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A b s t r a c t .  An input  generalization problem is one of the most impor- 
tant  ones in applying reinforcement learning to real robot  tasks. To cope 
with this problem, we propose a self-partit ioning state space algori thm 
which can make non-uniform quantization of the multidimensional con- 
tinuous state space .  This method recursively splits its continuous s tate  
space into some coarse spaces called tentat ive states. It begins by suppos- 
ing that  such tentat ive states are regarded as the states for Q-learning. It 
collects Q values and stat ist ical  evidence regarding immediate rewards r 
and Q values within this tentat ive s ta te  space. When it finds out tha t  a 
tentat ive s ta te  is relevant by the stat ist ical  test on minimum description 
length criterion, it parti t ions this coarse space into finer spaces. These 
procedures can make non-uniform quantization of the s ta te  space. Our  
method can be applied to non-deterministic domain because Q-learning 
is used to find out the optimal policy for accomplishing the given task. 
To show that  our algorithm has generalization capability, we apply our 
method to two tasks in which a soccer robot shoots a ball  into a goal and 
prevent a ball from entering a goal. To show the validity of this method,  
the experimental  results for computer  simulation and a real robot  are 
shown. 

Key Words: Self-organizing algorithm, Reinforcement learning, Vision- 
based mobile robots, Soccer robots. 

1 I n t r o d u c t i o n  

R o b o C u p  (The  W o r l d  Cup  R o b o t  Soccer)  gives a number  of  research issues for 
AI  and robo t i c s  researchers .  Such issues involve (1) l ea rn ing  scheme by  agents ,  
(2) rea l - t ime p lanning ,  (3) rea l - t ime  image  processing,  (4) c o o r d i n a t i o n  or co- 
ope ra t ion  be tween  agents  and  so on [1, 2]. A m o n g  these  t echn ica l  issues,  we 
cur ren t ly  focus on self- learning scheme by ind iv idua l  agents .  

Recent ly ,  m a n y  researchers  in robo t i c s  [3] have pa id  much a t t e n t i o n  to  rein- 
forcement  lea rn ing  m e t h o d s  by  which a d a p t i v e ,  reflexive and  pu rpos ive  b e h a v i o r  
of  r o b o t s  can  be  acqu i red  w i t h o u t  m o d e l i n g  i ts  env i ronmen t  and  i t s  k i n e m a t i c  pa -  
r amete r s .  A p rob l em in app ly ing  re in fo rcement  lea rn ing  m e t h o d s  to  real  r o b o t  
t asks  which have cont inuous  s t a t e  space  is t h a t  the  value  func t ion  1 m u s t  be 

1 value funct ion  is a prediction of the return available from each s tate  and is impor tant  
because the robot can use it to decide a next action. See section 2.1 for more details. 
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described in a domain consisting of real-valued variables, which means that  it 
should be able to represent the value in terms of infinitely many  state and action 
pairs. For this reason, function approximators  are used to represent the value 
function when a closed-form solution of the optimal  policy is not available. 

One approach tha t  has been used to represent the value function is to quan- 
tize the s tate  and action spaces into a finite number  of cells and collect reward 
and punishment in terms of all s tates and actions. This is one of the simplest 
forms of generalization in which all the states and actions within a cell have 
the same value. In this way, the value function is approximated as a table in 
which each cell has a specific value (e.g., [31). However, there is a compromise 
between the efficiency and accuracy of this table tha t  is difficult to resolve at 
design time. In order to achieve accuracy, the cell size should be small to pro- 
vide enough resolution to approximate  the value function. But  as the cell size 
gets smaller, the number of cells required to cover the entire state and action 
spaces grows exponentially, which causes the efficiency of the learning algorithm 
to become worse because more da ta  is required to est imate the value for all 
cells. Chapman et. al [4] proposed an input generalization method which splits 
an input vector consisting of a bit sequence of the states based on the already 
structured actions such as "shoot a ghost" and "avoid an obstacle." However, 
the original states have been already abstracted,  and therefore it seems difficult 
to be applied to the continuous raw sensor space of real world. Moore et. al [5] 
proposed a method to resolve the problem of learning to achieve given tasks in 
deterministic high-dimensional continuous spaces, t t  divides the continuous s tate  
space into cells such tha t  in each cell the actions available may  be aiming at the 
neighboring cells. This aiming is accomplished by a local controller, which must  
be provided as a prior knowledge of the given task in advance. The graph of cell 
transitions is solved for shortest paths in an online incremental manner,  but a 
minimax criterion is used to detect when a group of ceils is too coarse to prevent 
movement  between obstacles or to avoid limit cycles. The offending ceils are 
split to higher resolution. Eventually, the environment is divided up just  enough 
to choose appropriate  actions for achieving the goal. However, the restriction of 
this method to deterministic environments might limit its applicability since the 
real environment is often non-deterministic. 

