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Abst rac t .  The Soccer Server system provides a ricll and challenging 
multiagent, real-time doinain. Agents must accuratdy perceive and act 
despite a quickly changing, largely hidden, noisy world. They must also 
act at several levels, ranging from individual skills to full-team collabo- 
rative and adversarial behaviors. This article presents the CMUnited-97 
approaches to the above challenges which helped the team to the semi- 
finals of the 29-team RoboCup-97 tournament. 

1 I n t r o d u c t i o n  

The Soccer Server system [5] used at RoboCup-97 [2] provides a rich and chal- 
lenging multiagent, real-time domain. Sensing and acting is noisy, while inter- 
agent communication is unreliable and low-bandwidth. 

Ill order to be successful, each agent in a team must be able to sense and act in 
real time: sensations arrive at unpredictable intervals while actions are possible 
every lOOms. Furthermore, since the agents get local, noisy sensory' information, 
they must }lave a method of converting their sensory inputs into a good world 
model. 

Action capabilities range from low-level individual skills, such as moving to 
a point or kicking the ball, to high-level strategic collaborative and adversarial 
reasoning. Agents must be able to act autonomously, while working together 
with teammates towards their common overall goal. Since communication is 
unreliable and perception is incomplete, centralized control is impossible. 

This article presents the CMUnited-97 approaches to the above challenges 
which helped the team to tile semifinals of the 29-team RoboCup-97 simulator 
tournament.  Section 2 introduces our overall agent architecture which allows for 
team coordination. Section 3 presents our agents' world model in an uncertain 
environment with lots of hidden state. Section 4 lays out the agents' hierarchical 
behavior structure that allows for machine learning at all levels of behavior 
from individual to collaborative to adversarial. Our team's flexible teamwork 
structure, which was also used by the CMUnited-97 smMl-size robot team [7], is 
presented in Section 5. Section 6 concludes. 
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2 T e a m  M e m b e r  A r c h i t e c t u r e  

Our new teamwork structure is situated within a team member architecture 
suitable for domains in which individual agents can capture locker-room agree- 
ments and respond to the environment, while acting autonomously. Based on 
a standard agent architecture, our team member architecture allows agents to 
sense the environment, to reason about and select their actions, and to act in 
the real world. At team synchronization opportunities, the team also makes a 
locker-room agreement for use by all agents during periods of low communica- 
tion. Figure 1 shows the functional input/output model of the architecture. 
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Fig. 1. The team member architecture for PTS domains. 

The agent keeps track of three different types of state: the World state, the 
locker-room agreement, and the internal state. The agent also has two different 
types of behaviors: internal behaviors and external behaviors. 

The Wor ld  S t a t e  reflects the agent's conception of the real world, both via 
its sensors and via the predicted effects of its actions. It is updated as a 
result of processed sensory information. It may also be updated according to 
the predicted effects of the external behavior module's chosen actions. The 
world state is directly accessible to both internal and external behaviors. 

The  Locke r -Room Agreemen t  is set by the team when it is able to privately 
synchronize. It defines the flexible teamwork structure as presented below 
as well as inter-agent communication protocols. The locker-room agreement 
may change periodically when the team is able to re-synchronize; however, it 
generally remains unchanged. The locker-room agreement is accessible only 
to internal behaviors. 
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T h e  I n t e r n a l  S t a t e  stores the agent's internal variables. It may reflect previ- 
ous and current world states, possibly as specified by the locker-room agree- 
ment. For example, the agenCs role within a team behavior could be stored 
as part of the internal state, as could a distribution of past world states. The 
agent updates its internal state via its internal behaviors. 

T h e  I n t e r n a l  B e h a v i o r s  update the agent's internal state based on its current 
internal state, the world state, and the team's locker-room agreement. 

T h e  E x t e r n a l  B e h a v i o r s  reference the world and internal states, sending com- 
mands to the actuators. The actions affect the real world, thus altering the 
agent's future percepts. External behaviors consider only the world and in- 
ternal states, without direct access to the locker-room agreement. 

Internal and external behaviors are similar in structure, as they are both sets 
of condition/action pairs where conditions are logical expressions over the inputs 
and actions are themselves behaviors as illustrated in Figure 2. In both cases, 
a behavior is a directed acyclic graph (DAG) of arbitrary depth. The leaves of 
the DAGs are the behavior types' respective outputs: internal state changes for 
internal behaviors and action primitives for external behaviors. 

