
A Multi-layered Planning Architecture
for Soccer Agent

Ransui Iso (ransui@ina-lab.ise, aoyama, ac.jp)
Hiroshige Inazumi (hiro@in a-lab, ise. aoyama, ac.jp)

Dept. of Industrial and Systems Engineering
Aoyama Gakuin University.

Abstract

Based on manual simulation experiments, we propose a type of agent as a Multi-
Layerd Planning(MLP) Architecture to identify the game situation and create action
policy. As a team, we will arrange the various type of agent according to game strategy,
and realize semi-cooperative Multiagent model with minimum amount of communica-
tion.

1 I n t r o d u c t i o n

Simulated Robotic Soccer is a typical and interesting AI domain, especially Mul-
tiagent domain. RoboCup97 will include its tournament using the Soccer Server
system. Soccer Server captures enough real-world complexities to be a very chal-
lenging domain.

This simulator is realistic in the following way;

1. players' vision is limited,
2. players can communicate by posting to a blackboard that is visible to all

players,
3. each player is controlled by a separate process,
4. players have limited stamina,
5. actuators and sensors are noisy,
6. dynamics and kinematics are modelled, and
7. play occurs in real time: the agents must react to their sensory inputs at

roughly the same speed as human or robotic succer players.

The simulator, acting as a server, provides a domain and supports users whi
wish to build their own agents.

We firstly developed several type of field viewer and manual simulation tools,
based on data only from soccer server, like Video Games, that is limited area of

514

soccer field, we play soccer game with those tools. We have investigated which
kind of data are inportant and useful, how human beings make decisions about
action rules, and so on.

We consider, agents must have a following ability.

1. Quick desition to dynamic environment
2. Self learing to low-level skill and hi-level strategy
3. Easy programming to build a agent

We made 2 types of experiment agents before RoboCup97. Each agents are
contains following ideas.

1.1 View-Informat ion-Or ien ted Model

In view-information-oriented model, the main purpose is to reinforce abilities of
agent as soccer players. This model consists of two shemes, i.e., analyzing scheme
and reasoning scheme. Analyzing scheme works as a filter from view data given
by soccer server to useful information of objectsm for the agent. In Reasoming
scheme, each agent bridges time-gap of view data from soccer server, estimates
position-information, and decides suitable action by using huristic rules satisfy-
ing robustness. Although any agent dosen't always calculate the parameters of
estimated position and action exactly.

1.2 Q-Learning Model wi th Mul t i -Demens iona l S ta te-Trans i t ion

Daiji Tamagwa who is one of our tegmmate, makes a agent that uses Q-Learning
Model with Multi-Dementional State-Transition(MDST) [1]. MDST provides
state-transition that sparated by object status in soccer field that is called "Sub-
State-Transition" . This architecture provided quick decition and self learning,
but program and data structures are very complexly.

2 Multi-layered Planning Architecture

2.1 Envi ronment Modeler

Environment Modeler, as a preliminaru module for planning, makes ObjectList
structure from object information from Soccer Server. ObjectList holds informa-
tion of objects to which other modules easily made reference.

2.2 Planner

Planning module, as core of MLP, reads the object list and creates command
text sequence that can be sent to Soccer-Server directly (see fig1).

We construct our agent under Multi-Layerd Planning (MLP) Architecture.
MLP is made up by following function layers.

515

- =
- =

" I""nn'","'°""l°
," . = I NeuraI-Netwok I
lanning . I I

Loop =

i 1 ,
~ " ' "] ActiosGenerat°r ~ t

~,,

GameCondRion]

I
Data Flow

. m . u ~ Controle Flow

• • • • @ Timer Cheek

,,.oQ ~ 1 . . I . . ~ 1 o o ~

ExpireCheck -" Invoke **- =
.

ActionQueue [~ [TransmiRer

Fig. 1.

S i t u a t i o n A n a l y z e r : Situation Analyzer genetates identifier of game condi-
tion from ObjectList. It has simple rule database for analyzing game situation.
It contains some rule pair of predicate for object condition and identifier of game
situation.