Another approach for representing the value function is to use other types 
of function approximators,  such as neural networks (e.g., [6]), statistical mod- 
els [7, 8, 9, 10] and so on. The approach consists of associating one function 
approximator  to represent the value of all the states and one specific action. 
Many researchers have experimented with this approach. For examples, Boyan 
and Moore [11] used local memory-based methods in conjunction with value 
iteration; Lin [6] used back-propagation networks for Q-learning; Watkins [12] 
used CMAC for Q-learning; Tesauro [13] used back-propagat ion for learning the 
value function in backgammon.  Asada et al. [9] used a concentration ellipsoid as 
a model of  cluster (state) of input vectors, inside which a uniform distribution 
is assumed. They define a state as a cluster of input vectors from which the 
robot can reach the goal s tate or the state already obtained by a sequence of 
one kind action primitive regardless of its length. However, actual distributions 
are not always uniform. Ideally, situations that  input vectors to be included in 
their model are not included and vise versa should be avoided. 

This paper  proposes a new method for incrementally dividing a multidimen- 
sional continuous state space into some discrete states. This method recursively 
splits its continuous state space into some coarse spaces called tentative states. 
I t  begins by supposing tha t  such tentat ive states are regarded as the states for 
Q-learning. I t  collects Q values and statistical evidence regarding immediate re- 
wards r and Q values within this tentat ive state space. When it finds out that  a 
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tentative state is relevant by the statistical test on minimum description length 
(hereafter, MDL) criterion [14], it partitions this coarse space into finer spaces. 
These procedures can make non-uniform quantization of the s tate  space. Our 
method can be applied to non-deterministic domain because Q-learning is used 
to find out the optimal  policy for accomplishing the given task. 

The remainder of this article is structured as follows: In the next section, We 
outline the generalization techniques for reinforcement learning algorithm and 
give our motivation to the approach described in this paper.  In section 3.2, we 
describe our method to automatical ly construct the sensor spaces. In section 5, 
we show the results of the experiments with a simple computer  simulation and 
reM robot in which a vision-based mobile robot tries to shoot a ball into a goal 
and tries to prevent a ball from entering a goal. Finally, we give discussion and 
concluding remarks. 

2 Generalization Techniques for Reinforcement Learning 
Algorithm 

2.1 Basics of Reinforcement Learning Algorithm 

One step Q-learning [12] has a t t racted much at tent ion as an implementat ion of 
reinforcement learning because it is derived from dynamic programming [15]. 
Here, we briefly review the basics of Q-learning [16]. 

In Q-learning algorithm, it is assumed that  the robot can discriminate the 
set S of distinct world states, and can take one from the set A of actions on 
the world. The world is modeled as a Markovian process, making stochastic 
transitions based on its current s tate and the action taken by the robot. Let 
T(s, a, s') be the probabil i ty that  the world will transit  to the next state s' from 
the current state-action pair (s, a). For each state-action pair (s, a), the reward 
r(s, a) is defined. The general reinforcement learning problem is typically stated 
as finding a policy that  maximizes discounted sum of the reward received over 
time. A policy f is mapping from S to A. The value function Vf(s t )  associated 
with a given policy f is defined as: 

where st is the state of the system at step t and rt is the reward received at 
step t given that  the agent s tar ted in state s~ and executed policy f .  3' is the 
discounting factor, it controls to what  degree rewards in the distant future affect 
the total  value of a policy and is just  slightly less than 1. The value function 
measures the expected discounted sum of rewards or expected rewards the robot 
will receive when it s tarts  from the given state and follows the given policy. 

Given definitions of the transition probabilities and the reward distribution, 
we can solve the optimal  policy, using methods from dynamic programming [15]. 
A more interesting case occurs when we wish to simultaneously learn the dynam- 
ics of the world and construct the policy. Watkin ' s  Q-learning algorithm gives us 
an elegant method for doing this. Let Q*(s, a) be the expected return or action- 
value .function for taking action a in a situation s and continuing thereafter with 
the optimal policy. It  can be recursively defined as: 

* a Q ( s , ) = r ( s , a ) + 3 ' ~ T ( s , a , s ' ) m a x Q * ( s ' , a ' ) .  
a ' r A  

s' 6S 



260 

Because we do not know T and r initially, we construct incremental estimates of 
the Q values on line. Starting with Q(s,a) at any value (usually 0), every time 
an action is taken, update the Q value as follows: 

r ] 
Q(s,a) ¢= (1 - a)Q(s,a) + a | r ( s , a ) +  ~;maxQ(s',a')| 

a~E A J ' [ 

where a is a leaning rate (between 0 and 1) and 7 is the discounting factor which 
controls to what degree rewards in the distant future affect the total value of a 
policy (between 0 and 1). 

2.2 P r e v i o u s  G e n e r a l i z a t i o n  T e c h n i q u e s  a n d  M o t i v a t i o n  

As shown in the previous section, basic reinforcement learning algorithm as- 
sumed that  it is possible to enumerate the state and action spaces and store 
tables of values over them. In a large smooth state space, we generally expect 
similar states to have similar values and similar optimal actions. Surely, therefore, 
there should be some more compact representation than a table. Most problems 
will have continuous or large discrete state spaces; some will have large or contin- 
uous action spaces. The problem of learning in large spaces is addressed through 
generalization techniques, which allow compact storage of learned information 
and transfer of knowledge between "similar" states and actions. 

