
A u t o n o m o u s Soccer R o b o t s

Wei-Min Shen, Jafar Adibi, Rogelio Adobbati, Bonghan Cho,
All Erdem, Hadi Moradi, Behnam Salemi, Sheila Tejada

Computer Science Department / Information Sciences Institute
University of Southern California

4676 Admiralty Way, Marina del Rey, CA 90292-6695
email: {shen,dreamteam} @isi.edu

URL: http://www.isi.edu/isd/dreamteam

Abstract. The Robocup 97 competition provides an excellent opportunity to demonstrate
the techniques and methods of artificial intelligence, autonomous agents and computer
vision. On a soccer field the core capabilities a player must have are to navigate the field,
track the ball and other agents, recognize the difference between agents, collaborate with
other agents, and hit the ball in the correct direction. USC's Dreamteam of robots can be
described as a group of mobile autonomous agents collaborating in a rapidly changing
environment. The key characteristic of this team is that each soccer robot is an
autonomous agent, self-contained with all of its essential capabilities on-board. Our
robots share the same general architecture and basic hardware, but they have integrated
abilities to play different roles (goalkeeper, defender or forward) and utilize different
strategies in their behavior. Our philosophy in building these robots is to use the least
possible sophistication to make them as robust as possible. In the 1997 RoboCup
competition, the Dreamteam played well and won the world championship in the middle-
sized robot league.

1. Introduction

The Robocup task is for a team of multiple fast-moving robots to cooperatively play soccer in
a dynamic environment [6]. Since teamwork and individual skills are fundamental factors in
the performance of a soccer team, Robocup is an excellent test-bed for autonomous agents. For
this competition each of the soccer robots (or agents) must have the basic soccer skills --
dribbling, shooting, passing, and recovering the ball from an opponent. Each agent then must
use these skills in making complex plays according to the team strategy and the current
situation on the field.

An agent must be able to evaluate its position with respect to its teammates and
opponents, and then decide whether to wait for a pass, run for the ball, cover an opponent's
attack, or go to help a teammate; while at the same time following the rules of the game. In the
following sections of this paper we will describe the general architecture for an autonomous
robot agent and the team strategy, as well as discuss some of the key issues and challenges in
the creation of a team of autonomous soccer agents.

2. General Architecture

For this project we define an autonomous agent as an active physical entity intelligently
maneuvering and performing in realistic and challenging surroundings [4]. The critical design
feature of our autonomous soccer agents is that each agent has all of the its essential
capabilities on-board, so that every robot is self-contained. Autonomous systems, such as
these, need to be physically strong, computationally fast, and behaviorally accurate to survive
the rapidly changing environment of a soccer field, tn our general architecture, great

296

Figure 1. An Autonomous Soccer Robot

importance is given to an individual robot's ability to perform on its own, without outside
guidance or help of any kind. Each robot agent bases its behavior on its own sensor data,
decision-making software, and eventually communication from other teammates. There are
many techniques in robot agent modeling and design [1,2,3,7]; however, much of the work in
this area has focused on single agent performing and sometimes under external supervision.
We believe that the further of robot agents lies in total autonomous, with the capability of
learning and adaptation to the environment [4,5]. Moreover, agents have to be intelligent
enough to cooperate among themselves.

Each robot consists of a single 586 based computer on a 30cm x 50cm, 4-wheel drive,
DC model car (Figure 1). The computer can run a program from its floppy drive or hard drive.
However, due to the robot's very harsh working environment, we decided to store our program
in a Solid State Disk (SSD) to avoid any mass-storage malfunction during competition. The
robots can be trained and the programs can be upgraded by attaching a floppy drive, a hard
drive or by using the on-board networking facility.