P l a n n e r : Planner layer is main fuction of MLP. Planner generating action-
policy that made up by action-style, and derection of sending a ball. Action-
style describes what's agent must to do. The vMue could be assigned one of
3 attributes, such a~s "At tack" "Deffence" and "Normal". Those 2 elements of
action-polycy generated by perceptron type Neural-Network(NN) that imple-
mented in the Planner.

' I---N-- i

r " I t : : i
7i 8: 9

~,,, J

Fig. 2.

We devided soccer field to express ball position (see fig2). NN in planner
takes ball transition data that made up a pair of past ball position and present
ball position, and outputs pair of action-policy and derection of sending a ball.

For example. Ball moves from field-section 2 to 6, NN takes a pair of ball
position, such as (2 6). then NN outputs a pair of action-policy and derection of
sending a ball, such as ("Deffence" 8).

516

Now, NN is teached how to decition to make a correct action-policy by our
hand, not learning itself.

A c t i o n G e n e r a t o r : Action generator creates command-text sequence from
a pair of action-policy , derection of sending a ball which generated by planner,
and ObjectList that generated by Environment Modeler. The command-text can
be send to Soccer-Server directly.

•

::

: :,i!!!!ii!i!i!i!i!i: i!i!iii!iiiiiiiii!iiiiiiiiii : t
': iiii!iiiii!i!i!! !iiii!iiiiiiiiiiiiiiii:i : / iiiiiiiiilliiiiiiiiiiii/: \.............~/

Fig. 3.

Action generater references Oject-List and Action-policy to make a command-
text sequence. For example, see upper figure. A Agent position is front of a goal,
and he can see a ball that is free. If planner made a acton-policy that say "Get
a goal" such as "(4 G)"I, and send a action generator. Action generator searchs
a "Get a goal" pat tern in action list that made up by skelton of command se-
quence. Agent uses following skelton of command sequence for "Get a Goal".

if distance(BALL) < 2.0
if distance(GOAL) > 50

power = 100.0
if distance(GOAL) < 50

power = distance(GOAL) x 2
kick(power, derection(GOAL))
done

I Symbol 'G' is a Goal symbol"

517

if distance(BALL) > 2.0
turn(derection(BALL))
if (distance(BALL) _< 3.0

power = distance(BALL) / 3.0
dash(power)
done

if (distance(BALL) > 3.0)
n = distance(BALL) / 3.0
~in=l dash(100)
done

In this case, agent made a following command sequence. (Ball position is
(-5.0 15.0), Goal position is (-20.0 30))

1. turn(-5.0)
2. dash(100)
3. dash(lO0)
4. da.sh(lO0)
5. dash(lO0)
6. dash(lO0)
7. kick(-10.0, 100)

R e a l - T i m e C l o c k : Real-Time clock module controls all of the layers. When
agent wants to send any command-text to Soccer-Server, it must have some
interval time to send, because SoccerServer can execute only one command in
0.1 second time slice. Therefore agent must send to one command every 0.1
second time slice. Real-Time Clock also provides expire time for old plan. If
agent have old plan that can not apply to new game situation , agent must
creates new plan for new game situation.

3 D i s c u s s i o n

The MLP is useful architecture to make agent that lives in complexly environ-
merit. We consider MLP has 3 features.

First, MLP is made up some modules. Each modules are independence by
others. This mean we call make modules separately, and we can implement dif-
ferent methods each modules, now we implimented rule-based decition in Situ-
ationAnalyer, and Neural-Network in Planner.

Second, All functions module in MLP can run separately. For example, I f
planner-module is too bevy to run in machine that you u ~ , you can run a
planner-module in faster machine, and you can use network connection for ex-
change information between modules.

Finally, MLP containg Real-Time Clock module. Tha t module provides t ime
information to modules. Modules can trace environment transition and use past
time information effective, now we use time information to timing of sending
command and expire a plan.

518

R e f e r e n c e s

1. Daiji Tamagawa, "Reinforced Learning in Dymamic Environment with Multi-
Dimentional State-Trasition" Aoyama Gakuin University, Graduation thesis 1996