One method to allow reinforcement-learning techniques to be applied in large 
state spaces is to use a function approximator so as to represent the value func- 
tion by mapping a state description to a value. The following explanation orig- 
inated from [17]. We follow this literature in order to explain the necessity of 
non-uniform resolution model for representing a function approximator. 

Although there have been some positive examples, in general there are unfor- 
tunate interactions between function approximation and the learning rules. In 
discrete environments there is a guarantee that  any operation that  updates the 
value function (according to the Bellman equations) can only reduce the error 
between the current value function and the optimal value function. This guar- 
antee no longer holds when generalization is used. These issues are discussed by 
Boyan and Moore [11], who give some simple examples of value function errors 
growing arbitrarily large when generalization is used with value iteration. Their  
solution to this, applicable only to certain classes of problems, discourages such 
divergence by only permitting updates whose estimated values can be shown to 
be near-optimal via a bat tery of Monte-Carlo experiments. Several recent results 
[18, 19] show how the appropriate choice of function approximator can guaran- 
tee convergence, though not necessarily to the optimal values. Balrd's residual 
gradient technique [20] provides guaranteed convergence to locally optimal solu- 
tions. 

Perhaps the gloominess of these counter-examples is misplaced. Boyan and 
Moore [11] report that  their counter-examples can be made to work with problem- 
specific hand-tuning despite the unreliability of untuned algorithms that  prov- 
ably converge in discrete domains. Sutton [21] shows how modified versions "of 
Boyan and Moore's examples can converge successfully. An open question is 
whether general principles, ideally supported by theory, can help us understand 
when value function approximation will succeed. In Sutton's comparative experi- 
ments with Boyan and Moore's counter-examples, he changes some aspects of the 
experiments. Boyan and Moore sampled states uniformly in state space, whereas 
Sutton's method sampled along empirical trajectories. This change must cause 
different results. Therefore, more careful research associated with this point is 
needed. 
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3 S e l f - P a r t i t i o n i n g  S t a t e  S p a c e  A l g o r i t h m  

3 .1  F u n c t i o n  A p p r o x i m a t o r  w i t h  N o n - u n i f o r m  R e s o l u t i o n  M o d e l  

There  are some reasons why designing non-uniform function approximators  may  
be more beneficial than  designing uniform ones. 

- In case tha t  the designers know, up to a certain degree, prior knowledge of  
the sys tem (for example, what  regions of  the s ta te-act ion space will be used 
more often.), it m a y  be efficient to design the function approx imato r  such 
tha t  it may  use many  resources in more heavily t ransi ted regions than  in 
regions of  the state space tha t  are known to be visited rarely. 

- If  the amoun t  of resources is limited, a non-uniform function approx imato r  
may make bet ter  performance and learning efficiency than  tha t  achieved 
with a uniform function approximator  just  because the former is able to 
exploit the resources more efficiently than  the later. 

- I t  may  be possible to design function approximators  t ha t  dynamica l ly  allo- 
cate more resources in certain regions of the s tate-act ion space and increase 
the resolution in such regions as required to  perform on-line. 

3 .2  D e t a i l s  o f  O u r  A l g o r i t h m  

In this work, we define the sensor inputs ,  act ions and rewards as follows: 

- Sensor input  d is described by a N dimensional  vector  d = (dl, d 2 , - " ,  dN), 
each componen t  di( i  = 1 ~ N )  of which represents the measurement  pro- 
vided by the sensor i. The  cont inuous value di is provided by the sensor i. 
Its range R a n g e ( d i )  is known in advance.  Based on R a n g e ( d l ) ,  a measure- 
ment  di is normalized in such a way tha t  dl can take values in the semi open 
interval [0, 1). 

- The agent  has a set A of  possible actions aj ,  j = 1 ,~ M.  Such a set is 
called the action space. 

- One of the  discrete rewards r = rk, k = 1 ,-~ C is given to the agent 
depending on the evaluation of the act ion taken at a state. 

Our  a lgor i thm works as follows: 

1. I t  s tarts  by assuming tha t  the entire environment  is as if it were one state.  
Initially, the tota l  number  of the states ISJ is one. 

2. We utilize a segment tree to classify N dimensional  input  vector.  The  inner 
node at i th depth in the j th  level keeps the range bi ( j )  = [#.oto ih igh~ 

of a measurement  provided by each sensor i. (Actually,  j corresponds  to 
the number  of i teration of this algori thm.)  At each inner node in the j the 
level, the range of a measurement  is par t i t ioned into two equal intervals 

