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Abstract. In this paper we introduce a probabilistic approach to sup-
port visual supervision and gesture recognition. Task knowledge is
both of geometric and visual nature and it is encoded in parametric
eigenspaces. Learning processes for compute modal subspaces (eigen-
spaces) are the core of tracking and recognition of gestures and tasks.
We describe the overall architecture of the system and detail learning
processes and gesture design. Finally we show experimental results of
tracking and recognition in block-world like assembling tasks and in
general human gestures.
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1 Introduction

Eigenspace representations obtained with Principal-Component Analysis [12]
provide compact representations of both visual appearance (color and tex-
ture) and object geometry (rigid and non-rigid deformations). These models
capture the main characteristic variability in spatial and temporal domains.
They are useful for general gesture recognition [3]. View-based approaches
rely on image models. Spatial variability is used to model human face appear-
ance [18] and [15]. The relation between pose and appearance parameters
is studied in [17]. Robust models are described in [2]. Lips motion models
[13] and general gestures [16] [8] [7] are based on temporal variability. On
the other hand geometric eigenmodels are applied to model object deforma-
tions: in [19] natural shape recognition is based on eigenmodels, and, finally
in [4] [5] [14] deformable model fitting is driven by projecting shape infor-
mation in low-dimensional spaces. Appearance and geometric information
is integrated in [6]. We propose a gesture tracking and recognition system
which is based on geometric and visual appearance. The key question is to
combine several sources of variability (eigenspaces). These modal spaces are



the core of the system. In the first section we define a general gesture model.
In the second we present the modules of the system. Learning processes and
eigenspaces are defined in the third section. Finally we present tracking and
recognition results.

2 Gesture Models and Perceptual Processes

2.1 Gesture Models: Objects and Constraints

An Action/Gesture model M= [O(t),C(t)] defined ∀t ∈ T over a temporal
window T = [ts, te] consists of two basic elements :

1. Object/Entity Set: O(t) = [Ti(t),Pi(Φ(t))]gi=1 which parametrically de-
fines the objects, entities or regions of interest for the task of visual
supervision. We consider two types of objects: primary (reference ob-
jects) and secondary. For each object we must specify time-dependent
parametric functions which characterize:
(a) Geometric Appearance: T (t) = [ΘM(t),ΘP (t)] includes morpholog-

ical1 parameters ΘM(t) and positional/affine 2 parameters ΘM(t).
(b) Visual Appearance: P(Φ(t)) = [ΘI(t)] associates a characteristic

brigthness pattern 3, defined by the parameters ΘI(t), to each object
or entity; and incorporates a time-warping function Φ(t) for compen-
sating time-delay effects.

2. EigenConstraint Set: C(t) defines spatio-temporal bounds over geometric
and appearance parameters. These bounds are of stochastic nature and
can be:
(a) Absolute Constraints: Cabs(t) = [Aj(t)]aj=1 which are associated to

primary objects and locally constrain the morphlogical or positional
evolution. They are denoted are byA(ΘM(t)) in the first case and by
A(ΘP (t)) in the second.

(b) Relative Constraints: Crel(t) = [Rk(t)]rk=1 are denoted byR(ϕ(ΘP (t)))
and relates with ϕ(ΘP (t)) positional parameters of primary objects
with parameters, of the same type corresponding to secondary ob-
jets.

(c) Appearance Constraints: Capp(t) = [PWl(t)]al=1 associated to every
object and denoted by PW(ΘI(t)) and define intensity models for
performing texture/color segmentation and classification.

Each gesture or action is then characterized by the spatio-temporal vari-
ation of both affine and free-form parameters associated to the objects of
the structure.

1 Local deformations.
2 Translation, rotation and scale.
3 Light effects, color, texture.



2.2 Perceptual Processes: from Learning to Recognition

Assuming this geometric approach, the task of extracting usefull medium-
level information from image sequences can be performed by a set of Per-
ceptual Processes capable of learning, tracking and recognizing geometric
spatio-temporal paths. These processes, which rely on a modal based ap-
proach, can be categorized as follows:

1. Learning Processes: for deriving the characteristic constraint parameters
by means of extracting and analyzing their associated eigenspaces with
quality ζ ∈ [0,1] which indicates the proportion of variability consid-
ered:

(a) :learn-geometric(SG(t),A(t)/R(t), ζ) extracts an absolute A(t)
or relative R(t) modal space from a geometric training set SG(t).

(b) :learn-color(SC(t),PW(t),W,ζ) once a size mask W is defined,
and given a color training set SC(t) this process computes a RGB
parametric space PW(t) which contains the color specifications of a
region.