Behavlor(args) 

I|ehavtor(args) / I if (condilior 0 Ihcn Bclutvior(args).~ I 

/ i f  (condition) then Behavior(args).[ I . . . . . . . . .  " . . . . .  / 
| • ~.. . .~[ if (contntmn) ulcn t ~ c n a v m r t a r g s ) j  

I O O Q D  

F i g .  2 .  I n t e r n a l  a n d  e x t e r n a l  b e h a v i o r s  a r e  o r g a n i z e d  in a d i r e c t e d  acyc l ic  g r a p h .  

Our notion of behavior is consistent with that  laid out in [4]. In particular, 
behaviors can be nested at different levels: selection among lower-level behav- 
iors can be considered a higher-level behavior, with the overall agent behavior 
considered a single "do-the-task" behavior. There is one such top-level internal 
behavior and one top-level external behavior; they are called when it is t ime to 
update the internal state or act in the world, respectively. The team structure 
presented in Section 5 relies and builds upon this team member architecture. 

3 P r e d i c t i v e  M e m o r y  

Based on the sensory information received from the environment, each agent 
can build its own world state. We developed a predictive memory model that  
builds a probabilistic representation of the state based on past observations. By 
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making the right assumptions, an effective model can be created that can store 
and update knowledge even when there are inaccessible parts of the environment. 
The agent relies on past observations to determine the positions of objects that 
are not currently visible. We conducted experiments to compare the effectiveness 
of this approach with a simpler approach, which ignored the inaccessible parts of 
the environment. The results obtained demonstrate that this predictive approach 
does generate an effective memory model, which outperforms a non-predictive 
model [1]. 

4 L a y e r e d  L e a r n i n g  

Once the world model is successfully created, the agents must use it to respond 
effectively to the environment. As described in Section 2, internal behaviors up- 
date the internal state while external behaviors produce executable actuator 
commands. Spanning both internal and external behaviors, layered learning [6] 
is our bot tom-up hierarchical approach to client behaviors that allows for ma- 
chine learning at the various levels (Figure 3). The key points of the layered 
learning technique are as follows: 

High Level Goals 

- .} ~ ' . ,  Machine learning [Collaborative BehaviorsK ,~ . . . . .  
~ ~  ) ~ '  uppormnmes 

[Individual ~ 

[World Model) - ~  

tttttttt 
Environment 

Fig. 3. An overview of the Layered Learning framework. It is designed for use in 
domains that are too complex to learn a mapping straight from sensors to actuators. 
We use a hierarchical, bottom-up approach 

- The difficult aspects of the domain determine which behaviors are to be 
learned. 

- The learned behaviors are combined in a vertical fashion, one being used as 
a part of the other. 
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Table 1 illustrates possible behavior levels within the robotic soccer domain. 
Because of the complexity of the domain, it is futile to try to learn intelligent 
behaviors straight fl'om the primitives provided by the server. Instead, we iden- 
tified useful low-level skills that must be learned before moving on to higher level 
strategies. Using our own experience and insights to help the clients learn, we 
acted as human coaches do when they teach young children how to play real 
soccer. 

Layered Strategic Level Behavior Type Examples 
Robot ball individual intercept 

Action selection individual pass or dribble 
One-to-one player collaborative pass, aim 

One-to-many player collaborative pass to teammate 
Team formation team strategic positioning l 

Team-to-opponent adversarial strategic adaptation 

Table 1. Examples of different behavior levels. 

Tile low-level behaviors, such as ball interception and passing, are external 
behaviors involving direct action in the environment. Higher level behaviors, 
such as strategic positioning and adaptation, are internal behaviors involving 
changes to the agent's internal state. The type of learning used at each level 
depends upon the task characteristics. We have used neural networks and de- 
cision trees to learn ball interception and passing respectively [6]. These off- 
line approaches are appropriate for opponent-independent tasks that can be 
trained outside of game situations. We are using on-line reinforcement learning 
approaches for behaviors that depend on the opponents. Adversarial actions are 
clearly opponent-dependent. Team collaboration and action selection can also 
benefit from adaptation to particular opponents. 

5 F l e x i b l e  T e a m  S t r u c t u r e  

One approach to task decomposition in the Soccer Server is to assign fixed 
positions to agents. 1 Such an approach leads to several problems: i) short-term 
inflexibility in that  the players cannot adapt their positions to the ball's location 
on the field; ii) long-terrn inflexibility in that  the team cannot adapt to opponent 
strategy; and iii) local inefficiency in that  players often get tired running across 
the field back to their positions after chasing the ball. Our introduced formations 
allow for flexible teamwork and combat these problems. 

* One of the teams in Pre-RoboCup-97 (IROS'96) used and depended upon these 
assignments: the players would pass to the fixed positions regardless of whether 
there was a player there. 
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The definition of a position includes home coordinates, a home range, and a 
m a x i m u m  range, as illustrated in Figure 4(a). The position's home coordinates 
are the default location to which the agent should go. However, the agent has 
some flexibility, being able to set its actual home position anywhere within the 
home range. When moving outside of the max range, the agent is no longer 
considered to be in the position. The home and max ranges of different positions 
can overlap, even if they are part of the same formations. 