" ~ ~ ' ~ j ' ¢ ~ N , ~ ~ * ' ~ ' ~ . ~ . : . . ' ~ , ~ . ~ : ~ ' ".:i::;":'~:~>. '*~" ~"~:g'.J-~#:'~ ~ ' ~ . - ' . : ~ " ~ : '

l iil i iii!iiiiiiiiiiiiiiiiiiii iiii iiiiiiiiiiiiiiiiiiiiii iiiii iiiiiiiiiiiiiiiliiii:i] iiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Figure 2. Diagram of the general architecture

297

The inputs from the on-board camera are collected through a parallel port. Every agent
uses the input from the sensors as well as an internal model of the environment and itself to
decide its next action. After determining the proper action the robot is steered by commands
sent through the I/O ports to the motor controller. Two DC motors, one on each side, provide
full motion by quickly turning left or right, and by moving forward or in reverse. Each robot is
designed in a modular way, so that we can easily add new software or hardware to extend its
working capabilities.

The three main software components of a robot agent are the vision module, decision
engine, and drive controller. A diagram showing the interactions between these different
modules are shown in Figure 2. The vision module outputs a vector for every frame taken by
the agent's on-board camera. Each vector contains the positions of the objects in the frame,
such as the ball, players and the goal. This information is then processed by the decision
engine. The decision engine is composed of two processing units - the internal model manager
and the strategy planner. The model manager takes the vision module's output vectors and
maintains an internal representation of the key objects in the soccer field. The strategy planner
combines the information that is contained in the internal model with its own strategy
knowledge, in order to decide the robot's next action. Once the action has been decided, the
command is sent to the drive controller that is in charge of properly executing the command.
In the following sections we explain each component in further detail.

:

:

:

:

===

======================================= .

- x x : : : : : : : : : : : : x x x # # # # # # # # # # # # # # # # # .

- x x ~ o (x x x x x x x x x # # # # # # # # # # # # # # .

- x x x x x x x # # # # # # # # # # # # # # # .

. - # # # # # # # # # # # # # # # # # ,

. ### - -####### * , , , . __

. # # # # . * * , , , , , , .

Figure 3. Internal representation of the visual input from Figure 1
(Numeric color values are represented here as ASCII charactel:~'for a

better understanding of the picture.)

3. Vision Module

Just as eyesight is essential to a human player, the visual input to a robot is critical for decision
making in a soccer game. A robot relies on its visual input to determine its current position on
the field, the positions of other players, the ball, the goals, and the field lines (sidelines, end of
field, and penalty area). Each soccer agent receives visual input from an on-board camera.
Due to its simplicity, robustness, and software availability, we have chosen Connectix Color
PC QuickCam [8] as the on-board visual input hardware. This is a CCD-based camera that
outputs 658x496 RGB pixels through the parallel port of the agent's computer. The camera
also contains a micro-controller and other electronics to control operation of the camera and
pixel data transmission.

298

To be able to navigate and perform a game plan, our agents depend on visual cues like
relative position of the goals, the ball, and other agents. Thus, the agents need to recognize
these objects through their visual systems. The output from the QuickCam consists of a series
of 3-byte RGB pixels, with each byte representing the intensity of each corresponding color (0
= color absent, 255 = maximum color intensity). The vision software checks each pixel color
to see if it may belong to one of the key objects on the field. The pixels are then organized as
color clusters to be mapped to identifiable objects. The size and position of each color cluster
are used to calculate direction and distance from the actual object on the field. Direction is
calculated as an offset of the perceived object with respect to the center of the screen, and
distance results from comparing the perceived object size and position within the frame with
the known real object size. An example of such an internal representation of objects is shown
in Figure 3.

The limitations of the on-board computing power, and the need for a fast, real-time
reactive behavior, cooperate to constrain the level of feasible complexity in the algorithms to
be run by the agents. Based on the current hardware configuration, visual frames are acquired
at a minimum rate of 10 per second. If the processing of a given frame takes more than 0.1
second, the latest frame is processed next, and any intermediate buffered frames are discarded.
In this way agents overcome possible lack of synchronization due to variable time needed to
process a given frame. It is important to point out that before the agents can correctly
recognize objects on the field, diverse lighting conditions and opponent colors mandate an
adjustment of the comparison intensity values for each colored object.

