
A T H u m b o l d t - -
D e v e l o p m e n t , P r a c t i c e a n d T h e o r y

Hans-Dieter Burkhard, Markus Hannebauer, Jan Wendler*

Institute for Computer Science
Humboldt-Unlversity of Berlin

10099 Berlin, Germany

Abs t rac t . This article covers three basics of our virtual soccer team
AT Humboldt: We describe our development process in the frame of a
practical exercise for students. The resulting efficient agent-oriented real-
ization is explained, and we give a theoretical embedding of our planning
component based on BDI.

1 I n t r o d u c t i o n

One of the recent fields of Artificial Intelligence is Agent-Oriented Programming
(AOP, cf. e.g. [WOOLDRIDGE/JENNINGS, 1994], [SHOrtAM, 1993]). AOP is pro-
posed especially for the programming of autonomous components ("agents")
in open heterogeneous systems. The agents (players) in Artificial Soccer
[KITANO ET AL., 1997] must plan and execute actions individually and effi-
ciently resulting in a successful cooperative t eam behavior.

This article covers three basics of our virtual soccer team AT Humboldt:
We present a description of our development process in the frame of a practical
exercise for students at the Humboldt-University of Berlin. We show how this
has lead to an efficient agent-oriented realization. We also give a theoretical
embedding of our architecture and our planning component.

We hope that our article can be useful for three types of readers: The practi-
cian may find some new ideas to enhance his own team, the teacher may get an
impression of our work with students, and the theoretician may be interested in
an applied Belief-Desire-Intention (BDI) architecture.

The article starts with the motivation of our interests in Artificial Soccer.
The development process is figured out in Section 3. The main par t (Section 4)
describes the components and implementat ion of our agents and Section 5 dis-
cusses the theoretical background. Finally, future developments and conclusions
are discussed.

* Many ideas and first of all hard implementation work came from Pascal Mfiller-
Gugenberger, Amin Coja-Oghlaa, Adrianna Foremniak, Derrick Hepp, Heike Miiller
and Kay SchrSter in a practical exercise. We wish to thmlk them for their great
efforts.

358

2 O u r I n t e r e s t s i n A r t i f i c i a l S o c c e r a n d F i r s t E x p e r i e n c e s

The main interests in our group concern Distributed AI, Multi Agent Systems
(MAS), Agent-Oriented Techniques (AOT), and Case Based Reasoning (CBR).
All of these fields have direct relations to Artificial Soccer and we have fixed the
following scientific goals for our participation in RoboCup:

1. Agent architectures - We are interested in experiments and evaluations for
different approaches like the subsumption architecture ([BaOOKS, 1990])
and the BDI architecture ([BRATMAN, 1987], [RAO/GEoRGEFF, 1995]).
This concerns the efficient realization of the "belief-to-action'-cycle and the
optimal relationship between deliberative and reactive behavior.

2. Cooperation in M A S - We are interested in emerging cooperation and im-
provements by communication, negotiation and (explicit) joint plans. Fhr-
ther interests concern the formation of a team out of different roles and
"characters".

3. Agent learning We are interested in the usage of CBR for the training
of capabilities and decision procedures (off-line learning) and for the adap-
tion to opponents' behavior (on-line learning), respectively. Especially the
treatment of time in these two cases is challenging.

4. Decision making using vague information - - We have developed a special
technique for vague matching which we use in CBR applications ("Case
Retrieval Nets", [LENZ/BURKHARD, 1996], [BURKHARD, 1997]). We want
to test it as control structure for the mind of agents (e.g. for the choice and
adaptation of precompiled plans using similarity of sensor information/belief
conditions).

The implementation of our program until August 1997 has covered mainly
point 1 and partially point 2. We have discussed different approaches and finally
we have implemented an architecture which is best comparable with the BDI-
approach (cf. section 5). The Advanced Skills (cf. section 4.4) could also be
considered as a layer in a subsumption architecture. Because the higher levels
of deliberation have continuous control, it is a more goal oriented architecture
in our understanding. Under this view, the Advanced Skills are considered as
predefined plans.

