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Abstract: We present a parallel path planning method that is able to automatically handle
multiple goal configurations as input. There are two basic approaches, goal switching and bi-
directional search, which are combined in the end. Goal switching dynamically selects a fa-
vourite goal depending on some distance function. The bi-directional search supports the
backward search direction from the goal to the start configuration, which is probably faster.
The multi-directional search with goal switching combines the advantages of goal switching
and bi-directional search. Altogether, the planning system is enabled to select one of the pref-
erable goal configuration by itself. All concepts are experimentally validated for a set of
benchmark problems consisting of an industrial robot arm with six degrees of freedom in a 3D
environment.
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1 Introduction

The issue of robot path planning has been studied for a couple of decades and many
important contributions to the problem have been made [Hwang92]. Path planning dgo-
rithms are of great theoreticd interest, but are rardy used in practice because of ther
computational complexity [Kama96]. Here, we take a step in the direction of practica
path planning.

The problem of path planning that we focus on is the following: Input is the geometry
of an industrid robot manipulator with six (rotationa) degrees of freedom in an enviror+
ment with satic obstacles given by ther current location. Optiondly, there may be a coun
ple of dynamic obsacles. All geometric objects are represented by a number of 3-
dimensona convex! polyhedrons. Additionally, the start configuration of the robot and
the god posgtion of the tool centre point (TCP) are given. The output of the problem is a
sequence of par-wise neighbouring and collisonfree robot configurations from the dtart
to one of the goals.

Up to now, the path planning systems search for a path between a given gart and one
given god configuration. In many applications, there are multiple god configurations
avalable for path planning. These emerge because of the ambiguous solution of the in+
verse kinematics of mogt indudrid robots, which may result in severd god configurations
for the dedred Cartesan TCP (see Figure 1). In this case, nowadays, the user has to select
one of the gods for planning by hand. In this paper, we present a method that enables the
path planning system to automatically exploit the available multiple god configurations.

1 Thisis no severe restriction, because every non-convex polyhedron can be modelled by (multiple) con-

vex polyhedrons.
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Figure 1. Multiple goal configurations Gq, ..., G4 for one endeffect (TCP) position and an illustration of the
resulting path planning problem with start configuration S. (Benchmark STAR from [Katz96])

The paper is organized as follows. In Section 2, we shortly review our basic gproach
to practicd path planning. Then, we present two gpproaches which make use of multiple
god configurations. These are god switching in Section 3 and bi-directiond search in
Section 4. Findly, we invedigate the combination of both gpproaches caled multi-
directional search in Section 5. For each agpproach, we provide experimental results usng
asat of benchmark problems.

2 Basic approach

In order to avoid time consuming obstacle transformations into the robot configura-
tion space (C-space), one can search in an implicitly represented Gspace and detect colli-
gons in the Catesan workspace. This drategy enables the planning syssem to cope with
on-line provided environments or moving obstacles, and to work reasonably fast in inter-
active robot programming environments (see Fgure 2).

For searching in the implicit C-space, we apply te wel-known A*-search agorithm?
[Hart68, Korf92]. Therefore, the C-gpace is discretized and dl robot configurations are
represented by nodes building up the search space. The A*-dgorithm mantans a
CLOSED list of those nodes that have been expanded, and an OPEN list of those nodes
that have been generated but not yet expanded. The adgorithm begins with the start node
on the OPEN list® At esch iteration, a node on the OPEN list with minimum heuristic
evaudion is expanded, generdting dl of its children, and is placed on the CLOSED lig.

2 The results of this paper are not restricted to A*. They can be applied to other best-first search methods,
too.

3 OPEN and CLOSED can be implemented efficiently as priority list and hash table, respectively.
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Figure 2: () A* search in the implicit Gspace from the start configuration S to the goal configuration G.
(The dots indicate investigated configurations and the arrows give reference to the corresponding succes-
sors.) (b) Collision detection in the explicit workspace by computing the minimum distance d between robot
and obstacles
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The evduation function is applied to the children, and they are placed on the OPEN lig in
order of ther heurigic vaues. The search continues until a god node is chosen for expat
sion, or the OPEN list is empty. In the latter case, the dgorithm stops with no solution. An
illugtretion of the agorithm is shown in Figure 2a

The evduation function f(n) = (1-w)g(n) + wh(n) is used, where g(n) is the number of
nodes of the path from the start node to node n, and h(n) is the Airplane disance in G
space between node n to the god node G;.* In the basic approach, the user has to slect the
god configuration G;. Collisons are detected by a fast, hierarchica distance computation
in the 3D workspace, based on he given CAD modd of the environment and the robot
[Henrich92, Henrich97¢€] (see Figure 2b).