2.1. A Vision Calibrat ion Tool

We have developed a calibration tool that can automatically adjust the parameters of the vision
system to account for the changes in the robot's surroundings. This vision tool gives the robot
the capability to adapt to the new environment. Our adaptive color tracking system uses a
supervised learning system based on the inductive learning.

In the first step we take several pictures of the differeni objecls to be recognized in the
new environment. The system is attempting to learn the correspondence between the colors
and the objects. We repeat the procedure for a given object with a different angle and shadow.
In the second step the adaptive color tracking system finds a set of rules to recognize each
object, distinguishing which set or class of RGB pixels are associated with a specific object.
As the number of colors increase by entering different objects on a game field, the learned
rules become more complicated.

RED GREEN BLUE CLASS
240 115 78 Ball
195 95 62 Ball
63 185 90 Field
58 193 115 Field
128 104 213 Goal

Figure 4. Obiect classificat!on based on RGB

The input for each rule is a combination of Red, Green and Blue intensity for a given
pixei in a frame. The output of a rule (the right hand side) would be a class which could be
Ball, Wall, Opponent-player, Team-mate, Own-goal and Opponent-goal. As each o f these
items has a different color in the field. Figure 4 shows an example of input data and a simple
rule to differentiate between Red (Ball), Green (Field) and Blue (Goal).

299

One of the common methods in knowledge discovery and intelligent data analysis is
induction. Tree induction methods produce decision trees, concerning the data set as a result of
their classification process. To find a valid interpretation in our large frame database we can
employed any decision tree algorithm to find the needed association rules between the frame
color patterns and the class of objects. In this approach we applied C4.5 [9] as the main
induction method. C4.5 package generates decision trees, which provides a classification for
every object within the database. The package allows the decision tree to be simplified, using a
pruning technique which reduces the size of the tree according to a user-defined confidence
level.

Once the vision system has been calibrated to the new environment, it can then process
the necessary information about the objects that are perceived in the camera frames. This
information (the size and position of the object in the frame) is then sent in the form of object
or frame vectors to the decision engine, where it is used to decided the actions of the robot.

3. Decision Engine

This component makes decisions about the actions of an agent. It receives input from the
sensor modules and sends move commands to the drive controller. The decision engine bases
its decisions on a combination of the received sensor input, the agent's internal model of its
environment, and knowledge about the agent's strategies and goals. The agent's internal model
and strategies are influenced by the role the agent plays on the soccer field. There are three
types of agent roles or playing positions: goalkeeper, defender, and forward. The team strategy
is broken down into pieces and instilled in the role strategies of each of the agents. Depending
on the role type, an agent can be more concerned about a particular area or object on the soccer
field, e.g. a goalkeeper is more concerned about its own goal, while the forward is interested in
the opponent's goal. These differences are encoded into the two modules that deal with the
internal model and the agent's strategies,

Together, the internal model manager and the strategy planner, form the decision engine.
These sub components of the decision engine communicate with each other to formulate the
best decision for the agent's next action. The model manager converts the vision module's
frame vectors into a map of the agent's current environment, as well as generating a set of
object movement predictions. It calculates the salient features and then communicates them to
the strategy planner. To calculate the best action, the strategy planner uses both the
information from the model manager and the strategy knowledge that it has about the agent's
role on the field. It then sends this information to the drive controller and back to the model
manager, so that the internal model can be properly updated.

3.1. Model Manager

Because the soccer agents need to know about their environment and themselves before taking
an appropriate action, an internal model is used to address this problem. The model manager
is responsible for building and maintaining the internal model that provides this information.
The internal model contains a map of the soccer field and location vectors for nearby objects.
The object vectors from the vision module are used to create the location vectors for the
internal model.

