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Abstract. The Robocup 97 competition provides an excellent opportunity to demonstrate 
the techniques and methods of artificial intelligence, autonomous agents and computer 
vision. On a soccer field the core capabilities a player must have are to navigate the field, 
track the ball and other agents, recognize the difference between agents, collaborate with 
other agents, and hit the ball in the correct direction. USC's Dreamteam of robots can be 
described as a group of mobile autonomous agents collaborating in a rapidly changing 
environment. The key characteristic of this team is that each soccer robot is an 
autonomous agent, self-contained with all of its essential capabilities on-board. Our 
robots share the same general architecture and basic hardware, but they have integrated 
abilities to play different roles (goalkeeper, defender or forward) and utilize different 
strategies in their behavior. Our philosophy in building these robots is to use the least 
possible sophistication to make them as robust as possible. In the 1997 RoboCup 
competition, the Dreamteam played well and won the world championship in the middle- 
sized robot league. 

1. Introduction 

The Robocup task is for a team of multiple fast-moving robots to cooperatively play soccer in 
a dynamic environment [6]. Since teamwork and individual skills are fundamental factors in 
the performance of a soccer team, Robocup is an excellent test-bed for autonomous agents. For 
this competition each of the soccer robots (or agents) must have the basic soccer skills -- 
dribbling, shooting, passing, and recovering the ball from an opponent. Each agent then must 
use these skills in making complex plays according to the team strategy and the current 
situation on the field. 

An agent must be able to evaluate its position with respect to its teammates and 
opponents, and then decide whether to wait for a pass, run for the ball, cover an opponent's 
attack, or go to help a teammate; while at the same time following the rules of the game. In the 
following sections of  this paper we will describe the general architecture for an autonomous 
robot agent and the team strategy, as well as discuss some of the key issues and challenges in 
the creation of a team of autonomous soccer agents. 

2. General Architecture 

For this project we define an autonomous agent as an active physical entity intelligently 
maneuvering and performing in realistic and challenging surroundings [4]. The critical design 
feature of  our autonomous soccer agents is that each agent has all of  the its essential 
capabilities on-board, so that every robot is self-contained. Autonomous systems, such as 
these, need to be physically strong, computationally fast, and behaviorally accurate to survive 
the rapidly changing environment of a soccer field, tn our general architecture, great 
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Figure  1. An Autonomous Soccer Robot 

importance is given to an individual robot's ability to perform on its own, without outside 
guidance or help of any kind. Each robot agent bases its behavior on its own sensor data, 
decision-making software, and eventually communication from other teammates. There are 
many techniques in robot agent modeling and design [1,2,3,7]; however, much of the work in 
this area has focused on single agent performing and sometimes under external supervision. 
We believe that the further of robot agents lies in total autonomous, with the capability of 
learning and adaptation to the environment [4,5]. Moreover, agents have to be intelligent 
enough to cooperate among themselves. 

Each robot consists of a single 586 based computer on a 30cm x 50cm, 4-wheel drive, 
DC model car (Figure 1). The computer can run a program from its floppy drive or hard drive. 
However, due to the robot's very harsh working environment, we decided to store our program 
in a Solid State Disk (SSD) to avoid any mass-storage malfunction during competition. The 
robots can be trained and the programs can be upgraded by attaching a floppy drive, a hard 
drive or by using the on-board networking facility. 
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Figure 2. Diagram of the general architecture 
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The inputs from the on-board camera are collected through a parallel port. Every agent 
uses the input from the sensors as well as an internal model of the environment and itself to 
decide its next action. After determining the proper action the robot is steered by commands 
sent through the I/O ports to the motor controller. Two DC motors, one on each side, provide 
full motion by quickly turning left or right, and by moving forward or in reverse. Each robot is 
designed in a modular way, so that we can easily add new software or hardware to extend its 
working capabilities. 