For pardldizing® the A*-agorithm, the configurations in OPEN and CLOSED must
be accessible to al processors in order to distribute the work. These lists can ether be
managed by one dedicated processor or each processor has its own loca lists. In com+
monly available message passing systems, each accessng of a globa lig results in a high
communication effort. Thus the locd method is preferred. The work digribution is the
key aspect of pardldization. Here, the C-space is decomposed into d-dimensond hyper-
cubes of sze b in each dimendon. For paradle processing, the hypercubes are cydicdly
mapped blockwise on the p available processors. For detalls, see [Wurll98g].

We have implemented the pardld path planning method on a workstation cluster. The
cluger condsts of 9 PCs each with 133 Mhz Intd Pentium processors and 64 Mbyte
memory. The pardle communication is edablished by an Ethernet based bus network.
For more details see [Wurll97a]. For testing the path planning method, we have developed
five benchmark problems for the 6 DOF robot Puma260 [Katz96]°. Especialy benchmark
problems STAR (see Figure 1) and SIMPLE are interesting, since these have multiple goa
configurations. All other benchmarks have only one god configuration kecause the TCP is
located in a raher redricted area. Thus, the run-times of the following extended ap-
proaches are smilar to the one of the basic approach.

Increasing the weight w1 [0,1] beyond 0.5 generally decreases the number of investigated nodes while
increasing the cost of the solutions generated.

An overview and classification of different approaches to parallel motion planning can be found in [Hen-
rich97f].

The data of these benchmark problems can be downloaded from the Web page at
http://wwwipr.ira.uka.de/~paro/gkatz/benchmark.html
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Figure 3: Concept (a) and benchmark SIMPLE (b) as an example for a search in C-space starting at configu-
ration S with dynamic switching between multiple goal configurations G; and G,. The shading of the dotsin
(a) indicates the goal currently selected.

3 Goal switching

Previous run-time measurements show that the planning times are quite different for
the different goa configuration. They fluctuate between fractions of seconds up to the
insolubility of the task. However, it is impossble for the user to recognize beforehand
which god is favourable and which not. Thus, a method is required to cope with this prob-
lem during planning time. In the following, three different posshilities are shortly dis-
cussed. For details, see [Beeh97].

The smplest goproach is to saticdly sdect the god before searching. This is smilar
to the case where a goa configuration is selected by the user. For sdecting a favourable
god, the planning system requires meaningful criteria. In our case, the geometry of the
obstacles transformed into the corfiguration space is unknown, and solely the joint angles
of the start and god configuration are available. Thus, as sdection criterion only the joint
angle digance between the dart configuration and the god configurations is gpplicable.
This is a rather inappropriate criterion because obstacles frequently bar the direct way and
the search mugt find a long detour. The length of the detour stands in no relationship to the
joint angle distance of start and god. Therefore, this gpproach is dropped.

Another gpproach is to introduce an extra search front for each god. If there are n dif-
ferent god configurations, then n paths are searched smultaneoudy from the dart to al
god configurations. On te one hand, the unreachable goals are avoided in the sense that a
favourable goa will be found quickly. On the other hand, the planning takes n times
longer as the standard search for the most favourable goa. This may be acceptable for
nearby and a low number of god configurations, but as the single searches lecome more
time consuming, the ovedl planning time will teke too long. Additiondly, the multiple
search fronts cannot use a common OPEN-ligt, since they rate the single nodes differently.
Thus, an increesng number of god configurations and, with this, many OPEN-ligs will
findly lead to memory overflow.

In the third approach, called goal switching, a sngle search is accomplished as in the
origind dgorithm. If the planning sysem detects that another god is more favourable
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Figure 4: Run-times T for search towards fixed goal G (light grey) and automatic switching between goals G
(dark grey) for benchmark problems SIMPLE (a) and STAR (b). The problems, which could not be solved

due to memory overflow, areindicated by an arrow.

while searching, it will switch its search direction to the new goa (see Figure 3a). Thus,
the search aways sdects the currently best god. This switching can be redized very sm+
ply by a smdl modification in the heurisic evduaion h(n) of current node n: Instead of
usng the C-space distance of n to one god, the minimum distance of n to al gods is used
if it is smdler than the former one. With this, the search pace is dvided in different areas
with nodes that are nearer to one goa than to dl other goals.

In a configuration space with no obstacles, goa switching will have no effect. Due to
the best-first paradigm, the search will choose one god and runs directly towards it. The
other gods are no longer congdered. The god switching acurs firg, if an obstacle blocks
the direct way to the god. In this case, the bext-first search tries to surround the obstacle.
During this operation, it can happen that a node lying in the area of an other god is e-
panded. The prior god is dropped and the search switches to the new god. Figure 3b illus-
trates how the search towards the first god G; results in a surounding operation until the
search front gpproaches goa G, so that it is now more favorable.

