t2 M L L 2 - n+-------~m(l+log2~ra),
2

where dl 2 and d2 2 is the max imum likelihood estimated variance of a2 and a~,
respectively. These statistics can be estimated as follows:

- - X i , f i 2 = - - Yi,
i = l m i = 1

~,2 _ xi - g l) ~ + yi - g2) 2 ,
7~ -t- m i = 1

where fil and fi2 is the maximum likelihood est imated mean of #1 and #2,
respectively. Therefore, the description length lMDL(M2) of the model M2 based
on M D L principle is

3 t o g (n + m) . IMDL (M2) = - M L L 2 +

267

We can recognize the difference between the distributions based on the fol-
lowing condition:

if IMDL(M1) > 1MDL(M2)
X and y arise from the different normal distributions
if lMDL(M2) k 1MDL(M1)
x and y arise from the same normal distribution

5 Experimental Results

T show tha t our algorithm has a generalization capability, we apply it to acquire
two different behaviors: one is a shooting behavior and the other is a defending
behavior for soccer robots.

5.1 S i m u l a t i o n

Possible Actions

~ Shooter l
Fig. 3. Simulation environment

F ig . 4. Input vector as sensor
information

We consider an environment shown in Fig . 3 where the task for a mobile
robot is to shoot a ball into a goM or to defend a shot ball. The environment
consists of a ball and a goal, and the mobile robot has a single CCD camera.
The robot does not know the location and the size of the goal, the size and the
weight of the ball, any camera parameters such as focal length and tilt angle, or
kinematics /dynamics of itself.

We performed the computer simulation with the following specifications. The
field is 1.52m x 2.74m. The goal posts are located at the center of the left and
right line of the rectangle (see Fig . 3) and its height and width are 0.20m and
0.5m, respectively. The robot is 0.10m wide and 0.20m long and kicks a ball
of diameter 0.05m. The maximum translation velocity is 5cm/s. The camera is

268

horizontally mounted on the robot (no tilt) and is in off-centered position. I ts
visual angle is 36 degrees. The velocities of the ball before and after being kicked
by the robot is calculated by assuming tha t the mass of the ball is negligible
compared to tha t of the robot. The speed of the ball is temporal ly decreased by
a factor 0.8 in order to reflect the so-called "viscous friction." The values of these
parameters are determined so tha t they can roughly simulate the real world.

The robot is driven by two independent motors and steered by front and
rear wheels which is driven by one motor. Since we can send the motor control
commands such as "move forward or backward in the given direction," all to-
gether, we have 10 actions in the action primitive set A as shown in Fig . 3. The
robot continues to take one action primitive at a t ime until the current s tate
changes. This sequence of the action primitives is called an action. Actually, a
stop motion does not causes any changes in the environment, we do not take
into account this action primitive.

In computer simulation, we take into account the delay due to sensory in-
formation processing. The contents of the image processing are color filtering (a
ball and a goal are painted in red and blue, respectively), localizing and count-
ing red and blue pixels, and vector calculation. We are using a general graphic
workstation for image processing in the real robot experiments. Since it is not
specialized on an image processing, it takes about 66 ms to perform these pro-
cesses. As a result, in the simulation, the robot is assumed to take an action
primitive every 66ms.

The size of the image taken by the camera is 256 x 240 pixels. An input
vector x to our algorithm consists of:

- - Xl: the horizontal position of the ball in the image, tha t ranges from 0 to
256 pixels,

- x2: the horizontal position of the goal in the image ranging from 0 to 256,
- x3: the area of the goal region in the image, that ranges from 0 to 256x240

pixels 2 .

After the range of these values is normalized in such a way that the range may
become the semi open interval [0, 1), they are used as inputs of our method.

A discounting factor 7 is used to control to what degree rewards in the distant
future affect the total value of a policy. In our case, we set the value a slightly
less than 1 (7 = 0.9). In this work, we set the learning rate a = 0.25. In case tha t
the shooting behavior tried to be acquired by our method, as a reward value, I is
given when the robot succeeded in shooting a ball into a goal, 0.3 is given when
the robot just kicked a ball, -0.01 is given when the robot went out of field, 0 is
given otherwise. In the same way, in case tha t the defending behavior tried to be
acquired by our method, as a reward value, -0.7 is given when the robot failed
in preventing a ball from entering a goal, 1.0 is given when the robot just kicked
a ball, -0.01 is given when the robot went out of field, 0 is given otherwise.

In the learning process, Q-learning continues until the sum of estimated Q
values seems to be almost convergent. When our algorithm tried to acquire
the shooting behavior, our algorithms ended after it i terated the process (Q-
learning + statistical test) 8 times. In this case, about 160K trials were required
to converge our algorithm and the total number of the states is 246. In case tha t
our algorithm tried to acquire the defending behavior, our algorithms ended after
it i terated the process (Q-learning + statistical test) 5 times. In this case, about
100K trials were required to converge our algorithm and the total number of the
states is 141.