--~ , : t h i g h ~ / 2  th igh~ For ex- b°( j )  [t~ °~ (t~ °w + thigh)~2) and b~(j)  [(t~ °~ 4- i / ,  , i /" 
ample, initially j = 0, the range of each dimension i is divided into two 
equal intervals b°(0) = [0.0,0.5) and b~(0) = [0.5, 1.0). When  sensor input  
vector d has N dimensions, a segment tree whose depth  is N is built  (see 
F i g . l ) .  The  leaf node corresponds to the result of classification for observed 
sensor input  vector  d. As a result, 2 g leaf nodes are generated.  These  leaf 
nodes can represent the si tuat ions in the agent ' s  environment .  The  s ta te  
space represented by the leaf nodes is called " ten ta t ive  s tate  space" T S .  Let 
t sk ,  k = 1 ,,~ 2 N be the componen t  of  the tenta t ive  s tate  space which is 
called " tenta t ive  state." 
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3. Based on this tentat ive state space T S ,  our algorithm begins Q-learning. 
In parallel with this process, it gathers statistics in terms of r(a~[ts~ = 
on), r(ailts~ = o f f ) ,  Q(ailtsk = on) and Q(aiits~ = o f f ) ,  which indicate 
immediate rewards r and discounted future rewards Q in case tha t  individual 
s tate is "on" or "off," respectively. In this work, it is supposed tha t  if a N 
dimensional sensor vector d is classified into a leaf node tsk, the condition 
of this node tsk is regarded as "on," otherwise (this means the case tha t  d 
is classified into the leaf node except ts~), it is regarded as "off." 

4. After Q-learning based on the tentat ive state space is converging, our algo- 
r i thm asks the question whether there are some states in the state description 
such that  the r and Q values for states " o n ' a r e  significantly different from 
such values for states "off." When the distributions of statistics of tsk in 

of "on" "off" case and are different, it is determined tha t  ts~ is relevant to 
the given task. In order to discover the difference between two distributions, 
our algorithm performs the statistical test based on MDL criterion. In the 
section 4.1 and 4.2, these procedures are explained. 

5. (a) I f  there is the s tate  ts' k adjoining the state tsk which is shown to be 
relevant such tha t  the statistical characteristic of Q values and actions 
assigned at  the adjoining s tate  are same, merge these two states into one 
state. 

(b) Otherwise, skip this step. 
6. Each leaf nodes tsk is represented by a combination of intervals each of which 

corresponds to the range of a measurement  provided by each sensor i. These 
intervals in tsk which is shown to be relevant are bisected. As a result, in 
terms of one ts~, 2 N leaf nodes are generated and correspond to tentative 
states. 

7. Supposing tha t  these tentative states are regarded as the states in Q-learning, 
our algorithm performs Q-learning again. 

8. Until our algorithm can ' t  find out the relevant leaf nodes, the procedures 
2 ~ 7 are repeated. Finally, a hierarchical segment tree is constructed to 
represent the partit ioning of the state space for achievement of a given task. 

After the learning, based on Q values stored at leaf nodes, the agent  takes actions 
for accomplishing the given task. 

4 The  Relevance  Test  Based on M D L  Criterion 

Here, we explain how to determine whether a state is relevant to the task or 
not. F ig .  2 shows the difference between the distributions of r or Q values 
regarding to the state tsk in case that  tsk is relevant or irrelevant. As shown 
in upper part  of this figure, when two peaks of the distributions of r or Q 
values ,which correspond to pair of r(ailtsk = on) and r(a~ltsk = off), or pa i r  
of  Q(a~lts~ = o~) a n d  Q(a~lts~ = o f f ) ) ,  can  be  clearly discriminated, it is 
supposed that  ts~ is relevant to the given task because the such state affects 
the value of state more heavily than the other s tates does, therefore, it affects 
how the robot should act at  next t ime step. On the contrary, in case tha t  two 
peaks are ambiguous as shown in bo t tom par t  of this figure, it is considered tha t  
tsk is irrelevant to the given task. Actually, we perform the statistical test with 
respect r and Q values based on MDL criterion [t4] in order to distinguish the 
distribution of such reinforcement values. 
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In case of n = 3 
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. . . . . .  . ~ t i  / " I ti I 
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t . . . . . . . . . . . . . . . . . . . .  t 
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~ ~  "Irrelevant" 

r orQ 

Fig.  1. Representation of state space 
by a hierarchical segment tree 

Fig.  2. Criterion for determining the 
relevance of the state 

4.1 T h e  s t a t i s t i c a l  t e s t  for r va lue  

Since the immediate reward r j  is given at each trial among one of C mutually 
exclusive rewards r j  j = 1, 2, .  • • C ,  the distribution of r j  in the state t sk  follows 
a multi-nominM distribution. Let n be the number of independent trims, k~ be 
the number of event E~ and Pi be the probability that  the event Ei occurs where 
~]i~1 P~ = 1. The probability that E1 occurs kl times, E2 occurs k2 times, ... Ee 
occurs kc times, can be represented by the multi-nominal distribution as follows: 

n! p)l ~ 
p ( k l , - ' - , k c ) p l , " ' , p c ) -  k l ! ' " k c !  . . . .  P c  

N E I = I  "r~. where,0 < k~ < n ( i  = 1 c), c = 

Supposing T a b l e  1 shows the distribution of immediate rewards in case that  
the state tsk is "on" or "off," our algorithm tries to find the difference between 
the distributions of rewards in two cases of tsk "on" and "off" based on this 
table. 
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Table  1. The distribution of rewards 
in tsk 

Rewards 
RI n(On, R1) 
R2 n(On, R2) 

: 

Re n( On, Re) 
~(o~) 

On Off 
n(Off, R]) 
n(Off, R2) 

n(Of f,.Rc) 
~(Off) 

n(i): the frequency of sample data in the 
state i ( i  = 1 , - . . , 8 )  

n(i, rj): the frequency of reward rj  
(j = 1 , . . . ,  C) given in the state i 

p(rjli): the probability that reward rj  is 
given in the state i 

e 

Z~(i,~) =~(i), ET_- ,p(~J l i )=  1, 
j=l 

(i = ~,... s). 