The three main software components of a robot agent are the vision module, decision 
engine, and drive controller. A diagram showing the interactions between these different 
modules are shown in Figure 2. The vision module outputs a vector for every frame taken by 
the agent's on-board camera. Each vector contains the positions of the objects in the frame, 
such as the ball, players and the goal. This information is then processed by the decision 
engine. The decision engine is composed of two processing units - the internal model manager 
and the strategy planner. The model manager takes the vision module's output vectors and 
maintains an internal representation of the key objects in the soccer field. The strategy planner 
combines the information that is contained in the internal model with its own strategy 
knowledge, in order to decide the robot's next action. Once the action has been decided, the 
command is sent to the drive controller that is in charge of properly executing the command. 
In the following sections we explain each component in further detail. 
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Figure 3. Internal representation of the visual input from Figure 1 
(Numeric color values are represented here as ASCII charactel:~'for a 

better understanding of the picture.) 

3. Vision Module 

Just as eyesight is essential to a human player, the visual input to a robot is critical for decision 
making in a soccer game. A robot relies on its visual input to determine its current position on 
the field, the positions of other players, the ball, the goals, and the field lines (sidelines, end of 
field, and penalty area). Each soccer agent receives visual input from an on-board camera. 
Due to its simplicity, robustness, and software availability, we have chosen Connectix Color 
PC QuickCam [8] as the on-board visual input hardware. This is a CCD-based camera that 
outputs 658x496 RGB pixels through the parallel port of the agent's computer. The camera 
also contains a micro-controller and other electronics to control operation of the camera and 
pixel data transmission. 
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To be able to navigate and perform a game plan, our agents depend on visual cues like 
relative position of the goals, the ball, and other agents. Thus, the agents need to recognize 
these objects through their visual systems. The output from the QuickCam consists of a series 
of 3-byte RGB pixels, with each byte representing the intensity of each corresponding color (0 
= color absent, 255 = maximum color intensity). The vision software checks each pixel color 
to see if it may belong to one of the key objects on the field. The pixels are then organized as 
color clusters to be mapped to identifiable objects. The size and position of each color cluster 
are used to calculate direction and distance from the actual object on the field. Direction is 
calculated as an offset of the perceived object with respect to the center of the screen, and 
distance results from comparing the perceived object size and position within the frame with 
the known real object size. An example of such an internal representation of objects is shown 
in Figure 3. 

The limitations of the on-board computing power, and the need for a fast, real-time 
reactive behavior, cooperate to constrain the level of feasible complexity in the algorithms to 
be run by the agents. Based on the current hardware configuration, visual frames are acquired 
at a minimum rate of 10 per second. If the processing of a given frame takes more than 0.1 
second, the latest frame is processed next, and any intermediate buffered frames are discarded. 
In this way agents overcome possible lack of synchronization due to variable time needed to 
process a given frame. It is important to point out that before the agents can correctly 
recognize objects on the field, diverse lighting conditions and opponent colors mandate an 
adjustment of the comparison intensity values for each colored object. 

2.1. A Vision Calibrat ion Tool 

We have developed a calibration tool that can automatically adjust the parameters of the vision 
system to account for the changes in the robot's surroundings. This vision tool gives the robot 
the capability to adapt to the new environment. Our adaptive color tracking system uses a 
supervised learning system based on the inductive learning. 

In the first step we take several pictures of the differeni objecls to be recognized in the 
new environment. The system is attempting to learn the correspondence between the colors 
and the objects. We repeat the procedure for a given object with a different angle and shadow. 
In the second step the adaptive color tracking system finds a set of rules to recognize each 
object, distinguishing which set or class of RGB pixels are associated with a specific object. 
As the number of colors increase by entering different objects on a game field, the learned 
rules become more complicated. 

RED GREEN BLUE CLASS 
240 115 78 Ball 
195 95 62 Ball 
63 185 90 Field 
58 193 115 Field 
128 104 213 Goal 

Figure 4. Obiect classificat!on based on RGB 

The input for each rule is a combination of Red, Green and Blue intensity for a given 
pixei in a frame. The output of a rule (the right hand side) would be a class which could be 
Ball, Wall, Opponent-player, Team-mate, Own-goal and Opponent-goal. As each o f  these 
items has a different color in the field. Figure 4 shows an example of input data and a simple 
rule to differentiate between Red (Ball), Green (Field) and Blue (Goal). 
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One of the common methods in knowledge discovery and intelligent data analysis is 
induction. Tree induction methods produce decision trees, concerning the data set as a result of 
their classification process. To find a valid interpretation in our large frame database we can 
employed any decision tree algorithm to find the needed association rules between the frame 
color patterns and the class of objects. In this approach we applied C4.5 [9] as the main 
induction method. C4.5 package generates decision trees, which provides a classification for 
every object within the database. The package allows the decision tree to be simplified, using a 
pruning technique which reduces the size of the tree according to a user-defined confidence 
level. 