Emerging cooperation has already given very exciting results: players act
according to their expectations concerning the behavior of their team-mates.
Different roles result in an efficient usage of the whole playground. But we have
also identified several situations where communications would improve the be-
havior (but this was not implemented up to now).

The realization of Point 3 is supported in the architecture by the history
mechanism within the world model (cf. section 4.2), but it was not used for
learning up to now. There was some misunderstanding in the announcements: We
have declared CBR as our research goal for RoboCup (hoping to get ready with
it until the competition in Nagoya). But in fact we did not use it in RoboCup97.
We have observed in our studies that learning may lead to suboptimal (or even

359

worse) behavior if it is applied to insufficiently analyzed/developed underlying
skills. To give an example: A directed kick needs some preparation (stop the ball,
place the ball for kicking, final kick). Hence the players have to learn a related
sequence of parameterized actions. A careful analysis can specify a skeleton for a
successful skill, while parameter settings according to a given situation are due
to training (as for humans). Another example concerns the decision component:
You can learn proper deliberation only if you can rely on the proper execution
of the skills.

The Case Retrieval Nets (Point 4) seem to be suited for the learning of
deliberation processes, but we have no experience up to now.

3 The Development

The overall development strategy was to keel) in mind all our interests from the
very beginning (e.g. histories for learning, desires and intentions for deliberation).
Tha t means to develop a structure which is open for further refinements and
extensions. We also tried to obtain best results with least effort (e.g. cooperation
without communication as far as possible).

We have used protocols (log-files) of internal and external information flow
and decisions. The study of those files gave us hints to inexact implementations
of our ideas (but it also occurred that "wrong" executions were caused by net
overload).

We started with basic work on a class library for UDP/IP, sensors and com-
mands. First ideas were developed by prototyping (extended "simple client").
The development of soccer agents was the topic of a practical exercise for stu-
dents in connection with a lecture on M A S / A O P / C B R during summer semester
(April July 1997). Besides the discussion of concepts some modules and rou-
tines were implemented in C + + and JAVA.

Starting in the second half of July a team of three students finished the work
on the implementation of the modules (only in C + + for reasons of computational
speed). The modules were combined and tested. The first results showed approx-
imately equivalence to the power of the "Ogalets". After fixing some bugs, tuning
and further refinements we could improve the scoring to 29:1 before leaving for
Nagoya.

Some further changes during the breaks of the competition in Nagoya con-
cerned especially positioning (fuzzy positioning, positions for corner kick and
goal kick, changes in the home positions).

4 T h e I d e a s o f t h e R e a l i z a t i o n

This section gives an overview and some details of the different components of
our soccer playing agent team. Additionally it may help the reader to get through
our published code2: We will mention the particular files which implement the

2 (see http://www, ki. informatik, hu-berlin, de/RoboCup97/index_e, html)

360

described parts. The whole project was implemented in C++ under Solaris and
Linux, respectively.

4.1 Clear Archi tec ture

[worl I I Advice 1 Model " Skills

Fig. 1. GenerM Architecture of a Soccer Agent.

The general architecture is identical for all agents, the player identifies its role
(goal-keeper, defender, attacker ...) by the player-number given from the server.
Special behaviors according to the roles are due to different parameter values.
Figure 1 shows the agent's abstract architecture. Thick arrows indicate the main
information flow. Rhombs symbolize concurrently running components. An agent
(agent. *) consists of all these components which can be seen as "organs".

The component Sensors (sensors. *) parses and transforms the string coded
sensor information which the player receives from the SoccerServer. The compo-
nent Basic Skills (ba se sk i l l s . *) provides methods for sending basic commands
to the server.

4.2 Stable Wor ld Model l ing

In a dynamic and uncertain domain like Artificial Soccer a consistent modelling
of the environment is necessary. Short-term false information has to be cor-
rected, un-precise information must be evaluated and inferences are necessary
for missing information. This leads to a certain stability of the agent's belief. It
is realized by the complex component World Model (weltmod.*, f u s s b a l l . * ,
p o s i t i o n s . * , s enso r i . * , sp i e l f e . *) , which provides e.g. basic classes for

361

linear algebra. Every object on the field is described by a special class. Inheri-
tance is strongly used, and additional features like timed objects and encapsu-
lated environments make synchronization easier.