F ig . 5 shows the success ratio versus the step of trials in the two learning
processes tha t one is for acquiring a shooting behavior the other is for a defending
behavior. We define the success rate as (# of successes) / (# of trials) × 100(%).

269

As you can see, the bigger the number of iteration is, the higher the success
ratio at the final step in each iteration. This means that our algorithm gradually
made better segmentation of state space for accomplishing the given task.

!

[K 1' ;':

• ,,.,,,, , . ' , . ' ~ : , '~:~, ,~ l J ' , . . '

z l e 3

d T d s b ~ L ~ d ~ Pr~s~m

(a) In case of shooting behavior (b) In case of defending behavior

Fig. 5. The success ratio versus the step of trim

i~z~ ca 7

o.2

o.~s

% . 2 S O 5

Action :2

I

~2i s o ~

Action :7

1 1

0 .25 o s o , z 5 o $

1 i

Action :2 Action :7

(a) The state space for shooting be-
havior

(b) The state space for defending be-
havior

Fig. 6. The partitioned state space

Fig . 6 shows the partitioned state spaces obtained by our method. The upper
part of this figure shows the state space for the shooting behavior, the bot tom
part shows one for defending behavior. In each figure, Dim.l , Dim.2 and Dim.3
shows the position of ball, the position of goal and the area of goal region,

270

respectively. Furthermore, in each figure, Action2 and Action7 corresponds to
"moving forward" and "moving backward," respectively.

For the sake of readers understanding, one cube in the part i t ioned state space
corresponds to one state. For example, the top left shows a group of the cube
where the action 2 is assigned as an optimal action. As shown in this figure,
many cubes where forward actions are assigned concentrate around the center of
the entire state space. This means that the robot will take an forward action if
the ball and goal are observed around the center of field of its view. This shows
very natural behavior for shooting a ball into a goal.

In the bo t tom right figure, there is one large cube. This means that the the
robot will take an backward action if large goal are observed around the center
of field of its view. This s trategy is plausible behavior for preventing a ball from
entering a goal because the robot will have to go back in front of own goal after
it moved out there in order to kick a ball.

F ig .7 shows a typical sequence of the shooting behavior in the simulation
acquired by our method. The bo t tom par t of each figure in the Fig . 7 shows
the processed image where the white rectangle and dark gray circle indicates the
goal and ball region, respectively. Once the robot found the ball, the robot ran
to the ball quickly. After that , the robot kicked the ball into the goal.

F ig .8 shows the defending behavior in the simulation acquired by our method.
The robot initially looked around because the ball was not observed from its ini-
tial position. Then, once the robot found the ball, the robot ran to the ball
quickly. After that , the robot kicked the ball to prevent a ball from approaching
the goal. The robot followed the ball until the area of opponent 's goal grows to a
certain extent. Then in order to go back to the front of own goal, the robot took
a backward action. I t seems that the robot utilizes the area of the opponent 's
goal to localize its own position in the field. Note tha t this behavior is just the
result of learning and not hand-coded.

5.2 Real Robot Experiments

Fig. 9 shows our real robot system which we have developed to take part in
RoboCup-97 competition where several robotic teams are competing on a field.
So, the system includes two robots which have the same structure: one for a
shooter, the other for a defender. Off-board computer SGI ONYX (R4400/250MHz)
perceives the environment through on-board cameras, performs the decision
making based on the learned policy and sends motor commands to each robot. A
CCD camera is set at bottom of each robot in off-centered position. Each robot
is controlled by SGI ONYX through radio RS232C. The maximum vehicle speed
is about 5cm/s. The images taken by the CCD camera on each robot are trans-
mitted to a video signal receiver. In order to process two images (one is sent from
the shooter robot, the other from the defender robot) simultaneously, two video
signals are combined into one video signal by a video combiner on PC. Then, the
video signal is sent to SGI ONYX for image processing. The color-based visual
tracking routine is implemented for tracking and finding a ball and a goal in the
image. In our current system, it takes 66 ms to do this image processing for one
frame.

