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Abs t rac t .  The authors have applied reinforcement learning methods 
to real robot tasks in several aspects. We selected a skill of soccer as a 
task for a vision-based mobile robot. In this paper, we explain two of 
our method; (1)learning a shooting behavior, and (2)learning a shooting 
with avoiding an opponent. These behaviors were obtained by a robot in 
simulation and tested in a real environment in RoboCup-97. We discuss 
current limitations and future work along with the results of RoboCup- 
97. 

1 I n t r o d u c t i o n  

Building robots tha t  learn to perform a task in a real world has been acknowl- 
edged as one of the major  challenges facing AI and Robotics. Reinforcement 
learning has recently been receiving increased at tention as a method for robot 
learning with little or no a priori  knowledge and higher capability of reactive 
and adaptive behaviors [3]. In the reinforcement learning scheme, a robot and 
an environment are modeled by two synchronized finite state automatons inter- 
acting in discrete time cyclical processes. The robot senses the current state of 
the environment and selects an action. Based on the state and the action, the 
environment makes a transition to a new state and generates a reward that  is 
passed back to the robot. Through these interactions, the robot learns a purpo- 
sive behavior to achieve a given goal. 

As a testbed to apply the reinforcement learning method for real robot  tasks, 
we have selected soccer playing robots [1]. We have been doing various kinds of 
research topics as follows; 

1. learning a shooting behavior in a simple environment [11] 
2. learning a coordinated behavior of shooting and avoiding an opponent [12] [15] 
3. self construction of a state space [13] 
4. learning of a real robot in a real environment [14] 
5. modeling other agents [16] 
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Two methods ([11] and [15]) are tested in RoboCup-97 in which robots take 
actions based on the learned policy that  has not include cooperation between 
teammate  robots yet this year. 

In this paper, we summarize our research issues involved in realizing a robot 
team for RoboCup-97. This article is structured as follows: In section 2, we ex- 
plain the configuration of our robot system. In section 3, we give a brief overview 
of Q-learning. In section 4, we explain acquisition of shooting behavior. In sec- 
tion 5, we explain acquisition of a coordinated behavior combined shooting and 
avoiding an opponent. In section 6, we describe the result. Finally, we give a 
conclusion. 

2 T h e  C o n f i g u r a t i o n  o f  t h e  R o b o t  S y s t e m  

We have decided to use a radio-controlled model car as a robot body and to 
control it based on the remote brain approach [9]. This makes us implement and 
monitor the system activities easy. 

In RoboCup-97, we participated with five robots consisting four attackers 
and one goalie (see Figure 1). In this section, we explain the hardware and the 
control architecture for our robots. 

(a) The attacker robot (b) The goalie robot 

Fig. 1. Our Robots 
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2.1 H a r d w a r e  o f  t h e  R o b o t s  

We use radio-controlled model cars with a PWS (Power Wheeled Steering) loco- 
motion system. Four of them are called "Black Beast" produced by Nikko as an 
attacker robot (see Figure l(a)) ,  and one called "Blizzard" produced by Kyosho 
as a goalie (see Figure l(b)) .  A plate is at tached to push the ball on the field. 
The attacker has the plate in front of the robot and the goalie has on its side. 
The robots are controlled by signal generated on the remote computer through 
the radio link. 

Each robot has a single color CCD camera for sensing the environment and 
a video transmitter.  The attacker robot has a SONY CCD camera with a wide 
lens while the goalie has an omnidirectional vision system [10] so that  it can see 
the goal and the ball coming in any direction at the same time. The image taken 
by the camera is t ransmit ted to the remote computer  and processed on it. 

For power supply, three Tamiya 1400NP batteries are mounted on the robot. 
Two drive two motors for locomotion, and the remaining one supplies 12V 
through a DC-DC converter to drive the camera and the transmitter.  The life of 
the bat tery  is about  20 minutes for locomotion and 60 minutes for the camera 
and the transmitter.  