A location vector consists of four calculations or elements; distance and direction to the
object and the change in distance and direction for the object. The change in distance and
direction is used for predicting the object's new location. The model manager continuously
receives frame vectors from the vision module and updates the location vectors accordingly.

300

The model manager keeps track of information based on the role of the robot on the soccer
field. For a goalkeeper the information will include the location vectors for the goal, ball and
opponent's forwards. This is necessary for not overloading the strategy planner with extra
information.

An internal model is necessary for several reasons. Since the visual information provided
by the vision module is incomplete, the robot can see only the objects that are within its
current visual frame. More information about the environment can be deduced by using a map
of the soccer field and the historical data. For example, if the robot can see and calculate the
distance to the left wall of the field, it can find out the distance to the right wall even when the
right wall is not visible. Similarly, the approximate location of an opponent that was
previously visible, but currently not in view can be calculated using the historical data from

F igu re 5. Playing positions of agents on the Soccer field

the previous frames. This also provides greater robustness for the robot. If the camera fails for
a few cycles (e.g. due to a hit or being blocked etc.), the robot can still operate using its
internal model of the environment.

An internal model is also necessary for predicting the environment. This is important for
the strategy planner. For example, to intercept the ball the robot needs the current location of
the ball and also a prediction of the current beading of the ball, so that it can calculate an
intercept course to the ball. The internal model is also used for providing feedback to the
strategy planner to enhance and correct its actions. The strategy planner tells the model
manager what actions will be taken and the model manager updates the internal model using
this information. It then receives information from the vision module and compares it with the
expectations contained in the model. Any discrepancies are reported to the strategy planner,
so that it can then use this information to fine tune its operations.

3.2. Strategy Planner

In order to play a successfully soccer game, each robot must react appropriately to different
situations in the field. This is accomplished by the strategy planner that resides in the decision
engine on each robot. Since a strategy (or a policy) is a mapping from situations to actions, let
us first define situations and actions for our robots. As we mentioned in the description of
model manager, objects in the soccer field are represented by their relative positions to the
observer. Internally, an object is represented by a location vector of four elements: the distance
between the object and the observer, the direction of the object, and change in distance and

301

direction, The values of the first two elements are qualitative: the distance can have values
near, medium, far, and ? (unknown). The direction can have values left, center, right, and ?
(unknown), To increase the response time of our decision process, not all objects in the field
are constantly tracked, instead only those that are currently in the visual field of the observer.
(Those objects that are currently not in view have ? as their values in the location vector.)

Based on this terminology, we define a situation as a set of observed location vectors in
the fiekl. For example, if a forward player is facing the opponent's goal and between the goal
and the ball (see Figure 5), it is represented as the following vector:

{ Bail: <?, ?, ?, 2>,
Goal0: <5, 11, ?, ?>,

• * o }

The basic actions of robots are the five commands to the motors; they are move-forward,
move-backward, stop, turn-left and turn-right. Based on these basic actions, a set of compound
actions or behaviors is then defined. The set of compound actions includes kick, line-up,
intercept, homing, ,and detour. Some brief descriptions of these actions are shown in Figure 6.

KICK: kick the ball
LINE-UP: move to line up the ball and the goal.
INTERCEPT: calculate intercept path to the ball
HOMING: go back to its "home" position
DETOUR: go around the ball

Figure 6. Examples of compound action

Each action has a termination condition and a time threshold. For example, the termination
condition of line-up is when the robot is behind the ball and the goal, the ball, and itself are on
the same line. In case actions are not successfully terminated, they will time-out as soon as the
duration of the action passes the time threshold.

Based on the defined situations and actions, the task of strategy planner is to select the
right action for a given situation. This decision process is captured by a Policy Table shown in
Figure 7. As we can see from this table, each line is a rule that maps a situation to an action.
For example, if the position of ball is unknown in the current situation, the action is to turn left
for 30 degree in search of the ball.