The agent's absolute position on the field is calculated using the visual infor-
mation concerning lines, flags and goals. The triangulation considers all possible
cases (actually several hundred). The agent's velocity is estimated from the com-
mands sent to the server. Additionally, the player records its stamina. Absolute
positions of all other seen objects can be computed because the own absolute
position is known. A special algorithm matches new information on unnamed
objects (e.g. a player with a missing number) to known objects. The world model
can also close the information gaps for unobservable objects by simulation.

Simulation is also used to predict future situations by using the knowledge
about positions and velocities. This ability is extensively used by Planning and
Advanced Skills to estimate consequences of possible commands. For example,
Advanced Skills can instantiate a new ball object, simulate it for some time steps
and look at the position and speed. Additional features like wind could be easily
taken into account,.

World Model logs an adjustable number of environments to keep track of the
player's history. This ability was implemented to support on-line learning, but
it was not exploited in RoboCup97.

4.3 B o u n d e d Rational i ty

The component Planning (en t sche idung* . *) embeds the planning and reason-
ing process which leads successively from coarse plans to concrete command
sequences. The theoretical background of this procedure is described in section
5. Here we show how the internal process works.

A new planning process is initiated each time a new sensor information has
arr ived. The situation is classified: If the ball is under control, the agent is able
to pass the ball or to dribble. If the player has no control of the ball~ it can decide
whether to intercept it, to watch the surrounding or to run to a certain position.
This goal (target) finding is done by a usual decision tree which selects a goal
out of a fix goal library. Some of the decisions are trivial ("Is the ball in the kick
range or not?") but some are really tricky ("Shall I run to the ball or shall my
team-mate do it?"). The latter decision is done by a reachability simulation: If
the agent supposes to be the first of its team to reach the ball, it will run. If not,
it relies on its team-mates and runs back to its home position. Because we have
not used communication yet, the stamina of team-mates has not been regarded
and may have caused wrong expectations.

After the goal selection the player has to find the best way to achieve its goal.
This phase of the planning process produces a coarse long-term plan with some
parameters (partial plan). The plans must be based on the skills of the agents.
This means that plans are in a close correspondence to the advanced skills, which
are themselves building blocks for the execution of the long-term plans. There
are two major cases to cope with: The agent is out of the kick range or it can
control the ball (i. e. has ball possession).

362

In the first case the player calculates an optimal interception position if it has
decided to get the ball. For several reasons (e.g. to regard the wind if necessary)
we decided to utilize the simulation capabili ty of the world model. The agent
tries mentally to reach the ball in one step, in two steps and so on until it
finds a certain number of steps in which it can reach the ball. This procedure
also provides a distance measure because it can be applied to every player and
ball instance. Figure 2 shows this process graphically and gives a commented
example.

~ . / P l a y e r : . P 2 at Time t

.i
.t . i

I

~ 1 1 t I

Player P1 at 'l/me t P5 ~ t

Fig. 2. Decision Finding for Ball Interception.

The solid line shows the ball movement with the ball positions at the time steps
t + i. The dotted lines represent the view sectors of the different players P1 and
P2 at time t. The dashed lines show the movements of the players.
P1 does not see P,~ and Ps. It calculates distance 26 for P4, 29 for P3 and 6 for
itself. The agent decides to intercept the ball. P2 whose view sector includes P1
calculates 6 for P1, 30 for/:'3, 26 for P4, 39 for P5 and 4 for itself. It also decides
to go for the ball. Hence both players of the same team go for the ball.
P1 calculates interception position at ball position $ + 6. Likewise does P2 for ball
position t + 4. At time t + 3 a new sensor information comes in. P1 cannot see
the ball. It will keep its plan according to the implementation of our planning
component for such situations. P'2 sees the ball and also continues intercepting
the ball.

If the player has decided not to intercept the ball, it returns to its home
position, or (if it is already there) collects information by turning and waiting.
Further development will lead to more sophisticated behavior (e.g. double passes
and explicit team strategies). The architecture is prepared for such extensions

363

(we have implemented special behavior for corner kicks or goal kicks just in the
breaks of the competition in Nagoya).