Monitor PC 
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The Robot 

Fig. 2. Configuration of robot controller 

2.2  T h e  C o n t r o l  A r c h i t e c t u r e  

The controller of each robot consists of three parts; a remote computer,  an 
image processor, and a radio-control interface (RC interim=e). Figure 2 shows a 
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configuration of the controller in which PC is used as the remote computer. 
The action of the robot is controlled by the following steps: 

1. the robot transmits the image from its camera, 
2. the image processor receives the image through UHF and processes it, 
3. the remote computer decides the robot's action based on the result of image 

processing, 
4. the RC interface generates a signal corresponding to the decided action, and 
5. the robot receives the signal and drives its motors. 

We use a color tracking vision board produced by Fujitsu for the image 
processing, and a UPP device to generate the control signal. Objects in the 
environment (a ball, a goal, and an opponent) are detected as colored regions in 
the image according to RoboCup regulations. 

3 Q-learning for Robot Learning 

In the reinforcement learning scheme, the robot senses the current state of the 
environment and selects an action. Based on the state and the action, the envi- 
ronment makes a transition to a new state and generates a reward that is passed 
back to the robot. Through these interactions, the robot learns a purposive be- 
havior to perform a given task (see Figure 3). As a method for reinforcement 
learning, we adapted Q-learning that is one of most widely used reinforcement 
learning method. In this section, we give a brief overview of Q-learning and 
problems when we apply it to real robot tasks. 

:t 

Agent 

Fig. 3. Interaction between the robot and the environment 



309 

3.1 Bas i c s  o f  Q - l e a r n i n g  

We assume tha t  the robot can discriminate the set S of distinct environment 
states, and can take the set A of actions on the environment. The environment is 
modeled as a Markov process, making stochastic transitions based on its current 
state and the action taken by the robot. Let T(s, a, s ~) be the probability of 
transition to the state s ~ from the current state-action pair (s, a). For each state- 
action pair (s, a), the reward r (s ,a)  is defined. 

Given the definitions of the transition probabilities and the reward distribu- 
tion, we can solve for the optimal policy(a policy f is a mapping from S to A), 
using methods from dynamic programming [2]. A more interesting case occurs 
when we wish to simultaneously learn the dynamics of the environment and con- 
struct the policy. Watkin's Q-learning algorithm gives us an elegant method for 
doing this [6]. 

Let Q* (s, a) be the expected action-value function for taking action a in a sit- 
uation s and continuing thereafter with the optimal policy. It can be recursively 
defined as: 

Q*(s,a) = r(s,a) + 7  E T(s,a,s')max. Q*(s',a'). 
a E A  

s ' E S  

(1) 

Because we do not know T and r initially, we construct incremental estimates of 
the Q-values on-line. Starting with Q(s, a) equal to an arbitrary value (usually 
0), every time an action is taken, the Q-value is updated as follows: 

Q(s,a) ~ (1 - a)Q(s,a) + a (r ( s , a )  + ~maxQ(s' a')). 
arEA 

(2) 

where r is the actual reward value received for taking action a in a situation s, 
s' is the next state, and a is a learning rate (between 0 and 1). 

3.2 P r o b l e m s  in A p p l y i n g  Q - l e a r n i n g  to  R e a l  R o b o t  Tasks  

To apply Q-learning, we must cope with several problems which occur in real 
environments. Two major problems are construction of state and action sets, 
and reduction of learning time [11]. 

C o n s t r u c t i o n  o f  S t a t e  a n d  A c t i o n  Se t s  In the environment where the robot 
exist, everything changes asynchronously. Thus traditional notions of state in the 
existing applications of the reinforcement learning algorithms dose not fit nicely 
[5]. The following principles should be considered for the construction of state 
and action spaces. 

- Natural segmentation of the state and action spaces: The state (action) space 
should reflect the corresponding physical space in which a state (an action) 
can be perceived (taken). 
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- Real-time vision system: Physical phenomena happen continuously in the 
real environment. Therefore, the sensor system should monitor the changes 
of the environment in real time. This means that  the visual information 
should be processed in video frame rate (33ms). 

The state and action spaces are not discrete but  continuous in the real envi- 
ronment,  therefore it is difficult to  construct the state and action spaces in which 
one action always corresponds to one state transition. We call this " s t a t e - a c t i o n  
d e v i a t i o n  p r o b l e m "  as a kind of the so-called "perceptual aliasing problems" 
[7] (i.e., a problem caused by multiple projections of different actual situations 
into one observed state). The perceptual aliasing problem makes it very difficult 
for a robot to take an optimal action. The state and action spaces should be 
defined considering this state-action deviation problem. 

