
 Lecture Notes in Artificial intelligence

SOFT COMPUTING AND HYBRID AI APPROACHES
TO INTELLIGENT MANUFACTURING

László Monostori, József Hornyák, Csaba Egresits, Zsolt János Viharos

Computer and Automation Research Institute, Hungarian Academy of Sciences
POB 63, H-1518 Budapest, Hungary

{laszlo.monostori, hornyak, egresits, viharos}@sztaki.hu

Abstract. The application of pattern recognition (PR) techniques, artificial
neural networks (ANNs), and nowadays hybrid artificial intelligence (AI) tech-
niques in manufacturing can be regarded as consecutive elements of a process
started two decades ago. The fundamental aim of the paper is to outline the im-
portance of soft computing and hybrid AI techniques in manufacturing by in-
troducing a genetic algorithm (GA) based dynamic job shop scheduler and the
integrated use of neural, fuzzy and GA techniques for modeling, control and
monitoring purposes.

1 Introduction

The term of Intelligent Manufacturing Systems (IMSs) can be attributed to a tentative
forecast of J. Hatvany and L. Nemes from 1978 [5]. In another landmark paper of
J. Hatvany in 1983, IMSs were outlined as the next generation of manufacturing sys-
tems that - utilizing the results of artificial intelligence (AI) research - were expected
to solve, within certain limits, unprecedented, unforeseen problems on the basis even
of incomplete and imprecise information [4].

Soft computing technologies, like ANNs, fuzzy systems, GAs, probabilistic tech-
niques, their combinations and their hybrid use with more traditional symbolic ap-
proaches of AI are prospective tools for realizing systems with the required behavior.

2. Dynamic job shop scheduling based on GAs

A job shop is a manufacturing production environment where a set of m jobs J = {J1,
… , Jm} has to be performed on a set of n machines (or resources) R = {R1, … , Rn}.
Each job Ji is composed of a set of operations (or tasks) oij, i = 1, … m, j = 1, … m(i),
where i is the index of the job, and j is the index of the step (task, operation) in the
overall job. In this context, tasks (operations) are regarded as scheduling entity.

The job shop scheduling problem involves the synchronization of the completion
of m jobs on n resources, known as an NP-hard combinatorial optimization problem.

Zsolt
Text Box
Monostori, L.; Egresits, Cs.; Hornyák, J.; Viharos, Zs. J.; Soft computing and hybrid AI approaches to intelligent manufacturing. Lecture Notes in Artificial Intelligence, LNAI 1416, 11th International Conference on Industrial & Engineering Applications of Artificial Intelligence & Expert Systems, Castellon, Spain, 1998 jun 1-4. , pp. 763-774.

 Lecture Notes in Artificial intelligence

Scheduling is a constraint satisfaction problem where the various technological, tem-
poral and resource capacity constraints are often ill-defined, multiple and conflicting.
Several approaches have been proposed and applied for scheduling in the manufactur-
ing domain, including linear, integer, non-linear and dynamic programming, (AI-
based) heuristics, GAs, simulated annealing, dispatching rules, simulation, etc. or
their combinations.

In the paper a GA-based on-line dynamic scheduling is presented, which is able to
• generate near optimal, valid schedules within a short time,
• react on new external and internal conditions,
• apply varying scheduling horizon, and in connection with the above issues, to
• treat alternative process plans, and
• handle multiple schedule variants at the same time.

2.1 Genetic Algorithms for job shop scheduling

The advantages of GAs have been proven in ill-behaved (such as multimodal and/or
non-differentiable) and difficult to standardize problems. One of the earliest works on
GAs’ application to scheduling is published by Davis [1]. The representation and GA
operators suggested by him are memory-intensive and provide solution for a limited
set of problems giving the opportunity to improvement. Although Davis called the
attention to the fact that most of real-life scheduling problems involve ill defined
constraints, which are not suitable for the formal frameworks of Operations Research
(OR) techniques.

In a recent work an ordinal representation is introduced by Fang et al. [3], which
served as a basis for the current work by widening the standard set of constraints with
constraints of dynamic scheduling (e.g. deadlines and arrival times of jobs).