If the player controls the ball, it has to decide whether to pass the ball or
to dribble. Furthermore it has to decide in which direction to kick or to dribble,
respectively. It should prefer a direction with best chances to score or to pass
the ball to a team-mate. At the same time it should prefer directions promoting
an offensive play style. A fixed direction d is evaluated by the following formula:

= - n o (d)) + - o(d)) - " to (d) + "r t (d)

The indexes t are used for terms indicating values of the own team, indexes
o for the values of the opponents, respectively, wb and corn are role dependent
weight factors with cob + co,~ = 1.

/3 is the minimum of the distances a to the ball for all players of a team
(indexes t or o). The distances (~ are calculated by simulation as described before,
if the ball is kicked in the given direction d with a certain velocity. It is computed
for the own team by:

/~t(d) = rain { V/5(d,i) •)~(d,i) l i C & }

S is the set of seen players. The additional factor A is the length of the
perpendicular from player i to the ball line (this value provides an influence of
stamina loss).

provides the mean distance of a team to the ball line. The unseen players
are approximated using a worst distance 5u, (P is the set of all team players):

Ei s, 0 . + l . , \ s,I ° ~ w

u,(d) =
IP, I

is a goal hitting bonus, where ak is the "typical" kick distance and a.q is
the distance to the goal, respectively:

{ (~ ' ~) d hits our goal ~yt(d)= max 0 , (~ , - 5k '
0 , otherwise

The values for Wb, co,,~, ~ and 5k have to be tuned (it is intended to use
learning)./3°, #o and % are defined analogously.

Having the fornmla to evaluate directions d by their values A(d) we can look
for an optimal direction. Due to the definition (convex combination by weight
factors, symmetrical values for opponents ' players and team-mates) the evalu-
ation function is normalized to zero. This means that negative values indicate
a "good" direction and positive values indicate a "bad" direction. In our re-
cent implementation several discrete directions are evaluated and then the best
direction is taken. Figure 3 exemplifies such an evaluation process.

Values around zero are neutral. Especially these values around zero are dif-
ficult to judge. For this purpose a randomized function was implemented which
decides afterwards whether to kick or to dribble.

364

i / ® T0.-..0,
/ / ~ Q ow,~oo.

Q , J

Fig. 3. Evaluation of Discrete Kick Directions.

Probability of Dribbling y'
value A g

Fig. 4. Probability function for Dribbling.

The function is shown in figure 4. It is on the left half a Gaussian function
with the following definition:

0 (z~-cx)2
P (D r i b b l e) = . e - ~ss , Ag < a

, Ag > a

8 is a role dependent dribble factor (e.g. the goal-keeper has 0 = 0.1, the at-
tacker 0 = 0.5). Ag is the minimal distance over all evaluated directions, a is an
acceptance constant for kicking which is also role dependent.

The main problem of the evaluation strategy described above is that play-
ers move in unpredictable ways. Therefore the positions of unseen players are

365

uncertain. This is why we decided to evaluate only directions in the view area
(we used a view angle of 90 degrees and high quality). To prevent too many
backward shots, every area on the field has a defined preferred direction. Our
first idea was the following procedure: Turn to preferred direction and evaluate
the kick directions. If there is no "good" kick direction, determine a turn direc-
tion and turn, evaluate this sector and so on. This was a safe way to find the
global best direction, but was actually to slow because the agent had to wait
300 ms to get the next information. So we implemented the following behavior:
If the agent looks approximately into the preferred direction (the definition of
"approximately" is role dependent), it will do the evaluation process. If not, it
will do an "emergency kick" directed to the opponents goal. With additional
information via communication this simple behavior could be omitted in favor
of full 360 degree evaluation in the future.

Cooperation between team partners emerges by relying on the behavior of
team-mates, that means team-mate modelling. The player relies on the fact that
the team-mate with the shortest distance to the ball will try to intercept it when
it is passed in its direction.

As soon as the agent has decided for a partial plan, it is given to the com-
ponent Advanced Skills for execution.