The probability P({n(i, rj)}l{p(rjli)} ) that  the distribution of the immedi- 
ate rewards are acquired as shown in Tab .  1 {n(i, rj)), (i = 1 . . . , S ,  j = 
1,---,  C), can be described as follows: 

P({n(i'rj)}l{P(rjti)}) = i=aH Hej=a n(i, rj)! j=lH P(rjli)"(i:~) ] 

The likelihood function L of this multi-nominal distribution can be written 
as follows: 

s e ~ 1]i,n(i)~ } 
S ~---'~-~-'--'Z. L({p(rl]i)}) = ~ ~ n(i , r i ) logp(r~]i)+K, whereK = log I, rIi=a r l j= in0 ,  rj)! 

i=1  ~ = ,  

When two multi-nominal distributions in case that  each tentative state tsk 
is "on" and "off" can be considered to be same, the probability p(rj[i) that  the 
immediate reward r j  is given in the state i can be modeled as follows: 

MI:  p(rAi)  = 0(r j )  i = 1 , . - - , S ,  j = 1 , - - - ,C .  

Furthermore, its likelihood function L1 can be written by 

) )] LI({O(rj)})= K + E n(i, vj) logO(rj . 
j----1 "= 

Therefore, the maximum likelihood ML1 can be written by 

MLa = L(O(rj)) = L ( ~=1 n(i, rj) 

where O(rj) is the maximum likelihood estimation of O(rj). Therefore, the de- 
scription length IMDL(M1) of the model M1 based on MDL principle is 

s 

IMOL(il) = - i L l  + ~ - ~  log E n ( i  ). 
i----1 
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On the contrary, when two multi-nominal distributions in case of "on" and 
"off" can be considered to be different, the probabili ty p(rjli ) can be modeled 
as follows: 

M2:p(T3ti ) = 0 ( r j [ i  ) i = l , - . . , S ,  j = : , . . . , C .  

Furthermore,  its likelihood function L2 can be written by 

S C 

= g +  (i,.Dlog 0(rj  li). 
i=1  j = l  

In the same way, the maximum likelihood ML2 can be writ ten by 

ML2 = L(O(rj))= L \ n(i) ]" 

Therefore, the description length IMDL(M2) of the model M2 based on MDL 
principle is 

S 
1) 

= -- log E n(i)- 
i----1 

Based on MDL criterion, we can suppose tha t  discovering the difference be- 
tween two distributions is equivalent to determining which model is appropr ia te  
for representing the distribution of data.  In this work, the difference between the 
distributions is found based on the following conditions: 

if IMDL(M1) > IMDL(M2) 
Two distributions are different. 
if lMDL(M2) k IMDL(M1) 
Two distributions are same. 

4.2 T h e  s t a t i s t i c a l  t e s t  for Q v a l u e  

In order to distinguish the distribution of sampled da ta  of Q values, we perform 
the statistical test based on MDL criterion. Let x '~ and ym be the sample da ta  
(xl ,  z 2 - - - ,  xn) and (yl, Y2"" ,  ym), respectively, a~ '~ and ym indicate a history of 
Q(ailtsk = on) and Q(a~ltsk = off) ,  respectively. We'd like to know whether 
these two sample data  x n and ym come from the two different distributions or the 
same distribution. Here, we assume the following two model for the distribution 
of sampled da ta  are M1 based on one normal distribution and M 2  based on two 
normal distributions. 

MI:  N ( # ,  a ' ) ,  M2: N ( ~ : ,  o"~), N(#2 ,  a '~) 

The  normal distribution with mean/~ and variance or is defined by 

1 { ( , . }  
:(.:.,.,>_ 0x. i; • 

If  both  x n and ym follow the model M1, the probabilistic density function of 
these sampled da ta  can be written by 

m 

i = l  
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The likelihood function LL1 of the model M1 can be writ ten by 

n m 

LL1 = E l o g  f (x i  : # , a 2 ) +  E l o g f ( y i :  #, ~r2). 
i = 1  i = 1  

Therefore, the max imum likelihood MLL1 can be derived as follows: 

n + m .  log 2~r& 2), MLL1 - ~ (1 + 

where &2 is the max imum likelihood estimated variance of cr 2 and can be esti- 
mated as follows: 

- -  x~ + y~ , ~ - - -  x~ - p ) 2  + Yi - P)~  
-- n + m i=1 i=1 i=1 n T m  

where/2 is the maximum likelihood estimated mean of #. Therefore, the descrip- 
tion length ZMDL(M1 ) of the model M1 based on M D L  principle is 

IMDL(M1) = - M L L 1  + log(n + m).  