Additionally, in a realistic FMS environment, some further requirements have to be
taken into account, which can influence both the schedules’ feasibility and optimality.
These requirements include the treatment of:
• transportation times,
• set-up times which may be significant and sequence dependent,
• central and machine buffer, tool magazine and transportation capacities,
• alternative process plans for workpieces,
• operation range of the resources,
• alternative machines,
• tool life issues,
• original allocation and the occasional transportation of tools
• precedence between tasks of different jobs.

Comparing with makespan objectives of benchmark problems, schedule appraisal in a
factory is usually a much more complex assignment. There are a great variety of ob-
jectives based on complete time and due date (e.g. maximum complete time or
makespan, mean complete time, maximum flow time, mean flow time, maximum
lateness, mean lateness, maximum tardiness, mean tardiness, number of tardy jobs

 Lecture Notes in Artificial intelligence

and their weighted variants) and these can be mixed with cost-revenue or utilization
based fitness functions as well.

The proposed genetic algorithm is based on ordinal representation and schedule
builder detailed in [10]. The representation involves information only about how to
build a schedule and not about the schedule itself. As a consequence of this distinction
between genetic coding and schedule generation, different constraints can be treated
without any modification in the core algorithm.

The schedule builder guarantees that the schedule made by this way is nondelay
and legal. The property of nondelay means that a machine immediately starts a task
when it is ready to be processed and legal indicates that the schedule satisfies all con-
straints, for which the schedule builder was prepared.

Population
Crossover

Selection

Mutation

Fitness

Schedule
BuilderResources Jobs

Internal
disturbancies

Passing of
time

New job
release

Figure 1. Functional architecture of the GA-based dynamic scheduler

2.2 On-line and dynamic aspects of the proposed solution

The GA solution presented here was planned to treat insertion new jobs in the popula-
tion, passing of time and occupation of machines for a certain interval in the case of
machine breakdown or repair. These events are treated while the program is continu-
ously searching for better and better schedules (Figure 1).

Every event (passing of time, release of new jobs, delays, breakdowns, modifica-
tion of deadlines or arrival times and change in fitness function) influences the indi-
viduals and their fitness values. With the exception of time passing, these events rear-
range the search space, therefore, modifications in the population have to be induced

 Lecture Notes in Artificial intelligence

(e.g. through increased mutation rate). After every event the preservation of the ap-
propriate part of schedule is recommended in contrast to scheduling from scratch.
Consequently, it is required to work out the reactions for different events.

The main difficulties come from the time-critical nature of dynamic on-line sched-
uling. The search space, however, can be dynamically modified, i.e. decreased (as
time passes, and tasks, jobs have been accomplished); increased (new jobs arrive at
the system), or rearranged (e.g. at disturbances).

In the case of on-line dynamic scheduling, there is a time constraint for the sched-
uler for finding the best possible result. The majority of time is consumed by the
schedule builder and the fitness calculation. The time required by the evaluation of
different individuals of a population is nearly constant and (between linearly and
quadratically) increasing function of the representation length; the search space, how-
ever, is exponentially growing with the problem size. So it is absolutely advised to
decrease the space on behalf of the search efficiency. Incoming jobs with large slack
time or later arrival time, can be filtered out.

Another way to improve efficiency is to filling up the initial population with ap-
propriate individuals. If a job has later arrival time and deadline than an other has,
then it is probably scheduled later and is further back in the string of an optimal indi-
vidual. A guided, not uniformly distributed initialization of individuals can help GAs
in these cases. The second solution can be the incorporation of built-in heuristics,
which produce immediate decisions in critic situation as well.

2.3 Results

The proposed solution has been extensively tested on different benchmark and indus-
trial problems [10].

Figure 2 and Figure 3 present an exemplary comparison of a dynamic scheduling
problem. The first Gantt-diagram is the result of the problem with full information
about future jobs at zero time and the second diagram shows this on-line variant,
when additional jobs arrive in three points of time during scheduling.

Table 1. Start time, deadline and arrival time of the exemplary
dynamic scheduling problem.