Once the vision system has been calibrated to the new environment, it can then process 
the necessary information about the objects that are perceived in the camera frames. This 
information (the size and position of the object in the frame) is then sent in the form of object 
or frame vectors to the decision engine, where it is used to decided the actions of the robot. 

3. Decision Engine 

This component makes decisions about the actions of an agent. It receives input from the 
sensor modules and sends move commands to the drive controller. The decision engine bases 
its decisions on a combination of the received sensor input, the agent's internal model of its 
environment, and knowledge about the agent's strategies and goals. The agent's internal model 
and strategies are influenced by the role the agent plays on the soccer field. There are three 
types of agent roles or playing positions: goalkeeper, defender, and forward. The team strategy 
is broken down into pieces and instilled in the role strategies of each of the agents. Depending 
on the role type, an agent can be more concerned about a particular area or object on the soccer 
field, e.g. a goalkeeper is more concerned about its own goal, while the forward is interested in 
the opponent's goal. These differences are encoded into the two modules that deal with the 
internal model and the agent's strategies, 

Together, the internal model manager and the strategy planner, form the decision engine. 
These sub components of the decision engine communicate with each other to formulate the 
best decision for the agent's next action. The model manager converts the vision module's 
frame vectors into a map of the agent's current environment, as well as generating a set of 
object movement predictions. It calculates the salient features and then communicates them to 
the strategy planner. To calculate the best action, the strategy planner uses both the 
information from the model manager and the strategy knowledge that it has about the agent's 
role on the field. It then sends this information to the drive controller and back to the model 
manager, so that the internal model can be properly updated. 

3.1. Model Manager 

Because the soccer agents need to know about their environment and themselves before taking 
an appropriate action, an internal model is used to address this problem. The model manager 
is responsible for building and maintaining the internal model that provides this information. 
The internal model contains a map of the soccer field and location vectors for nearby objects. 
The object vectors from the vision module are used to create the location vectors for the 
internal model. 

A location vector consists of four calculations or elements; distance and direction to the 
object and the change in distance and direction for the object. The change in distance and 
direction is used for predicting the object's new location. The model manager continuously 
receives frame vectors from the vision module and updates the location vectors accordingly. 
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The model manager keeps track of information based on the role of the robot on the soccer 
field. For a goalkeeper the information will include the location vectors for the goal, ball and 
opponent's forwards. This is necessary for not overloading the strategy planner with extra 
information. 

An internal model is necessary for several reasons. Since the visual information provided 
by the vision module is incomplete, the robot can see only the objects that are within its 
current visual frame. More information about the environment can be deduced by using a map 
of the soccer field and the historical data. For example, if the robot can see and calculate the 
distance to the left wall of the field, it can find out the distance to the right wall even when the 
right wall is not visible. Similarly, the approximate location of an opponent that was 
previously visible, but currently not in view can be calculated using the historical data from 

F igu re  5. Playing positions of agents on the Soccer field 

the previous frames. This also provides greater robustness for the robot. If the camera fails for 
a few cycles (e.g. due to a hit or being blocked etc.), the robot can still operate using its 
internal model of the environment. 

An internal model is also necessary for predicting the environment. This is important for 
the strategy planner. For example, to intercept the ball the robot needs the current location of 
the ball and also a prediction of the current beading of the ball, so that it can calculate an 
intercept course to the ball. The internal model is also used for providing feedback to the 
strategy planner to enhance and correct its actions. The strategy planner tells the model 
manager what actions will be taken and the model manager updates the internal model using 
this information. It then receives information from the vision module and compares it with the 
expectations contained in the model. Any discrepancies are reported to the strategy planner, 
so that it can then use this information to fine tune its operations. 