On the contrary, if x n and ym follow the model M2, the probabilistic density 
function of these sampled data  can be written by 

t rn Oj  2 ) ,  

i = l  

The likelihood function LL~ of the model M2 can be writ ten by 

Od 2 LL2 = E log f (xi : #l ,  o"2) + E log f (yi : ,2,  ,. 
i = 1  i = 1  

Therefore, the max imum likelihood MLL2 can be derived as follows: 

^t2 M L L 2 -  n+-------~m(l+log2~ra ), 
2 

where dl 2 and d2 2 is the max imum likelihood estimated variance of a2 and a~, 
respectively. These statistics can be estimated as follows: 

- -  X i ,  f i 2  = - -  Yi, 
i = l  m i = 1  

~,2 _ xi - g l )  ~ + yi - g2) 2 , 
7~ -t- m i = 1  

where fil and fi2 is the maximum likelihood est imated mean of #1 and #2, 
respectively. Therefore, the description length lMDL(M2) of the model M2 based 
on M D L  principle is 

3 t o g ( n  + m ) .  IMDL (M2) = - M L L 2  + 
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We can recognize the difference between the distributions based on the fol- 
lowing condition: 

if IMDL(M1) > 1MDL(M2) 
X and y arise from the different normal distributions 
if lMDL(M2) k 1MDL(M1) 
x and y arise from the same normal distribution 

5 Experimental Results 

T show tha t  our algorithm has a generalization capability, we apply it to acquire 
two different behaviors: one is a shooting behavior and the other is a defending 
behavior for soccer robots. 

5.1 S i m u l a t i o n  

Possible Actions 

~ Shooter l 
Fig.  3. Simulation environment 

F ig .  4. Input  vector as sensor 
information 

We consider an environment shown in Fig .  3 where the task for a mobile 
robot is to shoot a ball into a goM or to defend a shot ball. The environment 
consists of a ball and a goal, and the mobile robot has a single CCD camera. 
The robot does not know the location and the size of the goal, the size and the 
weight of the ball, any camera parameters  such as focal length and tilt angle, or 
kinematics /dynamics  of itself. 

We performed the computer  simulation with the following specifications. The 
field is 1.52m x 2.74m. The goal posts are located at the center of the left and 
right line of the rectangle (see Fig .  3) and its height and width are 0.20m and 
0.5m, respectively. The robot is 0.10m wide and 0.20m long and kicks a ball 
of diameter  0.05m. The maximum translation velocity is 5cm/s.  The camera is 
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horizontally mounted on the robot (no tilt) and is in off-centered position. I ts  
visual angle is 36 degrees. The velocities of the ball before and after being kicked 
by the robot is calculated by assuming tha t  the mass of the ball is negligible 
compared to tha t  of the robot. The speed of the ball is temporal ly decreased by 
a factor 0.8 in order to reflect the so-called "viscous friction." The values of these 
parameters  are determined so tha t  they can roughly simulate the real world. 

The robot is driven by two independent motors and steered by front and 
rear wheels which is driven by one motor.  Since we can send the motor  control 
commands  such as "move forward or backward in the given direction," all to- 
gether, we have 10 actions in the action primitive set A as shown in Fig .  3. The 
robot continues to take one action primitive at  a t ime until the current s tate 
changes. This sequence of the action primitives is called an action. Actually, a 
stop motion does not causes any changes in the environment,  we do not take 
into account this action primitive. 

In computer  simulation, we take into account the delay due to sensory in- 
formation processing. The contents of the image processing are color filtering (a 
ball and a goal are painted in red and blue, respectively), localizing and count- 
ing red and blue pixels, and vector calculation. We are using a general graphic 
workstation for image processing in the real robot experiments. Since it is not 
specialized on an image processing, it takes about  66 ms to perform these pro- 
cesses. As a result, in the simulation, the robot is assumed to take an action 
primitive every 66ms. 

The size of the image taken by the camera is 256 x 240 pixels. An input 
vector x to our algorithm consists of: 

- -  Xl: the horizontal position of the ball in the image, tha t  ranges from 0 to 
256 pixels, 

- x2: the horizontal position of the goal in the image ranging from 0 to 256, 
- x3: the area of the goal region in the image, that  ranges from 0 to 256x240 

pixels 2 . 

After the range of these values is normalized in such a way that  the range may 
become the semi open interval [0, 1), they are used as inputs of our method. 

A discounting factor 7 is used to control to what degree rewards in the distant 
future affect the total  value of a policy. In our case, we set the value a slightly 
less than 1 (7 = 0.9). In this work, we set the learning rate  a = 0.25. In case tha t  
the shooting behavior tried to be acquired by our method,  as a reward value, I is 
given when the robot succeeded in shooting a ball into a goal, 0.3 is given when 
the robot just  kicked a ball, -0.01 is given when the robot went out of field, 0 is 
given otherwise. In the same way, in case tha t  the defending behavior tried to be 
acquired by our method,  as a reward value, -0.7 is given when the robot failed 
in preventing a ball from entering a goal, 1.0 is given when the robot just  kicked 
a ball, -0.01 is given when the robot went out of field, 0 is given otherwise. 