Situation Action
Ball Goal0 Goal l Wall Player X

<?,?> <.,.> <.,.> <.,.> <.,.> Turn Left(30)
<x,y> <.,.> <.,.> <.,.> <.,.> LINE-UP
. o

Figure 7. A Policy Table

302

There five positions a robot can play on our soccer team: left-forward, right-forward, left-
defender, right-defender, and goalkeeper. Shown in Figure 5, each player has its own
territory and home position. For example, the left-forward has the territory of the left-forward
quarter of the field, and its home position is near the center line and roughly !.5 meter from
the left board line. (The territory of the home position for the right-forward is symmetric to
that of the left-forward). Similarly, the left-defender is in charge of the left-back quarter of the
field and its home position is at the left front of the base goal. Given this configuration, we
now describe the policy tables for each of the three types of robots: goalkeeper, forward and
defender.

Goalkeeper

For the goalkeeper, the two most important objects in the field are the ball and its own goal. Its
home position is in front of the goal, and its policy is to keep itself in the line of the ball and
the goal. Since most of its actions are parallel to the base line, the goalkeeper's camera is
mounted on the side (for all other robots, the camera is mounted in the front), so that it can
move sideways while keeping an eye on the bali. Its policy table is as follows:

Situation --) Action

Bail =<near, left>, Goal0=<near,center>
Ball =<near, right>, Goal0=<near,center>
Bail =<far, _>
Ball =<?,_>, Goai0=<near, left>
Bail =<?,_>, Goai0=<near,right>

Move-left
Move-right
Homing
Turn-right
Turn-left

Figure 8. The goalkeeper policy table

As we can see, the first two actions are to prevent the ball from entering the goal, the third
action is to position itself, and the last two actions are to look for the ball. Note that although
policy tables are easy to describe conceptually, their implementation in the real system require
much engineering to make them correct and robust.

Forward

The talks of forward is to put the ball into opponent's goal whenever possible. Like the
goalkeeper, it must look for the ball when it is not in sight, and head back to its home posidon
when the ball is out of its territory. The main difference is that the forward's main interest is
to kick the bail towards the opponent's goal (Goal I in our current example) whenever it can.
So its policy table, shown in Figure 9, must reflect that.

Note that as long as the ball and Goail are both in sight, the forward will kick the bail. The
policy also tells the robot to search for the ball whenever it is not in sight (e.g., seeing only the
wall). It returns to its home position if it sees the opponent goal but not the ball. Whenever it
sees the ball and its own goal (Goal0), it must make a detour, so that it can kick the ball in the
correct direction.

303

Situation --) Action
.

Ball =<near, center>, Goal l=<.,~?>
Ball =<?, _>,Goal 1 =<.,~?>
Ball =<?, _>,Goal 1 =<_,left>
Ball =<?, _>,Goal I =<_,right>
Ball =<?, _>,Wall =<near,?>
Ball =<near, _>,Goal0=<far,?>

Kick
Homing
Turn-right
Turn-left
Turn-left
Detour

Figure 9. The forward policy table

Defender

The defender's policy is very similar to that of the forward, except that the distance to Goall is
further away compared to the position of the forward. Similar to the goalkeeper, it also tries to
position itself between the ball and its own goal (Goal0).

4. Drive Controller

As mentioned before, each robot consists of a single 586 based computer on a 30cm x 50cm,
4-wheel drive, DC model car (Figure 1). The inputs from the on-board camera are collected
through parallel and serial ports. The drive controller takes commands from the decision
engine, and steers the robots through its ItO ports. Four I/O ports are connected to the DC
motor drivers and steer the robot by quickly turning left or right, and by moving forward or in
reverse. The drive controller stops the motion by disconnecting the move order. The car also
has the capability to spin in place by turning the two sides of wheel into opposite direction. In
order to make movements that are as precise as possible, the effects of actions are controlled
by the amount of time of a command. To deal with much of the uncertainty associated with the
system, closed-loop control in software is used whenever possible.