4.4 Efficient E x e c u t i o n

The component Advanced Skills (a d v a n c e d s k i l l s . *) is a library of skills which
facilitate efficient ball handling and optimal movement. The teclmical task of
this component is to split the long-term partial plans into short-term plans,
which means concrete command sequences with full parameters. These short-
term plans are not longer than the interval between consecutive sensor informa-
tion (with our preferences these are actually three basic commands). This way
the long-term plans are executed by iterated calls of advanced skills after each
sensor information.

It was one of the major decisions during development to use this strategy of
plan execution. The more common strategy is to fix a long term plan which may
be adapted during execution if necessary. Such a long term plan can start with
some initial actions to achieve a well defined situation (e.g. a suitable ball posi-
tion for dribbling). Afterwards the actions are performed in the fixed sequence
according to the plan, such that each action relies on the successful execution of
its predecessors.

In our strategy, a strictly new deliberation process can start for each new
sensor information (actually each a00 msec), and in this case we have a new long
term plan started just at this time point. If we would need always certain (new)
initial actions for preparation, then we might never come to the continuation
of a plan (cf. Section 5 for further discussions). To overcome this problem, the
advanced skills are designed to deal immediately with any situation which might
appear at the beginning or during the execution of a long term plan (e.g. to
continue dribbling in any situation). As a side effect, the advanced skills are

366

able to realize the fastest way for goa~ achievement in a very flexible way from
arbitrary start situations.

Advanced Skills uses Basic Skills to send basic commands to the server. We
modified the basic Turn command because the original command which is di-
rectly supported by the server is influenced by the player's speed. We enhanced
the Turn command to compensate this influence by increasing the turn angle or
- - in worst case - - stopping first and then turning. The other basic commands
are sent without modification to the server.

The main advanced skills of the player agent are: Directed Kick, Go to Po-
sition and Dribble. Go to Position enables the agent to reach every absolute
position on the field. It produces one Turn (if needed) and/or up to two/three
Dashes. If demanded, this procedure avoids obstacles like other players. Drib-
ble moves the ball into a certain direction without loosing contact to it. This
includes the production of several Kick, Turn and Dash combinations.

The Directed Kick skill was one of our competitive advantages and therefore
it will be described in detail in the following. This capability allows the players
to kick the ball into any direction with a demanded power (as far as possible).
It handles difficult situations like high velocities and situations where the player
itself is an obstacle for the desired direction. If the desired direction with the
desired speed cannot be achieved, the skill tries to meet the demands as good
as possible.

First of all the skill tries to determine the kick angle and power which is nec-
essary to transform the current movement vector into the demanded movement
vector (Part A of figure 5). If the length of the necessary kick vector (the power)
is physically impossible, the skill tries to keep at least the right direction.

A complication occurs for kick vectors which are possible but hit the player
itself. In this case an intermediate target is calculated which is at the side of the
player (Part B). The first kick leads to this point and further kicks are calculated
from there (Part C). In some cases the ball can be kicked once more (Part D).

This leads to the efficient kicks which were observable in the matches of
our team. All this can be done with three basic kicks: The implementation of
the SoccerServer for Nagoya permits addition of velocities by consecutive kicks
following the laws of vector algebra. According to the Nagoya settings, the players
can start with approximately 10 m/sec and the ball with 13 m/sec. By additional
dashes, the players can get a speed of approx. 16 m/sec. Two consecutive kicks
in the same direction give the ball a speed of approximately 25 m/sec, which is
less than two times faster than the players' speed. It is reasonable that it takes
two actions (i.e. more time and more precise action settings) to make a stronger
kick: The two kicks can be considered as a compound action (just like turn +
dash). It can even be considered as a triplet together with the need to place the
ball at a certain position before a strong kick. This setting leads to an interesting
challenge for the learning of compound actions.

Problems arise for the interception of a fast running ball: Especially increas-
ing velocity for fast moving balls by likewise small additional kicks of an in-
tercepting player looks problematic. Furthermore, we found it difficult (but not

367

Der~ kt Ball Vector

Ball

:k Area
of Player

Fz

Target oflst~ck ~)

~ Kick Vector

:fa~gne~ ~ K i c k Vector

Target '~ of 3rd I';

Fig. 5. Several Steps of the Directed Kick Skill.