2. Segmentation and Tracking Processes: color segmentation, prediction
and estimation of local and structural configurations is guided by the
knowledge previously learnt:

(a) :filter-color(I(Φ(t)),PW(t)) peforms local color segmentation over
I(Φ(t)) by mask convolution (eigenspace projection and color recog-
nition). The result is a binary image P(Φ(t)) which is processed with
morphological filters (opening and closing).

(b) :track-local(T (t),P(Φ(t))) once color segmentation is performed,
this process locally computes morphological and positional param-
eters of a primary object without applying constraints.

(c) :predict-local(T (t),Cabs(t)) uses absolute constraints to predict
the future configuration of a primary objects. If this prediction fails
we must apply free local tracking.

(d) :track-global(O(t),Cabs(t) ∪ Cret(t)) combines the absolute pre-
diction with the relative constraints to perform structural or coupled
tracking [11].

3. Recognition/Interpretation Processes: once tracking is performed the para-
metric spatio-temporal path is estimated. Then we use the Mahalanobis
distance metric, with quality ζ, for recognition:

(a) :satisfy-constraint(O(t),A(t), ζ) a constraint is satisfied by an
structure or object set if the projection of the corresponding parame-
ters over the eigenspace falls inside the admissible probabilistic lim-
its.

(b) :satisfy-all(O(t),Cabs(t) ∪ Cret(t)) an object set fits a gesture
model if the number of satisfied constraints is greater than a thresh-
old.



3 Learning Processes and Gesture Models

3.1 EigenConstraints

Learning processes which are performed off-line are the core of the system.
Their purpose is to compute EigenConstraints, i.e. modal spaces which cap-
ture the main variability from the covariance matrix of each training set.
Constraint definition, and hence gesture design, includes serveral specifica-
tions. The processes :learn-geometric and :learn-color must take into
account the following items:

: Constraint type (absolute, relative or appearance).
: Parameter Type which can geometric (morphological, positional) or vi-

sual (representing color or texture).
: Parameters for representing contours (morphological), center coordi-

nates, angles, scales (absolute positiona), distances, relative angles, rel-
ative scales (relative position) and intensity patches (color or texture).

: Dimension or number of parameters defined in the original parametric
space. The computation of eigenspaces usually induces a reduction of
this dimension.

: Scopewhich can be static (time-independent variability) or dynamic (time-
dependent variability).

: Envelope which is the degree of genericity (high variability/acceptance
limits induce general constraints and low limits define more specific con-
straints).

: Quality which is number of modes of variation considered (few modes
if variability is concentrated and more modes otherwise).

: Role which can be local (the scope is an individual object) or structural
(associated to a group of objects).

In Table 1 we have presented all possible types of constraint which can be
defined. The parameters that support these constraints are listed in Table 2.

3.2 Gesture Design: Combined Variability

The effect of these considerations, specially the scope and role, depends on
the task to be supervised, the types of objects involved and their relation-
ships. The key point is to combine different sources of variability for efficient
and complete gesture design. General principles of gesture design are listed
below:

1. Morphological constraints are individually assigned to each object (they
are local). It is assumed a static scope if spatio-temporal shape variability
is too low (near constant) or too high (it is not possible to obtain a well
defined temporal path).