For the experimenta results the efficiency of god switching depends greetly on the
computation of the heuristic, since only it determines which god is the next most favou-
able. We have to choose some reasonable parameter setting because the best setting is not
known beforehand. Thus, we choose the Airplane distance as h() and weight w = 0.99 be-
tween g() and h().

The experimental results for the goa switching gpproach are shown in Figure 4. For
benchmark SIMPLE in Figure 4a, the planning method sdects the fourth god and finds a
path in gpproximatdly the same time as the basc method. Thus, the additiona caculations
of the god switching cause an only dightly additiona expenditure. For benchmark STAR
in Figure 4b, the planning method tries to find a path to a god that is difficult to reach and
fals thereby. Thus the god switching gpproach has to cope with the problem, that the
sdlection of the most favourable god is based on a rather vague heurigtic. An ingppropri-
ate sdection will findly be corrected during the search. However, this may aready be too
late. It may happen that the searching towards an unfavourable goal wastes too much &-
fort, and the planning system fails due to memory overflow.
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Figure 5: Example for uni-directional (a) and bi-directional (b) search in C-space between start configuration
Sand goal configuration G. (2D dice of benchmark DETOUR from [Katz96])

4 Bi-directional search

Path planning is a specid type of search problem, where the gtart and the goa con
figuraion are known in advance. Therefore, it is possble to search not only from the start
to the goa (forward search), but dso from the god to the sart (backward search). The bi-
directional search performs both search directions smultaneoudy. For example, see Fig-
ures 5 and 9. The search task is finished as soon as the two search fronts meet each other.
Then, the path of the forward search is connected to the inverse path of the backward
search.

There are two main advantages offered by the bi-directional search as compared to the
uni-directiond verson. Firs, depending on the given problem, the backward search can
be much smpler than the forward search usudly performed. This is the case, for example,
in Figure 5. Second, there can be improvements in the run-time complexity. A uni-
directional breadth-first search in a graph with branching factor b and length | of the solu-
tion path has a complexity of O('). The bi-directiona search has a complexity of O@"?) if
both search fronts meet gpproximately in the middle of the path [Nelson92]. This corre-
sponds to an exponentia run-time reduction.

Unfortunately, this reduction does not fully hold for the bedt-first search, because it
operates in a more god-oriented way than the breadth-fird search due to the heuridtic.
Thus, the search tree with depth | is not completely explored. This effect is reinforced by
the necessary weight w of the heurigic h(n), which results in an even more god-directed
search (see Section 2). Therefore, the mentioned run-time improvement is less Addition-
aly, it may happen that the forward and backward searches pass by each other and meet
after the middle. This so-cdled search anomaly worsens the run-time of the agorithm up
to twice the run-time for a uni-directional search.”

For implementing the bi-directiond search, there are basicdly two ways usng one or
two OPEN-ligs (smilar to god switching in Section 3). In the firs way, the nodes of the
forward as well as of the backward search are stored in a common OPEN-ligt. In esch

" A way out of search anomalies and the resulting problems are outlined in Section 6.
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Figure 6: Run-times T using the forward search to goal G (light grey) and using the backward search from
goal G (dark grey) for benchmark problems SIMPLE (@) and STAR (b)
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Figure 7: Run-time T for bi-directional search with one (dark grey) and two (light grey) OPEN-lists for dif-
ferent goals G of benchmark problems SIMPLE (a) and STAR (b)

search iteration, the currently best node is sdected from this list independently of search
direction it belongs to. This has the advantage that there is only little alditiond effort. On
the other hand, often only one search direction is pushed ahead. This is caused by the
weight w of the h-cost. The successor of the currently best node usudly has a better rating
than the node itsdlf, because it is located nearer to he god. Thus, once a search direction
is chosen, it will hardly be changed again. As a disadvantage, the planning system may
choose the wrong direction due to the uninformed heurigic. Findly, the two search fronts
will unlikdy meet in the middle thus the run-time improvement of the bi-directiond
search gets lost. For the paralld verson of the bi-directiond search with domain decom-
position, dl these effects occur if parts of the two search fronts are located in hypercubes,
which are mapped on the same processor. For details, see [Beeh97].

In the second way, two separate OPEN-lists are used for the forward and the back-
ward search (confer [Nassmi95]). In each search iteration, the currently best node is &
lected dternativdly from the two ligts, thereby processng the forward and backward
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Figure 9: Concept of bi-directional search: One Figure 10: Concept of multi-directional search with

front searches from start Sto goal G; a second goa switching: One front searches forward from

front searches from goal Gto startS. Theshading start S to multiple goals G; and G) with god

of the dotsindicate the goal currently selected. switching; Additional fronts searches backward
from each goal to the start.

search smultaneoudy. The overdl run-time is a most twice the run-time of the faster ver-
son of the forward and backward search processed separately. If the search fronts meet
each other before finishing their task, this run-timeis sped up.