R e d u c t i o n  o f  L e a r n i n g  T i m e  This is the famous delayed reinforcement prob- 
lem due to no explicit teacher signal that  indicates the correct output  at each 
t ime step. To avoid this difficulty, we construct the learning schedule such that  
the robot can learn in easy situations at the early stages and later on learn in 
more difficult situations. We call this Learning from Easy Missions (or LEM). 

4 Learning a Shoot ing  Behavior  

For the first stage, we set up a simple task for a robot [11], to shoot a ball 
into a goal as shown in Figure 4. We assume that  the environment consists of 
a ball and a goal. The  ball is painted in red and the goal in blue so that  the 
robot can detect them easily. In this section, we describe a method for learning 
the shooting behavior with consideration of the problem mentioned in section 3. 
Here we focus on the method implemented on the attacker robot in RoboCup-97 
(see [11] for more detail). 

Fig. 4. The task is to shoot a ball into a goal 



311 

position 

tlil  0 0 0  Ol 
lost-left 

left center right 

size 

Io 
lost-right ooO] 

small medium large 

position 

size 

orientation 

left center right 

small 

left-oriented 

,,,r==lJ,..,1. I m! 
lost-left lost.right 

 rlll 
medium 

front right-oriented 

large 

Fig. 5. The ball substates and the goal substates 

4.1 C o n s t r u c t i o n  o f  Each Space 

(a) a s t a t e  set  S: The ball image is classified into 9 substates, combinations 
of three classifications of positions (left, center, or right) and three types of sizes 
(large (near), middle, or small (far)). In addition to the size and the positions, the 
goal image has 27 substates considering the orientation which is also classified 
into three categories (see Figure 5). Each substate corresponds to one posture of 
the robot towards the goal, that  is, the position and the orientation of the robot 
in the field. 

In addition, we define states for the cases in which the ball or the goal is not 
captured in the image: three states (ball-unseen, ball-lost-into-right, and ball- 
lost-into-left) for the ball, and three more states (goal-unseen, goM-lost-into-right 
and goal-lost-into-left) for the goal. In all, we define 12 (9 + 3) states for the ball 
and 30 (27 + 3) states for the goal, and therefore the set of states S is defined 
with 360 (12 × 30) states. 

(b) an  act ion  set A: The robot can select an action to be taken in the current 
state of the environment. The robot moves around using a PWS (Power Wheeled 
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Steering) system with two independent motors. Since we can send the motor 
control command wl and wr to each of the two motors separately, each of which 
has forward, stop, and back, we have nine action primitives all together. 

We define the action set A as follows to avoid the state-action deviation 
problem. The robot continues to take one action primitive at a time until the 
current state changes. This sequence of the action primitives is called an action. 

(c) a r e w a r d  a n d  a d i s c o u n t i n g  f a c t o r  "/: We assign the reward value to be 
1 when the ball is kicked into the goal and 0 otherwise. This makes the learning 
very time-consuming. Although adopting a reward function in terms of distance 
to the goal state makes the learning time much shorter in this case, it seems 
difficult to avoid the local maxima of the action-value function Q. 

A discounting factor ~/is used to control to what degree rewards in the distant 
future affect the total value of a policy. In our case, we set the value at slightly 
less than 1 (7 = 0.8). 

4 .2  S i m u l a t i o n  

We performed the computer simulation. Figure 6 shows some kinds of behaviors 
obtained by our method. In (a), the robot started at a position from where it 
could not view a ball and a goal, then found the ball by turning, dribbled it 
towards the goal, and finally shot the ball into the goal. This is just a result 
of learning. We did not decompose the whole task into these three tasks. The 
difference in the character of robot player due to the discounting factor 7 is 
shown in (b) and (c) in which the robot started from the same position. In the 
former, the robot takes many steps in order to ensure the success of shooting 
because of a small discount, while in the latter the robot tries to shoot a ball 
immediately because of a large discount. In the following experiments, we used 
the average value of 7 0.8 as an appropriate discount. 