Kick Vector

[5

impossible) to stop a ball by defending players.
Alternatively the SoccerServer could simulate kicks as new settings of the ball

velocity instead of additions. In this case, the following problem arises: Setting
of a fast arriving ball with a moderate single kick to a new slow velocity (defense
could be too simple with such settings) a.

4.5 P r e c i s e S y n c h r o n i z a t i o n (s y s t e m p r o g r a m m i n g)

In the real time environment of Artificial Soccer it is essential to keep syn-
chronized with the server. For this purpose some components have to run in
parallel. In our implementation the components Sense (s e n s o r i k . *) and Act
(s end e r . *) run concurrently with the main routine to allow an undisturbed
reasoning-process and to keep track of the server.

There are different ways to provide pseudo concurrency in a UNIX environ-
ment. Processes raise difficulties with communication and storage organization.
Threads are not widely supported (Solaris has native support, Linux and others
have only library support like pThreads) and have a lot of administration over-
head. In addition they are difficult to time. On the other hand UNIX system

a This point is still under discussion while writing this article.

368

signals are efficient, well timed and easy to use. In fact one signal handler is
enough to provide all the concurrency the agent needs.

The signal is adjusted to 50 ms. The signal handler looks at top of the incom-
ing message system queue and parses new information if necessary. Accordingly
information flags for the planning process are set. In addition the handler peeks
every 100 ms on top of the outgoing command queue, sends one command if nec-
essary and initiates a simulation cycle of World Model. If the time information of
an incoming sensor information differs from the agent's internal time, additional
simulation cycles are done until synchronization is achieved. This is essential
because the estimation of the agent's own speed relies only on sent commands
and passed time. If the calculation of the agent's own speed is wrong, then all
other speed calculations will be wrong because they are known only relatively
to the values for the agent.

5 T h e T h e o r y

The consideration of programs as agents focuses at first on the aspect of auton-
omy: Programs have to act in an appropriate way to changes in the environment.
Therefore they need some input or sensor facilities and some output or actoric
components. The mapping from input to output can be done in very simple
ways (e.g. strictly reactive) or in more sophisticated ways up to models which
are inspired by human decision processes. We found that mental notions like
capabilities/skills, belief, goals/desires and intentions/plans are very useful pic-
tures to make agent programming transparent. The aspect of rationality forces
agents to deal efficiently with their resources, especially with time.

The so-called BDI model fits best to our concept of soccer agents. BDI
stands for belief - desire - intention, and the approach is based on the philo-
sophical work of BRATMAN [BRATMAN, 1987], and the theoretical and prac-
tical work by RAO/GEORGEFF [RAO/GEORGEFF, 1995] and others (cf. e.g.
[WOOLDRIDGE/JENNINGS, 1994], [BURKHARD, 1996]). Agent-Oriented Pro-
gran~ming is a fast developing field of research, and Artificial Soccer is a very
suitable field for experiments. Rao and Georgeff write about typical charac-
teristics of problem domains which can be successfully solved by BDI. These
characteristics fit well to the soccer domain:

- The SoccerServer and the opponents create a non-deterministic environment.
- The agent itself reacts non-deterministically because parts of the planning

process are randomized.
- The player can have different goals at the same time, e.g. to reach the ball

while covering an opponent.
- The success of the player's own commands depends strongly on the simulated

environment and the opponents.
- The whole information is local and different for every player.
- The environment pushes bounded rationality because too deep reasoning is

without pay-off in a dynamic surrounding.

369

In the BDI-approach, agents maintain a model of their world which is called
belief (because it nfight not be true knowledge). The way from belief to actions
is guided by the desires of the agent. BRATMAN has argued that intentions are
neither desires nor beliefs, but an additional independent mental category. Inten-
tions are considered as (partial) plans for the achievement of goals by appropriate
actions. Commitment to intentions is needed which has impact on the rational
usage of resources: The (relative) stability of committed intentions prevents over-
load in deliberation and useless plan changes, and it serves trustworthiness in
cooperation.