Simple Color-Based Tracking

Our simple tracking method is based on tracking regions with similar color in-
formation from frame to frame. We assume the existence of the color mod-
els (CM~au, CMgoal) for tracking targets, which are est imated at initialization.
Actually, we use only hue values (ttbaU and Hao,a) of targets as (CMbau and

271

Fig. 7. Shooting behavior in simulation

Fig. 8. Defending behavior in simulation

272

Radio RS232C ~ [.~..I-..~ [
I M ° d ~

~ CCD Camera [

Fig. 9. Our robots and system

CMgo~Z) to reduce its sensitivity due to changes in illumination. We define a fit-
ness function 4~ta~aet(x,y) at a pixel (x,y) as a criterion for extracting a target
region in the image,

1
• ~a~g~(z ,y) = 0

Htarget - atavget <-- H(x, y) <_ Htavget Jr" O'target,
Otherwise

,where H(x, y) and at~g~t show hue value at (x, y) and a threshold for extraction,
respectively. In our current implementation, we set O'ball . ~ - l0 and ~rgoat = 20.
These values can be calculated based on the standard deviation of Hbazz and
Hgo~l which were estimated at initial estimation process. Based on ~ta.g~t(x, Y),
the best estimate (~Ctarget, ~ltarget) for the target 's location is calculated as follows:

where R shows the search area. Initially, R implies an entire image plane. After
initial estimation for the location of the target, we can know the standard devi-
ations ~r(kta~g~t) and a(~ta,g~t) regarding (~ta,g¢t,~,a,g~t). Therefore, based on
the deviations, R is restricted to a local region during the tracking process as
follows:

273

R : { (x , y) l - < x < e,o g , +

- _< y < +

~-~X~.,y,)CR ~target(xl,Yl) shows the area of the target in the image. Based on
this value, we judge the appearance of the target. I f this value is lower than the
pre-defined threshold, the target is considered to be lost, then R is set to be the
entire image plane for estimation at next t ime step. We set this threshold for
the target area = 0.05 • S, where S shows the area of the entire image. F ig . 10
shows examples of processed images during the task execution. In these figures,
a light gray and a dark gray "X" show the estimated location of the ball and the
goal, respectively. In the same way~ the white rectangles surrounded with dotted
line in each image show the est imated area of the ball and the goal.

Fig. 10. A example of processed images taken by the robots

Experimental Results

Fig. 11 shows how a real robot shoots a ball into a goal based on the state space
obtained by our method. 6 images are shown in raster order from the top left to
the bo t tom right in every 2.0 seconds, in which the robot tried to shoot a ball,
but failed, then moved backward so as to find a position to shoot a ball, finally
succeeded in shooting. Note that the backward motion for retry is just the result
of learning and not hand-coded.

Fig . 12 shows how a real robot prevents a ball shot by the opponent 's robot
from entering a goal based on the state space obtained by our method. 6 images
are shown in raster order from the top left to the bo t tom right in every 2.0
seconds. This sequence was recorded at the RoboCup-97 competition. In the top
left image, the white circle shows the position of the defender robot and the
white arrow shows the position of the ball. In the t ime step 1 and 2, first, the
opponent ' s robot tried to shoot a ball, then the defender robot prevent a ball
from entering a goal. In the t ime step 3 ~ 6, another opponent ' s robot got a ball
cleared by the defender robot and tried to shoot a ball again, then the defender
robot defend a goal again. As shown in these figures, the defender robot always
moves in front of own goal to find out a shot ball as soon as possible. Note tha t
this behavior is just the result of our learning algorithm and not hand-coded.

274

6 Concluding Remarks and Discussion

We have proposed a method for self-partitioning the state space which recursively
splits continuous s tate space into some coarse regions based on the relevance test
in terms of reward values. Our method utilized a hierarchical segment tree in
order to represent the non-uniform parti t ioning of the state space. This repre-
sentation has an advantage for approximating the non-uniform distribution of
sample da ta which frequently occurs in real world. We also have shown the valid-
ity of the method with computer simulations and real robot experiments at our
lab. and the RoboCup-97 competition. We think tha t segmentation of sensory
da ta from the environment should depend on the purpose (task), capabilities
(sensing, acting, and processing) of the robot, and its environment. The s tate
spaces obtained by our method (Fig.{} indicates such segmentations) correspond
to the internal representations of the robot for accomplishing given tasks. Fur-
thermore, we think that the resolution of state spaces indicates the importance
tha t how much at tention the robot have to pay to a part of the state space. In
these sense, by our method, our robot acquired the the subjective representation
for its environment and the given task.

Current version of our algorithm has two kinds of problem:

- If the dimension of the sensor space is higher, the computat ional t ime and
amount are enormous, and as a result the learning might not converge cor-
rectly. The dimension of the sensor space is associated with the number of
features which are used to describe all situations in the environment. In our
current implementat ion, we used input vector consisting of three parameters
which were enough to acquire the shooting and defending behaviors. How-
ever, there is no guarantee tha t these parameters are enough in case that our
method tries to acquire the higher-level behaviors such as strategic coordi-
nation between two robots. Generally, selection of features from raw images
is really a difficult problem. The selection of feature which is necessary to
accomplish a give task might be much harder when such a feature changes
depending on situations. Since use of all possible sensory information seems
impossible, a learning mechanism for selecting features from the sensory da ta
should be developed. As a result, an effective method for coping with higher
dimension space might be developed.