Experimentd results with run-times of the separate forward and the backward search
for two benchmark problems are given in Figure 6. The forward direction of benchmark
SIMPLE can usudly be solved faster than te backward direction. For benchmark STAR,
it is mixed. For some search directions of both benchmark problems, no solution could be
found by uni-directional search due to memory overflow (indicated by arows in the fig-
ures). These results form the basis for the following comparisons concerning bi-directiona
search.

Experimentd results for the bi-directional search with one and two OPEN-ligs are
shown in Figure 7. For dmog dl god configurations of both benchmark problems, the
use of only one OPEN-lig is fagter than of two lists. The search was able to sdect the &
vourable search direction. As an exception, one OPEN-ligt for Goa 7 of benchmark
STAR fals because the planning method pushes the unfavourable direction. Here, two
OPEN-ligs are successful by smultaneoudy processing both directions. Comparing to the
uni-directional search in Figure 6, the bi-directiona search could solve one additiond
problem. The expected run-time reductions caused by meeting both search fronts could
not be vaidated, which is certainly vested in the high weight w of the heurigtic h().

5 Multi-directional search with goal switching

The approaches presented in the preceding two sections can be combined quite easlly.
There is one smultaneous forward search from the dat to al gods by god switching.
Additiondly, there are multiple backward search fronts from dl gods to the dart, result-
ing in a multi-directional search. For illustration of this concept, see Figure 10. The mul-
tiple backward searches use only one common OPEN-list, which has two dfects. Firg, the
memory requirement is much less than separate OPEN-lists for each backward search.
Second, the currently best gppearing search is dways pushed ahead a any one time. In the
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Figure 11: Run-times T for uni-directional search (light grey) and multi-directional search with goal switch-
ing between goals G (dark grey) for benchmark problems SIMPLE (@) and STAR (b)

pardld verson, the backward search fronts may be processed smultaneoudy if the corre-
sponding god configurations have been mapped on different processors. For detalls, see
[Beeh97].

The experimenta results for the multi-directiond search with god switching are
shown in Figure 11. For benchmark SIMPLE, the god configuration 6 is findly sdected.
It requires a somewha longer planning time than for god switching without multi-
directiona search. This is due to the expanson of dternaing nodes of the two OPEN-lids.
Sill, the run-time is very good, since the unsolvable Gods 1 and 2 are avoided automati-
cdly. For benchmark STAR, God 1 is findly sdected and the unsolvable Goals 6 and 8
are avoided automatically.

6 Conclusion and future work

We have presented a padld path planing sysem, which is adle to automaticaly
handle multiple god configurations as input. There are two basic gpproaches, god switch
ing and bi-directional search, which were combined in the end. God switching is done by
dynamicdly switching from one god to another depending on some distance function. Bi-
directional search introduces the probably faster backward search from the god to the dart
configuration. The multi-directional search combines these two basic approaches by ap-
plying one forward search with god switching and multiple backward searches, one for
each godl.

On the one hand, both basc approaches, goa switching and bi-directional search,
have their disadvantages. Goa switching has to cope with a weak heurigic, sSnce some-
times an unfavourable god is preferred. The bi-directional search has the problem of a
double search effort, which is worth it if the backwards search is smpler. On the other
hand, the bi-directional search can decrease the effects of the weak heurigtic used for goad
switching. God switching helps bi-directiond search by choosng the most smple (near-
est) god. Thus, the multi-directional search integrates the advantages of of the basic ap-
proaches. With this, it omits unsolvable goa's and achieves short run-time resuilts.

Additiondly, multi-directional search endbles the planning sysem to automaticdly
sect a favourable goad and to sdlect the shorter search direction by bi-directiona search



fronts. Thus, it is no longer necessary that the user sdects one of the god configurations
or a search direction. The sdlected god is not necessarily the best one, but it certainly is a
better choice than the one of the user, since it is based the ontline avaladle information
not available for the user.

The presented path planning method can be extended in two ways. Firs, in the pard-
ld bi-directiond search, a wave-shgping mechanism may be useful to avoid possble dou
ble search effort. With wave-shaping, the search directions of the two search fronts aways
point to each other. This extenson can be redized quite smply for sequential processng.
For pardld processng with domain decompostion as a load didribution, it is expected
that wave-shaping will cause a high communication effort. Second, in the pardld multi-
directiond search, an improved load distribution may be useful to avoid idle times at the
beginning of the search. This can be done by mapping the hypercubes onto processors
such that the start and each goa configuration are mapped onto different processors. In
this case, each processor provided with a god configuration will have useful work from

the very beginning.
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