All components of a BDI-architecture can be identified in our planning
process. Belief equals the component World Model (cf. section 4.2 in our re-
alization. The strict relativity of the server statements leads to an individual
image of the world in every agent. Additionally the agent cannot rely on the
accuracy of the received and interpolated data, therefore it is belief not knowl-
edge. The update routines (including the simulation for unseen objects), the
simulation of expected future situations and the history of situations are also
considered to be parts of the belief.

In our implementation Desires are goals which are selected out of a fixed goal
library. The list of possible goals is still small, but the set will be extended e.g.
to allow joint goals (like double passes) in the future. In the present realization
different (even opposite) goals may be achievable but the agent selects only one
of them 4. To do this the environment is classified by a decision tree. The selection
function and the execution of the chosen goal must be fast because it must not
be interrupted by new information which could be decision relevant. In spite of
that , reasoning must be accurate enough to fulfill its task optimally. This is the
same trade-off as described by Rao and Georgeff. The risk of full execution of
long-term plans is that the agent cannot adapt correctly to unforeseen events.
On the other hand permanent evaluation and control of every planning step is
too expensive in the sense of computing resources.

This implies Intentions which are divided into two stages of planning in our
system. At first the best possibility to reach the chosen goal is computed and
fixed as an intention (cf. section 4.3). This corresponds to the long-term plan with
some parameters which can be also seen as a partial plan. Its calculated end is the
fulfillment of the selected goal. The execution of the intention is split into smaller
pieces which are implemented as short- term plans in the component Advanced
Skills (Section 4.4). As mentioned above Advanced Skills provides precompiled
plan skeletons of a size that fits between two time points of sensor information.
They have their own calculation capability which is used to compute the short
t ime optimal command sequence. Looking at the mentioned trade-off these short-
term plans are atomic and cannot be interfered by sensor information. But in
composition they build a long-term plan that is complex enough to fulfill higher

4 In the future we may deal with the commitment to concurrent goals. In such a
case we will have to regard the "scope of admissibility" (BRATMAN) set by previous
intentions. For example, an existing intention to preserve the off-side position of an
opponent may restrict the commitment to later goals for reaching special positions.

370

goals. There is a certain overlapping with the decision procedures for desires:
This is necessary, since the decision process has to look for achievable desires.
The realization of the intention relies on the capabilities of the agent, which are
implemented by the advanced skills.

The consideration of our agents as BDI-constructs is appropriate since we
have for each new sensor information a complete deliberation process with up-
date of belief, choice of a desire, commitment to an intention and execution of a
plan part.

A problem arises from the fact that commitment of intentions is mostly
performed independently from the previous intentions: This might contradict the
mentioned principle of stability of committed intentions, which is a central point
in BRATMAN'S theory. The "canonical" deliberation process has to maintain an
old intention as long as there are no serious counter indications.

Because a new deliberation process might be initiated every time a new sensor
information comes in and then new plans are created, the planning strategy has
to ensure stability of the long-term plans to avoid constantly changing goals or
intentions. The stability of our goal tracking relies on the fact that even in the
case of a new initialization of the whole planning process very often the same
steps are chosen because the situation has not radically changed. That means
that the same goal and intention are created, too. The player must prevent that
missing knowledge or only slightly bet ter other intentions destroy the former
behavior. Indeed, a simple implementation of our strategy would have serious
drawbacks. As already mentioned in Section 4.4, simple plans could result in
only repeated initial actions. To avoid this the agent for example lets out minor
turns on the way to a certain position which would cost too much time. This
could be called implicit persistence.

The explicit persistence of goals and intentions in our implementation can
be exemplified by the realization of the goal "Go to home position". To decide
whether to intercept the ball or to go home the agent has calculated the minimal
distance of all team-mates and opponents to the ball (cf. section 4.3) and has
stored these values. If the decision is to go home, the agent will use these values
to determine a time interval in which it must not care for the ball because no
other player will be able to change the ball's known movement. The decision
tree usually strongly relies on sight of the ball but in this case the agent won't
turn for the ball in the calculated "don't care"-interval on its way to its assigned
position. This results in a straight run to the designated position until the "don't
care"-time will be over. In general that means that the old goal and intention is
kept as long as the calculated interval lasts.