3.2. Strategy Planner 

In order to play a successfully soccer game, each robot must react appropriately to different 
situations in the field. This is accomplished by the strategy planner that resides in the decision 
engine on each robot. Since a strategy (or a policy) is a mapping from situations to actions, let 
us first define situations and actions for our robots. As we mentioned in the description of 
model manager, objects in the soccer field are represented by their relative positions to the 
observer. Internally, an object is represented by a location vector of four elements: the distance 
between the object and the observer, the direction of the object, and change in distance and 
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direction, The values of the first two elements are qualitative: the distance can have values 
near, medium, far, and ? (unknown). The direction can have values left, center, right, and ? 
(unknown), To increase the response time of our decision process, not all objects in the field 
are constantly tracked, instead only those that are currently in the visual field of the observer. 
(Those objects that are currently not in view have ? as their values in the location vector.) 

Based on this terminology, we define a situation as a set of observed location vectors in 
the fiekl. For example, if a forward player is facing the opponent's goal and between the goal 
and the ball (see Figure 5), it is represented as the following vector: 

{ Bail: <?, ?, ?, 2>, 
Goal0: <5, 11, ?, ?>, 

• * o  } 

The basic actions of robots are the five commands to the motors; they are move-forward, 
move-backward, stop, turn-left and turn-right. Based on these basic actions, a set of compound 
actions or behaviors is then defined. The set of compound actions includes kick, line-up, 
intercept, homing, ,and detour. Some brief descriptions of these actions are shown in Figure 6. 

KICK: kick the ball 
LINE-UP: move to line up the ball and the goal. 
INTERCEPT: calculate intercept path to the ball 
HOMING: go back to its "home" position 
DETOUR: go around the ball 

Figure 6. Examples of compound action 

Each action has a termination condition and a time threshold. For example, the termination 
condition of line-up is when the robot is behind the ball and the goal, the ball, and itself are on 
the same line. In case actions are not successfully terminated, they will time-out as soon as the 
duration of the action passes the time threshold. 

Based on the defined situations and actions, the task of strategy planner is to select the 
right action for a given situation. This decision process is captured by a Policy Table shown in 
Figure 7. As we can see from this table, each line is a rule that maps a situation to an action. 
For example, if the position of ball is unknown in the current situation, the action is to turn left 
for 30 degree in search of the ball. 

Situation Action 
Ball Goal0 Goal l Wall Player X 

<?,?> <.,.> <.,.> <.,.> <.,.> Turn Left(30) 
<x,y> <.,.> <.,.> <.,.> <.,.> LINE-UP 
. . . . . . .  o . .  . . . . . . . . .  

Figure 7. A Policy Table 
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There five positions a robot can play on our soccer team: left-forward, right-forward, left- 
defender, right-defender, and goalkeeper. Shown in Figure 5, each player has its own 
territory and home position. For example, the left-forward has the territory of the left-forward 
quarter of the field, and its home position is near the center line and roughly !.5 meter from 
the left board line. (The territory of the home position for the right-forward is symmetric to 
that of the left-forward). Similarly, the left-defender is in charge of the left-back quarter of the 
field and its home position is at the left front of the base goal. Given this configuration, we 
now describe the policy tables for each of the three types of robots: goalkeeper, forward and 
defender. 

Goalkeeper 

For the goalkeeper, the two most important objects in the field are the ball and its own goal. Its 
home position is in front of the goal, and its policy is to keep itself in the line of the ball and 
the goal. Since most of its actions are parallel to the base line, the goalkeeper's camera is 
mounted on the side (for all other robots, the camera is mounted in the front), so that it can 
move sideways while keeping an eye on the bali. Its policy table is as follows: 

Situation --) Action 

Bail =<near, left>, Goal0=<near,center> 
Ball =<near, right>, Goal0=<near,center> 
Bail =<far, _> 
Ball =<?,_>, Goai0=<near, left> 
Bail =<?,_>, Goai0=<near,right> 

Move-left 
Move-right 
Homing 
Turn-right 
Turn-left 

Figure 8. The goalkeeper policy table 

As we can see, the first two actions are to prevent the ball from entering the goal, the third 
action is to position itself, and the last two actions are to look for the ball. Note that although 
policy tables are easy to describe conceptually, their implementation in the real system require 
much engineering to make them correct and robust. 