A formation consists of a set of positions and a set of units. The forma- 
tion and each of the units can also specify inter-position behavior specifications 
for the member positions. Figure 4(b) illustrates the positions in one particu- 
lar formation its units, and their captains. Here, the units contain defenders, 
midfielders, forwards, left players, center players, and right players. 
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Fig. 4. (a) Different positions with home coordinates and home and max ranges. (b) 
Positions can belong to more than one unit. 

Since the players are all autonomous, in addition to knowing its own position, 
each one has its own belief of the team's current formation along with the time at 
which that formation was adopted, and a map of teammates to positions. Ideally, 
the players have consistent beliefs as to the team's state, but this condition 
cannot be guaranteed between synchronization opportunities. 

Our team structure allows for several significant features in our simulated soc- 
cer team. These features are: (i) the definition of and switching among multiple 
formations with units; (ii) flexible position adjustment and position switching; 
(iii) and pre-defined special purpose plays (set plays). 
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5.1 D y n a m i c  Swi tch ing  o f  Format ions  

We implemented several different formations, ranging from very defensive (8-2-0) 
to very offensive (2-4-4). 2 

The full definitions of all of the formations are a part  of the locker-room 
agreement. Therefore, they are all known to all teammates. However during the 
periods of full autonomy and low communication, it is not necessarily known 
what formation the rest of the teammates  are using. Two approaches can be 
taken to address this problem: 

• stat ic  format ion  - the formation is set by the locker-room agreement and 
never changes; 

• run- t ime  switch o f  format ion  - during team synchronization oppor- 
tunities, the team sets globally accessible run-time evaluation metrics as 
formation-changing indicators. 
The CMUnited RoboCup-97 team switched formations based on the amount  

of time left relative to the difference in score: the team switched to an offensive 
formation if it was losing near the end of the game and a defensive formation 
if it was winning. Since each agent was able to independently keep track of the 
score and time, the agents were always able to switch formations simultaneously. 

5.2 Flexible  Pos i t ions  
In our multiagent approach, the player positions itself flexibly such that  it an- 
t icipates that it will be useful to the team, either offensively or defensively. 

Two ways in which agents can use tile position flexibility is to react to the 
ball's position and to mark opponents. When reacting to the hall's position, the 
agent moves to a location within its range that minimizes its distance to the 
ball. When marking opponents, agents move next to a given opponent rather 
than staying at the default position home. The opponent to mark can be chosen 
by the player (e.g., the closest opponent),  or by the unit captain which can 
ensure that all opponents are marked, following a preset algorithm as part of 
the locker-room agreement. 

Homogeneous agents can play different positions. But such a capability raises 
the challenging issue of when the players should change positions. The locker- 
room agreement provides procedures to the team that allow for coordinated role 
changing. In our case, the locker-room agreement designates an order of prece- 
dence switching arnong positions within each unit. By switching positions within 
a formation, the overall joint performance of the team is improved. Position- 
switching saves player energy and allows them to respond more quickly to the 
ball. 

5.3 P r e - P l a n n e d  Set  P l ays  

The final implemented improvement facilitated by our flexible teamwork struc- 
ture is the introduction of set plays, or pre-defined special purpose plays. As a 
part of the locker-room agreement, the team can define multi-step multiagent 

Soccer formations are typically described as goalie-defenders-midfielders-- 
forwards [3]. 
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plans to be executed at appropriate times. Particularly if there are certain sit- 
uations that  occur repeatedly, it makes sense for the team to devise plans for 
those situations. 

In the robotic soccer domain, certain situations occur repeatedly. For exam- 
ple, after every goal, there is a kickoff from the center spot. When the ball goes 
out of bounds, there is a goal-kick, a corner-kick, or a kick-in. In each of these 
situations, the referee informs the team of the situations. Thus all the players 
know to execute the appropriate set play. Associated with each set-play-role is 
not only a location, but also a behavior. The player in a given role might pass to 
the player filling another role, shoot at the goal, or kick the ball to some other 
location. 

We found that  the set plays significantly improved our t eam ' s  performance. 
During the RoboCup-97 competitions, several goals were scored off of of set 
plays. 

6 Conclusion 

The Soccer Server system provides a wide range of AI challenges. Here we have 
described our approaches to problems ranging from world modelling to multia- 
gent cooperation. Machine leaning techniques are used throughout to improve 
performance of individual and team behaviors. Our successful implementat ion 
reached the semifinals of RoboCup-97. 
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