5. R e l a t e d W o r k

The current research follows the original work from a prediction-based architecture called
LIVE [5] for integrating learning, planning and action in autonomous systems [4], and a
behavior-based robot control system [1,2]. Compared to similar architectures in recent agent
literature (for example [7]), our approach uses the closed loop control theory in many aspects
of robot building, and uses the internal model to help detect and recover from errors.
Moreover, our robot agent can also be configured quickly into different soccer playing roles
and that has greatly increased the flexibility of the entire robot team.
Our philosophy on multi-agent collaboration [6] is that if each agent has a sufficient
understanding of other agents' action, then collaboration can be accomplished without any
explicit communication. In our team, there is an implicit form of collaboration in that each
agent has a particular role in which it knows its function and behaviors, as well as those of its
teammates. Indeed, some limited collaboration behavior has been observed during the
competition, and additional evidence of this hypothesis can also be found in the description of
the champion team in the simulated league in this volume.

304

6. Conclusion and Future Work

Conventionally, agents in the real world are controlled and guided by an external supervisor
when performing complex tasks. In this study, we propose an autonomous system model for
soccer robots that do not use any external computation resources, information, or guidance.
Our soccer agents are designed with simple structures, but demonstrate that with an acceptable
strategy and system modularity they can achieve the goal of autonomous behavior in a context
of teamwork. These autonomous soccer robots use on-board cameras as their own sensors, and
decide appropriate actions based on-board computers. Three main features seem to contribute
the most to this success. First, the model manager is responsible for translating and
interpreting the vision information in order to obtain the knowledge necessary for the strategy
planner. Second, the closed-looped control mechanism deals with many intrinsic uncertainties
in the soccer domain. Third, the modularity of hardware and software design of the system has
made it possible for a single architecture to play multiple roles.

In our future work, we would to improve the quality of autonomous sensing and acting,
as well as extend the collaborations between robots. In particular, we would like to add more
and heterogeneous sensors, such as sonar and others to speed up an agent's decision making
and increase their efficiency and accuracy. We would also like to extend our system to use
explicit communication for agent collaboration.

7. Acknowledgements

We would like to thank USC/ISI, especially people in the Division of Intelligent System, for
their generous moral and financial support for the Dreamteam. We are also grateful for the
international travel support provided by Japan Airline, and an Omnibook 600 laptop computer
provided by Hewlett Packard for earlier experiments on the vision and control systems.
Finally, thanks to Patrick Reynolds from the University of Virginia for the free software
package cqcam for using QuickCam.

References

1. Arbib, M. Perceptual Structures and Distributed Motor Control. In Handbook of
Physiology -- The Nervous System, 1I, ed. V. B. Brooks. American Physiological Society,
1981.

2. Arkin, R.C. Motor Schema-Based Mobile Robot Navigation. International Journal of
Robotics Research (1987) 92-112.

3. Brooks, R. A. A Robust Layered Control System for a Mobile Robot. IEEE Journal of
Robotics and Automation 2(1), 1986.

4. Shen, W.M. Autonomous Learning From Environment. Computer Science Press, W.H.
Freeman, New York. 1994.

5. Shen, W. M. LIVE: An Architecture for Autonomous Learning from the Environment
A CM SIGART Bulletin (Special Issue on Integrated Cognitive Architectures) 2(4), 151-
155. 1991.

6. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.. Robocup: The Robot World
Cup Initiative. In Proceeding of the first International Conference on Autonomous Agents.
Marina del Rey, CA, 1997.

7. Garcia-Alegre, M.C., Recio, F.. Basic Agents for Visual/Motor Coordination of a Mobile
Robot. In Proceeding of the first International Conference on Autonomous Agents. Marina
del Rey, CA, 1997.

8. Connectix Corporation, Connectix Color QuickCam, May 1996.
9. Quinlan; J. R.. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo,

CA, 1993.