Table 1. Gesture specification. Types of EigenConstraints

Constraint Parameter Type Parameters Dimension Scope Role

Morphological [ΘM(t)]
tf
t=t0 2× p × T/∆t Dynamic Local

Morphological [ΘM]
tf
t=t0 2× p Static Local

A Positional [ΘP (t)]
tf
t=t0 {2T , T}/∆t Dynamic Local

Positional [ΘPi(t)]
g,tf
i=1,t=t0 g × {2T , T}/∆t Dynamic Global

Positional [ΘPi]
g,tf
i=1,t=t0 {2× g,g} Static Global

Positional [ϕ(ΘP (t))]
tf
t=t0 T/∆t Dynamic Local

R Positional [ϕk(ΘP (t))]
(g2),tf
k=1,t=t0

(
g
2

)
× T/∆t Dynamic Global

Positional [ϕk(ΘP )]
(g2)
k=1

(
g
2

)
Static Global

P Texture [ΘI(t)]
tf
t=t0 3×W × T/∆t Dynamic Local

Color ΘI 3×W Static Local

Table 2. Parameters/Support for EigenConstraints

Constraint Parameter Type Parameters

Morphological ΘM = [xi,yi]pi=1

A Translation ΘPt = [txi, tyi]gi=1

Scale ΘPs = [sxi, syi]gi=1

Rotation ΘPθ = [θi]gi=1

Distance ϕk(ΘPt ) = [||(txi, tyi)− (txj, tyj)||2](
g
2)
k=1

R Scale ϕk(ΘPs ) = [||(sxi, syi)− (sxj, syj)||2](
g
2)
k=1

Angle ϕk(ΘPθ ) = [||(θi − θj)||2]
(g2)
k=1

P Color ΘI = [rl, gl, bl]Wl=1

2. Absolute Positional constraints can be local if they are assigned to refer-
ence objects and global if they are associated to a group of objects. In
this case it is not necessary to formulate relative constraints, although it
can be used to enforce absolute constraints, but spatial invariance is not
considered. However, grouping with absolute constraints compensates
delays due to individual objects and simplifies tracking.

3. Relative Positional constraints are usually global and, in this case, they
include parameters extracted from pairs of objects. It is interesting to
apply these constraints in combination with absolute constraints, asso-
ciated to reference objects, in order to simplify tracking processes (cou-
pled tracking). These constraints introduce spatio-temporal invariance.

4. Appearance constraints are always local. They are dynamic when we are
interested in using texture variation for recognition and static otherwise
(use color to identify regions of interest).



4 Tracking and Recognition Examples

4.1 Tracking of Visual Tasks

We have defined spatio-temporal constraints for tracking a block-assembling
task which consists of pushing four coloured blocks (objects) following a
specific order and assumning uniform speed. Considering T = 35 frames
and ∆t = 1 and using a robust super-elipsoidal local tracker [9] the assem-
bling gesture is described in Table 3. Scale and and color parameters are con-
sidered near constant along the sequence. The size of color space is 5×5 (75
RGB parameters) and the morphological filter is an opening with a squared
estructuring element of size 3× 3. Form is modelled by a shape parameter
so it is no necessary to compute non-rigid eigenspaces. Position changes are
modeled with trajectories and relative distances used to enforce coupled
tracking. Tracking results are showed in Fig. 1,Fig. 2 and Fig. 3.

Table 3. Gesture specification. Block Assembling Task

Constraint Parameter Type Quality Scope Role

Absolute Positional (translation) 0.9 Dynamic Global
Absolute Positional (rotation) 0.9 Dynamic Global
Absolute Positional (scale) 0.9 Static (≈ 0.0) Global
Relative Distance 0.9 Dynamic Global

Appearance Color 1.0, 0.95 Static (≈ 0.0) Local

Fig. 1. RGB Color Segmentation.



Fig. 2. Coupled Tracking. Result with a good input sequence: the camera follows
both the right pushing order and moving speed.

Fig. 3. Coupled Tracking. Result with a bad input sequence: blocks are pushed in the
right order but there is a high delay (lookahead) in the first phase of the sequence.

4.2 Tracking and Recognizing Human Gestures

Finally we present another example from human gesture tracking. In this
case objects are templates are associated to the head and hands. In this
case T = 10 frames and ∆t = 1 and a robust elliptical template [10] model
suffices. In this case only absolute constraints are used. Scale is considered
near constant along the sequence. Position changes are modeled with trajec-
tories. Grey segmentation and morphological filters are applied so we can
avoid computing color eigenspaces. Tracking results are showed in Fig. 4
and Fig. 5. We have learnt two gesture models. Both gestures are described
in Table 4. In the first one the right hand follows a parabolic motion. In the
second model this motion is linear. When the input sequence, which satisfies
the first model, is presented, it will be recognized by the first tracker because
the number of satisfied constraints will be greater than the number of sat-



isfied constraints in the second case. If the envelope of these constraints is
too high this input will be recognized by both models.

Table 4. EigenConstraints specification. Human Gesture

Constraint Parameter Type Quality Scope Role

Absolute Translation 0.9 Dynamic Global
Absolute Rotation 0.9 Dynamic Global
Absolute Scale 0.9 Static (≈ 0.0) Global

Fig. 4. Human Gesture Tracking. From top to bottom and from left to right: several
frames, potential fields, initial position and final position of the first model.

5 Conclusions

We have presented a combined variability approach to learn visual task and
human gesture models by means of eigenspaces. We have presented the
general gesture model and the set of perceptual processes which perform
learning, tracking and recognition. Constraint design and learning are de-



Fig. 5. Coupled Tracking. Left: results using the first gesture model. Right: result
with the second model. The input sequence fits the first model.

tailed and practical tracking and recognition results are presented.
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