We found this to be a very interesting implementation of the stability prin-
ciple for committed intentions without explicitly using the old intention. Our
agents are able to adapt a plan to new situations if necessary (e.g. a turn-
command with a greater change would not be dropped). It might be the case that
future implementations would need an explicit t reatment of previous intentions
(e.g. if there was a commitment given to team-mates in explicit cooperation).

371

6 F u t u r e W o r k

The next steps to improve our players concern various forms of training and
learning as well as other methods of cooperative play:

- Some decisions and skills use individual parameters which values were found
by testing evaluation. These parameters shall be tuned by the agent itself.

- Methods from Case Based Reasoning can help to reuse "good" decisions in
equal situations.

- Learning means training of behavior with off-line learning as well as adaption
to the opponents ' behavior in the match (on-line learning).

- The team play shall be improved by a special behavior in well-known situa-
tions, explicit cooperative skills and use of the provided communication on
the field.

7 Conclusion

The following lessons have b ~ n learned during our discussions and implemen-
tations:

- An architecture which makes the agent processing transparent is important
for development of concepts, implementation and fast changes.

- An efficient implementation needs the integration of methods from different
fields, especially Mathematics, Software Enginecring and Artificial Intelli-
gence.

- Methods from Artificial Intelligence are efficient if applied to well performing
basic behavior.

The last experience was very important to us. It showed us that "pure"
Artificial Intelligence may be insufficient. In our development phase sometimes
a better solution from AI view has led to less performance. The reason were
basic mistakes which were increased by the sensitive AI techniques. As a result
we think that learning can only be based on a strong and correct conventional
foundation.

We have published our code to make transparent our ideas (we have to apol-
ogize for some "unorthodox" program parts, we hope to present a better version
in the future).

We want to express our thanks to all people which are engaged in RoboCup
for giving us so much fun. Special thanks are due the Japanese colleagues for
organizing RoboCup 97!

References

[BRATMAN, 1987] M. E. Bratman: Intentions, Plans and Practical Reason.
Harvard University Press, 1987.

372

[BROOKS, 1990]

[BURKHARD, 1996]

[BuRKHARD, 1997]

[KITANO ET AL., 1997]

[LENz/BURKHARD, 1996]

[RAO/GEORGEFF, 1995]

[SHOHAM, 1993]

R. A. Brooks: Elephants don't play chess. In P. Maes
(ed.): Designing Autonomous Agents. MIT press, 1990.
H. D. Burkhard: Abstract goals in multi-agent systems.
In W. Wahlster (ed.): 12th European Conf. on Artificial
Intelligence (ECAI96). 524 528. John Wiley &= Sons,
1996.
H. D. Burkhard. Cases, Information, and Agents. In
P. Kandzia, M. Klusch (eds.): Cooperative Information
Agents. Proc. First Int. Workshop CIA'97. 64 79. LNAI
1202, Springer, 1997.
Hiroaki Kitano, Milind Tambe, Peter Stone, Manuela
Veloso, Silvia Coradeschi, Eiichi Osawa, Hitoshi Matsub-
ara, Itsuki Noda, Minoru Asada. The RoboCup Synthetic
Agent Challenge 97. In M. E. Pollack (ed.): Proc. IJCAI-
97. 24-29. Morgan Kaufmann, 1997.
M. Lenz and H. D. Burkhard. Lazy propagation in case
retrieval nets. In W. Wahlster (ed.): 12th European Conf.
on Artificial Intelligence (ECAI96). 127-131. John Wiley
& Sons, 1996.
A. S. Rao and M. P. Georgeff: BDI agents: From theory to
practice. In V. Lesser (ed.): Proc. of the First Int. Conf. on
Multi-Agent Systems (ICMAS-95). 312-319. MIT Press,
1995.
Y. Shoham: Agent oriented programming. 60:51 92. Ar-
tificial Intelligence, 1993.

[WOOLDRIDGE//JENNINGS, 1994] N. R. Jennings and M. Wooldridge: Proceedings
of the ECAI-94-Workshop on Agent Theories, Architec-
tures, and Languages. LNAI 890, Springer, 1994.