In the learning process, Q-learning continues until the sum of estimated Q 
values seems to be almost convergent. When our algorithm tried to acquire 
the shooting behavior, our algorithms ended after it i terated the process (Q- 
learning + statistical test) 8 times. In this case, about  160K trials were required 
to converge our algorithm and the total  number  of the states is 246. In case tha t  
our algorithm tried to acquire the defending behavior, our algorithms ended after 
it i terated the process (Q-learning + statistical test) 5 times. In this case, about 
100K trials were required to converge our algorithm and the total  number of the 
states is 141. 

F ig .  5 shows the success ratio versus the step of trials in the two learning 
processes tha t  one is for acquiring a shooting behavior the other is for a defending 
behavior. We define the success rate as ( #  of  successes) / (#  of trials) × 100(%). 



269 

As you can see, the bigger the number of iteration is, the higher the success 
ratio at the final step in each iteration. This means that our algorithm gradually 
made better segmentation of state space for accomplishing the given task. 

! 
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(a) In case of shooting behavior (b) In case of defending behavior 

Fig. 5. The success ratio versus the step of trim 
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(a) The state space for shooting be- 
havior 

(b) The state space for defending be- 
havior 

Fig. 6. The partitioned state space 

Fig .  6 shows the partitioned state spaces obtained by our method.  The upper 
part of  this figure shows the state space for the shooting behavior, the bot tom 
part shows one for defending behavior. In each figure, Dim.l ,  Dim.2 and Dim.3 
shows the position of ball, the position of goal and the area of goal region, 
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respectively. Furthermore,  in each figure, Action2 and Action7 corresponds to 
"moving forward" and "moving backward," respectively. 

For the sake of readers understanding, one cube in the part i t ioned state space 
corresponds to one state. For example, the top left shows a group of the cube 
where the action 2 is assigned as an optimal action. As shown in this figure, 
many cubes where forward actions are assigned concentrate around the center of 
the entire state space. This means that  the robot will take an forward action if 
the ball and goal are observed around the center of field of its view. This shows 
very natural  behavior for shooting a ball into a goal. 

In the bo t tom right figure, there is one large cube. This means that  the the 
robot will take an backward action if large goal are observed around the center 
of field of its view. This s trategy is plausible behavior for preventing a ball from 
entering a goal because the robot will have to go back in front of own goal after 
it moved out there in order to kick a ball. 

F ig .7  shows a typical sequence of the shooting behavior in the simulation 
acquired by our method. The bo t tom par t  of each figure in the Fig .  7 shows 
the processed image where the white rectangle and dark gray circle indicates the 
goal and ball region, respectively. Once the robot found the ball, the robot ran 
to the ball quickly. After that ,  the robot kicked the ball into the goal. 

F ig .8  shows the defending behavior in the simulation acquired by our method. 
The robot initially looked around because the ball was not observed from its ini- 
tial position. Then, once the robot found the ball, the robot ran to the ball 
quickly. After that ,  the robot kicked the ball to prevent a ball from approaching 
the goal. The robot followed the ball until the area of opponent 's  goal grows to a 
certain extent. Then in order to go back to the front of own goal, the robot took 
a backward action. I t  seems that  the robot utilizes the area of the opponent 's  
goal to localize its own position in the field. Note tha t  this behavior is just  the 
result of learning and not hand-coded. 

5.2 Real Robot Experiments 

Fig. 9 shows our real robot system which we have developed to take part in 
RoboCup-97 competition where several robotic teams are competing on a field. 
So, the system includes two robots which have the same structure: one for a 
shooter, the other for a defender. Off-board computer SGI ONYX (R4400/250MHz) 
perceives the environment through on-board cameras, performs the decision 
making based on the learned policy and sends motor commands to each robot. A 
CCD camera is set at bottom of each robot in off-centered position. Each robot 
is controlled by SGI ONYX through radio RS232C. The maximum vehicle speed 
is about 5cm/s. The images taken by the CCD camera on each robot are trans- 
mitted to a video signal receiver. In order to process two images (one is sent from 
the shooter robot, the other from the defender robot) simultaneously, two video 
signals are combined into one video signal by a video combiner on PC. Then, the 
video signal is sent to SGI ONYX for image processing. The color-based visual 
tracking routine is implemented for tracking and finding a ball and a goal in the 
image. In our current system, it takes 66 ms to do this image processing for one 
frame. 

Simple Color-Based Tracking 

Our simple tracking method is based on tracking regions with similar color in- 
formation from frame to frame. We assume the existence of the color mod- 
els (CM~au, CMgoal) for tracking targets,  which are est imated at initialization. 
Actually, we use only hue values (ttbaU and Hao,a) of targets as (CMbau and 
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Fig. 7. Shooting behavior in simulation 

Fig. 8. Defending behavior in simulation 
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Fig. 9. Our robots and system 

CMgo~Z) to reduce its sensitivity due to changes in illumination. We define a fit- 
ness function 4~ta~aet(x,y) at a pixel (x,y) as a criterion for extracting a target 
region in the image, 