Jobs Start Time Deadline Arrival Time

1, 2, 3, 4 0 500 0
5, 6 150 700 100
7, 8, 9 300 900 250
10, 11, 12, 13, 14 450 1100 400

Table 1 shows the start times, deadlines and arrival times of jobs. At arrival time

the scheduler gets the information about jobs and the start time of a job means the
earliest time, when the first task of this job can be started to be proceeded. The axis x

 Lecture Notes in Artificial intelligence

of Gantt diagrams is graded by 100 units of time. A rectangle with the number of the
corresponding job indicates a reserved interval on a machine and shades help only to
identify the jobs. The fitness function of GAs in both cases is the sum of lateness of
jobs without any additional condition, so any schedule with zero lateness is equally
appraised and considered as optima in this comparison. In Figure 2, the Gantt diagram
shows an optimal schedule. In the case of on-line dynamic scheduling in Figure 3,
only Job 3 (its last task is on machine 3) is delayed for 32. This delay was got after
the first set of additional jobs had arrived. Originally, the optimal schedule for the
first 4 jobs was reached very easily, but this early decision constrained later decisions.

Figure 2. Gantt diagram of schedule made at zero time on the basis of full information of jobs

Figure 3. Gantt diagram of schedule made by on-line dynamic scheduling

As future research issues search spaces of dynamic scheduling problems, behavior
and efficiency of GAs in time-critical situations will be examined. The applicability
of the GA-based scheduling approach in a distributed environment is also investi-
gated.

3. Monitoring of manufacturing processes by combining soft
computing approaches

Artificial neural networks have proven to be equal, or superior, to other pattern recog-
nition learning systems over a wide range of domains, also in cutting tool monitoring

 Lecture Notes in Artificial intelligence

[8]. However, the majority of ANN models (e.g. the most frequently used back
propagation model) have a set of problems:
• lengthy training times,
• dependence on the initial parameters,
• lack of a problem-independent way to choose appropriate network topology,
• the incomprehensive (black box) nature of ANNs.

On the other hand, fuzzy systems usually do not incorporate learning ability, and it
is very hard to identify fuzzy rules and tune membership functions.

3.1 Genetic algorithms for generation of neuro-fuzzy structures

In [7] a neuro-fuzzy approach was introduced and its applications in manufacturing
were described. The implemented neuro-fuzzy model basically follows the main ob-
jectives of the solution described by Lin and Lee [6].

The system consists of five layers (Figure 4), the linguistic nodes in layers 1 and 5
represent input and output variables, respectively. Nodes in layer 2 and 4 are term
nodes acting as membership functions (MBFs) to represent the terms of the given
linguistic variable. Each neuron of layer 3 stands for one fuzzy rule (rule nodes).
Links pointing to layer 3 define the preconditions of the rule nodes, and links between
layers 3 and 4 incorporate the rules’ consequences [7].

The learning algorithm of the Lin-Lee model consists of four consecutive steps [6]:
• determination of the MBFs by self-organized clustering,
• selection of the most important fuzzy rules by competitive learning,
• elimination and combination of rules,
• adjustment of MBFs’ parameters by supervised back propagation learning.

In the NF model the selection of important fuzzy rules proceeds by competitive
learning, requiring the generation of the whole structure at the beginning of the learn-
ing process, i.e. the net with all possible rules. This means that - at the early stage -
the third layer has as many elements, as the product of the number of different MBFs
assigned to the input variables. The approach leads to a combinatorial explosion,
consequently, is suitable for building fuzzy logic systems with a relatively small
number of linguistic variables. Another drawback to be mentioned is that the subset of
“best” rules selected by the competitive phase is not necessarily the “best” subset of
rules. The main goal of the solution described here is to eliminate these shortcomings
by using genetic algorithms (GAs) for rule generation (replacing steps 2 and 3 in the
above 4-step learning process).

3.2 GA representation of fuzzy rule blocks

A genetic algorithm can be used to discover a desirable optimal set of rules. In the
proposed approach, instead of using a binary string, integer number string (a vector)

 Lecture Notes in Artificial intelligence

was used to represent a particular case or object. An individual of population is inter-
preted by a fuzzy rule set which is coded to a string (Figure 4).