- We currently define the quantization of the action space in advance. Since our
robot has only two degrees of freedom (DOFs), abstraction of action space is
not very important . However, it is generally important to quantize the action
space in case tha t the dimension of the action space is higher and/or we want
to use real-valued motor signals to control the robot precisely. For example,
if the robot has an active vision system with pan and tilt mechanism in
addition to the two DOFs for driving system, the action space should be
abstracted depending on situation in order to coordinate between sensing
and driving actions. The abstraction of action space is as necessary as the
abstraction of sensor space.

7 Acknowledgments

The main idea of this paper was thought of while I stayed a t AI Lab of Comp.
Sci. Dept. of Brown University. I would like to thank Prof. L. P. Kaelbling for
her helpful comments during my stay. I Mso would like to thank Prof. M. Imai
for providing research fund and S. Mori ta J apan SGI Cray Corp for lending SGI
ONYX to me. Finally, I want to say thank you to my colleague M. Iwase for his
help in the development of our robot.

275

R e f e r e n c e s

1. H. Kitano, M. Tambe, Peter Stone, and et.al. "The robocup synthetic agent chal-
lenge 97". In Proc. of The First International Workshop on RoboCup, pages 45-50,
1997.

2. M. Asada, Y. Kuniyoshi, A. Drogoul, and et.al. "The robocup physical agent chal-
lenge:phase i(draft)". In Proe. of The First International Workshop on RoboCup,
pages 51-56, 1997.

3. J. H. Connel and S. Mahadevan, editors. Robot Learning. Kluwer Academic Pub-
lishers, 1993.

4. D. Chapman and L. P. Kaelbling. "Input generalization in delayed reinforcement
learning: An alogorithm and performance comparisons". In Proc. of IJCAI-91,
pages 726-731, 1991.

5. A. W. Moore and C. G. Atkeson. "The parti-game algorithm for variable resolu-
tion reinforcement learning in multidimensional state-spaces". Machine Learning,
21:199-233, 1995.

6. Long-Ji Lin. "Self-improving reactive agents based on reinforcement learning, plan-
ning and teaching". Machine Learning, 8:293-321, 1992.

7. H. Ishiguro, R. Sato, and T. Ishida. "Robot oriented state space construction". In
Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems
1996 (IROS96), volume 3, 1996.

8. A. Ueno, K. Hori, and S. Nakasuka. "Simultaneous learning of situation classifi-
cation based on rewards and behavior selection based on the situation". In Proc.
of IEEE/RSJ International Conference on Intelligent Robots and Systems 1996
(IROS96), volume 3, 1996.

9. M. Asada, S. Nods, and K. Hosoda. "Action-based sensor space categorization for
robot learning". In Proc. of IEEE/RSJ International Conference on Intelligent
Robots and Systems 1996 (IROS96), volume 3, 1996.

10. Y. Takahashi, M. Asada, and K. Hosoda. "Reasonable performance in less learn-
ing time by real robot based on incremental state space segmentation". In Proc.
of IEEE/RSJ International Conference on Intelligent Robots and Systems 1996
(IROS96), volume 3, pages 1518-1524, 1996.

11. J. Boyan and A. Moore. "Generalization in reinforcement learning: Safely approx-
imating the value function". In Proceedings of Neural Information Processings
Systems 7. Morgan Kaufmann, January 1995.

12. C. J. C. H. Watkins. "Learning from delayed rewards'. PhD thesis, King's College,
University of Cambridge, May 1989.

13. G. Tesauro. "Practical issues in temporal difference learning". Machine Learning,
8:257-277, 1992.

14. J. Rissanen. Stochastic Complexity in Statistical Inquiry. World Scientific, 1989.
15. R. Bellman. Dynamic Programming. Princeton University Press, Princeton, N J,

1957.
16. L. P. Kaelbling. "Learning to achieve goals". In Proe. of IJCAI-93, pages 1094-

1098, 1993.
17. L. P. Kaelbling, M. L. Littman, and A. W. Moore. "Reinforcement learning: A

survey". Journal of Artificial Intelligence Research, 4, 1996.
18. G. J. Gordon. "Stable function approximation in dynamic programming". In

Proceedings of the Twelfth International Conference on Machine Learning, pages
261-268, 1995.

276

19. J. N. Tsitsiklis and B. V. Roy. "Feature-based methods for large scale dynamic
programming". Machine Learning, 22:1, 1996.

20. L. Baird. "Residual algorithms: Reinforcement learning with function approxima-
tion". In Proceedings of the Twelfth International Conference on Machine Learn-
ing, pages 30-37, 1995.

21. R. S. Sutton. "Generalization in reinforcement learning: Successful examples using
sparse coarse coding". In Proc. of Neural Information Processing Systems 8, 1996.

F ig . 11. Shooting behavior on our robot

F ig . 12. Defending behavior on our robot