1 
• ~a~g~(z ,y)  = 0 

Htarget - atavget <-- H(x,  y) <_ Htavget Jr" O'target, 
Otherwise 

,where H(x, y) and at~g~t show hue value at (x, y) and a threshold for extraction, 
respectively. In our current implementation, we set O'ball . ~ -  l0 and ~rgoat = 20. 
These values can be calculated based on the standard deviation of Hbazz and 
Hgo~l which were estimated at initial estimation process. Based on ~ta.g~t(x, Y), 
the best estimate (~Ctarget, ~ltarget) for the target 's location is calculated as follows: 

where R shows the search area. Initially, R implies an entire image plane. After 
initial estimation for the location of the target, we can know the standard devi- 
ations ~r(kta~g~t ) and a(~ta,g~t) regarding (~ta,g¢t,~,a,g~t). Therefore, based on 
the deviations, R is restricted to a local region during the tracking process as 
follows: 
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R :  { ( x , y ) l  - < x < e,o g , + 

- _< y < + 

~-~X~.,y,)CR ~target(xl,Yl) shows the area of the target  in the image. Based on 
this value, we judge the appearance of the target.  I f  this value is lower than  the 
pre-defined threshold, the target  is considered to be lost, then R is set to be the 
entire image plane for estimation at next t ime step. We set this threshold for 
the target  area = 0.05 • S, where S shows the area of the entire image. F ig .  10 
shows examples of processed images during the task execution. In these figures, 
a light gray and a dark gray "X" show the estimated location of the ball and the 
goal, respectively. In the same way~ the white rectangles surrounded with dotted 
line in each image show the est imated area of the ball and the goal. 

Fig. 10. A example of processed images taken by the robots 

Experimental Results 

Fig.  11 shows how a real robot shoots a ball into a goal based on the state space 
obtained by our method.  6 images are shown in raster order from the top left to 
the bo t tom right in every 2.0 seconds, in which the robot tried to shoot a ball, 
but failed, then moved backward so as to find a position to shoot a ball, finally 
succeeded in shooting. Note that  the backward motion for retry is just the result 
of learning and not hand-coded. 

Fig .  12 shows how a real robot prevents a ball shot by the opponent 's  robot 
from entering a goal based on the state space obtained by our method. 6 images 
are shown in raster order from the top left to the bo t tom right in every 2.0 
seconds. This sequence was recorded at the RoboCup-97 competition. In the top 
left image, the white circle shows the position of the defender robot and the 
white arrow shows the position of the ball. In the t ime step 1 and 2, first, the 
opponent ' s  robot tried to shoot a ball, then the defender robot prevent a ball 
from entering a goal. In the t ime step 3 ~ 6, another  opponent ' s  robot got a ball 
cleared by the defender robot and tried to  shoot a ball again, then the defender 
robot defend a goal again. As shown in these figures, the defender robot always 
moves in front of own goal to find out a shot ball as soon as possible. Note tha t  
this behavior is just the result of our learning algorithm and not hand-coded. 
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6 Concluding Remarks and Discussion 

We have proposed a method for self-partitioning the state space which recursively 
splits continuous s tate  space into some coarse regions based on the relevance test  
in terms of reward values. Our method utilized a hierarchical segment tree in 
order to represent the non-uniform parti t ioning of the state space. This repre- 
sentation has an advantage for approximating the non-uniform distribution of 
sample da ta  which frequently occurs in real world. We also have shown the valid- 
ity of the method with computer  simulations and real robot experiments at our 
lab. and the RoboCup-97 competition. We think tha t  segmentation of sensory 
da ta  from the environment should depend on the purpose (task), capabilities 
(sensing, acting, and processing) of the robot,  and its environment.  The  s tate  
spaces obtained by our method (Fig.{} indicates such segmentations) correspond 
to the internal representations of the robot for accomplishing given tasks. Fur- 
thermore, we think that  the resolution of state spaces indicates the importance 
tha t  how much at tention the robot have to pay to a part  of the state space. In 
these sense, by our method,  our robot acquired the the subjective representation 
for its environment and the given task. 

Current version of our algorithm has two kinds of problem: 

- If  the dimension of the sensor space is higher, the computat ional  t ime and 
amount  are enormous, and as a result the learning might not converge cor- 
rectly. The dimension of the sensor space is associated with the number  of 
features which are used to describe all situations in the environment.  In our 
current implementat ion,  we used input vector consisting of three parameters  
which were enough to acquire the shooting and defending behaviors. How- 
ever, there is no guarantee tha t  these parameters  are enough in case that  our 
method tries to acquire the higher-level behaviors such as strategic coordi- 
nation between two robots. Generally, selection of features from raw images 
is really a difficult problem. The selection of feature which is necessary to 
accomplish a give task might be much harder when such a feature changes 
depending on situations. Since use of all possible sensory information seems 
impossible, a learning mechanism for selecting features from the sensory da ta  
should be developed. As a result, an effective method for coping with higher 
dimension space might be developed. 

- We currently define the quantization of the action space in advance. Since our 
robot has only two degrees of freedom (DOFs),  abstraction of action space is 
not very important .  However, it is generally important  to quantize the action 
space in case tha t  the dimension of the action space is higher and/or  we want 
to use real-valued motor  signals to control the robot precisely. For example, 
if the robot has an active vision system with pan and tilt mechanism in 
addition to the two DOFs for driving system, the action space should be 
abstracted depending on situation in order to coordinate between sensing 
and driving actions. The abstraction of action space is as necessary as the 
abstraction of sensor space. 
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