We applied the LEM algorithm to the task in which Si (i=1,2, and 3) cor- 
respond to the state sets of "the goal is large", "medium", and "small", respec- 
tively, regardless of the orientation and the position of the goal, and the size and 
position of the ball. Figure 7 shows the changes of the summations of Q-values 
with and without LEM, and AQ. The axis of time step is scaled by M (106), 
which corresponds to about 9 hours in the real environment since one time step 
is 33ms. The solid and broken lines indicate the summations of the maximum 
value of Q in terms of action in states E Sl + 82 + S3 with and without LEM, 
respectively. The Q-learning without LEM was implemented by setting initial 
positions of the robot at completely arbitrary ones. Evidently, the Q-learning 
with LEM is much better than that without LEM. 

The broken line with "x" indicates the change of AQ(S1 + S2 + Sa, a). Two 
arrows indicate the time steps (around 1.5M and 4.7M) when a set of the initial 
states changed from 81 to 82 and from 82 to 83, respectively. Just after these 
steps, AQ drastically increased, which means the Q-values in the inexperienced 
states are updated. The coarsely and finely dotted lines expanding from the time 
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(b) shooting (7 = 0.999) (c) shooting (3' = 0.6) 

Fig. 6. Some kinds of behaviors obtained by the method 
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Fig. 7. Change of the sum of Q-values with LEM in terms of goal size 

steps indicated by the two arrows show the curves when the initial positions 
were not changed from $1 to 82, nor from S~ to Ss, respectively. This simulates 
the LEM with partial knowledge. If we know only the easy situations (S1), 
and nothing more, the learning curve follows the finely dotted line in Figure 
7. The summation of Q-values is slightly less than that of the LEM with more 
knowledge, but much better than that without LEM. 
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5 S h o o t i n g  a B a l l  w i t h  A v o i d i n g  a n  O p p o n e n t  

In the second stage, we set up an opponent just before the goal and make the 
robot learn to shoot a ball into a goal avoiding the opponent (see Figure8). This 
task can be considered as a combination of two subtasks; a shooting behavior 
and an avoiding behavior of an opponent. The basic idea is first to obtain the 
desired behavior for each subtask, and then to coordinate two learned behaviors. 
In this section we focus on the coordination method implemented on the attacker 
robot in RoboCup-97, see [12] and [15] for more detail. 

Fig. 8. The task is to shoot a ball into the goal avoiding an opponent. 

5.1 Learning a Task from Previous ly  Learned Subtasks 

The time needed to acquire an optimal policy mainly depends on the size of state 
space. If we apply the monolithic Q learning into a complex task, the expected 
learning time is exponential in the size of state space [8]. One technique to 
reduce learning time is to divide the task into some subtasks and to coordinate 
behaviors which is independently acquired. The simple coordination method is 
summation or switching of the previously learned action value functions. 

However, these method cannot cope with local maxima and/or hidden states 
caused by direct product of individual state spaces corresponding to the subtasks. 
Consequently, an action suitable for these situations has never been learned. To 
cope with these new situations, the robot needs to learn a new behavior by using 
the previously learned behaviors [12]. The method is as follows: 

1. Construct a new state space S: 
(a) construct the directly combined state space from subtasks' state sl  and 

82 
(b) find such states that are inconsistent with Sl or s2 
(c) resolve the inconsistent states by adding new substates ss,~b E S .  
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2. Learn a new behavior in the new state space S: 
(a) calculate the value of the action value function Q~8 by simple summation 

of the action value functions of each subtasks. 

Q ~  = m ~ ( Q 1  ((Sl, *), a) T Q2((*, s2), a)) (3) 

where Ql((Sl, *), a) and Q2((*, s2), a) donate the extended action value 
functions. * means any states, therefore each of these functions considers 
only the original states and ignores the states of other behaviors. 

(b) initialize the value of the action value function Q for the normal states 
s and the new substates ss~b with Qss. That  is, 

Q(s, a) = Q~(s,a) 
Q(s,~,b, a) = original value of Q~(s, a) (4) 

(c) control the strategy for the action selection in such a way that  a conser- 
vative strategy is used around the normal states s and a high random 
strategy around the new substates ss~b in order to reduce the learning 
time. 