Forward 

The talks of forward is to put the ball into opponent's goal whenever possible. Like the 
goalkeeper, it must look for the ball when it is not in sight, and head back to its home posidon 
when the ball is out of its territory. The main difference is that the forward's main interest is 
to kick the bail towards the opponent's goal (Goal I in our current example) whenever it can. 
So its policy table, shown in Figure 9, must reflect that. 

Note that as long as the ball and Goail are both in sight, the forward will kick the bail. The 
policy also tells the robot to search for the ball whenever it is not in sight (e.g., seeing only the 
wall). It returns to its home position if it sees the opponent goal but not the ball. Whenever it 
sees the ball and its own goal (Goal0), it must make a detour, so that it can kick the ball in the 
correct direction. 
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Situation --) Action 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Ball =<near, center>, Goal l=<.,~?> 
Ball =<?, _>,Goal 1 =<.,~?> 
Ball =<?, _>,Goal 1 =<_,left> 
Ball =<?, _>,Goal I =<_,right> 
Ball =<?, _>,Wall =<near,?> 
Ball =<near, _>,Goal0=<far,?> 

Kick 
Homing 
Turn-right 
Turn-left 
Turn-left 
Detour 

Figure 9. The forward policy table 

Defender 

The defender's policy is very similar to that of the forward, except that the distance to Goall is 
further away compared to the position of the forward. Similar to the goalkeeper, it also tries to 
position itself between the ball and its own goal (Goal0). 

4. Drive Controller 

As mentioned before, each robot consists of a single 586 based computer on a 30cm x 50cm, 
4-wheel drive, DC model car (Figure 1). The inputs from the on-board camera are collected 
through parallel and serial ports. The drive controller takes commands from the decision 
engine, and steers the robots through its ItO ports. Four I/O ports are connected to the DC 
motor drivers and steer the robot by quickly turning left or right, and by moving forward or in 
reverse. The drive controller stops the motion by disconnecting the move order. The car also 
has the capability to spin in place by turning the two sides of wheel into opposite direction. In 
order to make movements that are as precise as possible, the effects of actions are controlled 
by the amount of time of a command. To deal with much of the uncertainty associated with the 
system, closed-loop control in software is used whenever possible. 

5. R e l a t e d  W o r k  

The current research follows the original work from a prediction-based architecture called 
LIVE [5] for integrating learning, planning and action in autonomous systems [4], and a 
behavior-based robot control system [1,2]. Compared to similar architectures in recent agent 
literature (for example [7]), our approach uses the closed loop control theory in many aspects 
of robot building, and uses the internal model to help detect and recover from errors. 
Moreover, our robot agent can also be configured quickly into different soccer playing roles 
and that has greatly increased the flexibility of the entire robot team. 
Our philosophy on multi-agent collaboration [6] is that if each agent has a sufficient 
understanding of other agents' action, then collaboration can be accomplished without any 
explicit communication. In our team, there is an implicit form of collaboration in that each 
agent has a particular role in which it knows its function and behaviors, as well as those of its 
teammates. Indeed, some limited collaboration behavior has been observed during the 
competition, and additional evidence of this hypothesis can also be found in the description of 
the champion team in the simulated league in this volume. 
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6. Conclusion and Future Work 

Conventionally, agents in the real world are controlled and guided by an external supervisor 
when performing complex tasks. In this study, we propose an autonomous system model for 
soccer robots that do not use any external computation resources, information, or guidance. 
Our soccer agents are designed with simple structures, but demonstrate that with an acceptable 
strategy and system modularity they can achieve the goal of autonomous behavior in a context 
of teamwork. These autonomous soccer robots use on-board cameras as their own sensors, and 
decide appropriate actions based on-board computers. Three main features seem to contribute 
the most to this success. First, the model manager is responsible for translating and 
interpreting the vision information in order to obtain the knowledge necessary for the strategy 
planner. Second, the closed-looped control mechanism deals with many intrinsic uncertainties 
in the soccer domain. Third, the modularity of hardware and software design of the system has 
made it possible for a single architecture to play multiple roles. 

In our future work, we would to improve the quality of autonomous sensing and acting, 
as well as extend the collaborations between robots. In particular, we would like to add more 
and heterogeneous sensors, such as sonar and others to speed up an agent's decision making 
and increase their efficiency and accuracy. We would also like to extend our system to use 
explicit communication for agent collaboration. 
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