For the first subtask (shooting behavior), we have already obtained the policy 
by using the state space shown in Figure 5. For the second subtask (avoiding 
behavior), we defined the substates for the opponent in the same manner to the 
substate of the ball in Figure 5. That is, a combination of the position (left, 
center, and right) and the size (small, medium, and large) is used. 

A typical example of inconsistent states is the case where the ball and the 
opponent are located at the same area and the ball is occluded by the opponent 
from the viewpoint of the robot. In this case, the robot cannot, observe the ball, 
and therefore the corresponding state for shooting behavior might be the state 
of "ball-lost," but it is not correct. Of course, if both the ball and the opponent 
can be observed, this situation can be considered consistent. This problem is 
resolved by adding new substates ss~b E S. In the above example, a new situation 
"occluded" is found by estimating the current state from the previous state, and 
the corresponding new substates are generated (see [12] for more detail). 

5.2 S imulat ion  

Based on the LEM algorithm, we limit the opponent's behavior when the robot 
learns. If the opponent has learned the professional techniques to keep the goal, 
the robot might not be able to learn how to shoot the ball into the goal anymore 
because of almost no goals. From this viewpoint, the opponent's behavior is 
scheduled so that  the shooting robot has its confidence to shoot a ball into the 
goal. 

In the simulation the robot has succeeded to acquire a behavior for a shooting 
the ball into the goal (see Figure 9). In the figure, the black is the learner and 
the white is the opponent. In (a), the robot watches the ball and the opponent. 
In (b),(c), and (d), the robot avoids the opponent and moves toward the ball. 
In (e) and (f), the robot shoots the ball into the goal. 
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Fig. 9. The robot succeeded in shooting a ball into the goal 

6 Experimental Result in RoboCup-97 

We participated the middle size robot league of RoboCup-97 with five robots: 
four attackers and one goalie. For the goalie, we defined a set of rules and im- 
plemented on it as a goal keeping behavior. For the attackers, we implemented 
the behavior obtained by the simulation described in section 4.2 and 5.2. 

Our team had five matches in total; two preliminary, two exhibition matches 
and the final. The result is shown in Table 1. Figure 10 and Figure ll(a) show 
a scene of a match, in which an attacker shoots the ball and the goalie keeps 
the goal respectively. Figure l l(b) is the view of the goalie in the situation of 
Figure ll(a).  Our robot could get two goals in total, because four of two goals 
were own goals by the opponent team (USC). 

7 Conclusions 

In this paper, we have explained two of our reinforcement learning methods ap- 
plied for real robot tasks tested in RoboCup-97. Our robots had learned a shoot- 
ing behavior and a shooting behavior with avoiding an opponent, and played five 
matches there. They got two goals during more than 50 minutes of total playing 
time (time of one match was 10 minutes). 
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Fig. 10. One attacker shoots the ball 

(a) The goalie and an opponent (b) The view of the goalie 

Fig. 11. A behavior of the goalie 

We are difficult to say that  the robot performed the task well. However, 
getting two goals means tha t  the robot  could performed the task when it met  
a certain situation. This fact shows a potential  ability of reinforcement learning 
methods to make the robot adapt  to the real environment.  

There are some reasons why the performance was not good enough. We had 
a trouble with color recognition because of noise on image transmission and 
uneven lighting condition on the field. Especially there were a plenty of noise 
sources around the field and the image became black and white so often. Though 
these problems are beyond the scope of our research issue, t rea tment  of these 
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iate match , IIopponent team Iscorel Ilresult 

25 August preliminary RMIT Raiders 0-1 us win 
26 August preliminary USC Dreamteam 2-2 us draw 
27 August exhibition UTTORI United 0-1 us win 
28 August final USC Dreamteam 0-0 us draw 
28 August exhibition The Spirit of Bolivia 1-0 us lose 

Table 1. The Result of matches 

problems will improve the performance of the task. 
A problem of our methods was construction of the state space. We ignored 

the case when the robot  watches several robots in its view at a time, though 
nearly 10 robots existed on the field in every matches. In our future work, we 
need to focus state construction in a multi robot environment. Some topics have 
been already started, such as self construction of states by the robot [13],[14] 
and estimation and prediction of an opponent 's  behavior [16]. 
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