S = 2...2 4 3...1 1 . . . 4... 3 2{ { {R1 R2 Rr

F1

Fn

O1

R1= 2...2 4

R2= 3...1 1

Rk= 4...3 2

R1= 2...2 4
R2= 3...1 1

Rr= 4...3 2

{{

Preconditions Consequence
Figure 4 Representation and genetic coding of the neuro-fuzzy rules [7]

Let’s consider the case with n input variables (F1-Fn) and one output variable
(O1). A rule has the following form:

IF F1 is middle and F2 is high and...and Fn is low THEN O1 is weak, where mid-
dle, high, etc. are MBFs of the corresponding variables. In the chosen coding, the
MBFs of the k-th input or output variable are one by one mapped to natural numbers
in interval [1,2,...,jk], where jk denotes the number of all possible MBFs of the given
variable. A rule set consists of maximum r pieces of rules and an individual (rule set)
is coded to a string:

S=a11a12...a1nb1 a21a22...a2nb2 ... ar1ar2...arnbr , (1)

where ali and bl are the mapped values of the corresponding MBFs of the i-th input
and the output variable, respectively, in the l-th rule. If, e.g., the F1 input variable has
four membership functions very_high, high, low and very_low, and F1 is high in the
ith rule, then ai1=2.

A population contains strings with the same length. A special rule, named “empty”
rule, is introduced in the representation without any preconditions and consequences.
Every rule is of the same length, therefore, the empty rule is coded with n+1 (number

 Lecture Notes in Artificial intelligence

of inputs + number of outputs) “0” characters. Spreading of empty rules results in
decreasing the number of rules in a rule set.

Most of NF models operate with rules having all preconditions, and generating rule
set with incomplete rules or simplifying and reducing rule sets cause difficulties. In
this representation introduction of incomplete rules is a trivial task. “0” characters are
simply allowed in place of any ali. As a further benefit, this solution substantially
expands the search-space.

Usual genetic operators (single and multipoint crossover and mutation) are used in
the new approach. For fitness calculation the system has to generate the rules for the
net and run a forward process. In case of classification problems, the fitness value was
chosen to be a function of the weighted quadratic error of the training patterns using
the actual rule set, the recognition rate of the system (in case of estimation process
this factor is 1.0), the length of the rules and the size of the network:

Fit net o t Rij ij
j

K

i

N

() ()= −
⎛

⎝
⎜

⎞

⎠
⎟ ∗ ∗ ∗∑∑

=

−

2

1

1

1 2η η , (2)

where N is the number of patters in the training set, K is the number of outputs of
network, R is a monotonously increasing function of the recognition rate of the sys-
tem, η1 measures the length of rules (shorter rules are better) and η2 measures the size
of the network (smaller network is better).

3.3 Experiments

One the one hand, some well-known benchmark problems (Iris, Spiral of Archimedes,
XOR) where the properties of the data are known well and which are used in various
papers to illustrate the capabilities of unsupervised and supervised systems. The de-
scribed neuro-fuzzy algorithm resulted in comparable performance, eliminating some
shortcomings of the BP approach enumerated in the introduction, however, some-
times with lower recognition rate for training patterns [2].

Other investigations referred to the state classification of milling tools. Given 4
wear classes (sharp tools, tools with an average wear of teeth of 0.25 0.45 mm, re-
spectively, and tools with broken (missing) insert), the task was to generate and com-
pare ANN and NF structures able to reliably classify unknown patterns characterizing
different wear states.

Using the Lin-Lee model, after the initialization phase, taking all the possible com-
binations, according to the 4, 3, 2, 3, 4, 4 MBFs assigned to the 6 input linguistic
variables, 4*3*2*3*4*4 = 1152 rule nodes were generated. During the competitive
learning phase 1138 (!) of them were deleted, resulting in a network structure with 14
rules. This self-organization is a very important feature of the chosen model. The
number of eliminated links was 4594 [9].

Applying genetic techniques, the algorithm generally offers solutions with shorter
and simpler rule sets and results in comparable recognition performance as the inves-
tigated previous NF approaches [2]. The introduction of empty rules gives chances to

 Lecture Notes in Artificial intelligence

decrease the number of rules helping to evolve the optimal subset of rules. The per-
mission of incomplete rules offers simpler rule sets. Comparing the two neuro-fuzzy
techniques, in genetic model the algorithm eliminated further 32 precondition links
(Table 2), in contrast to the implemented version of the Lin-Lee model where the
rules are fully connected in precondition site.

Table 2 The set of rules remained after genetic learning [2]

 F1 F2 F3 F4 F5 F6 Outp.
1 high high -- -- high -- Wear025
2 high -- -- -- med -- Wear025
3 high -- -- -- high -- Wear045
4 m_high -- -- high med m_high Wear045
5 m_high m_low med -- high m_high Wear045
6 m_high m_low med -- med m_high Wear045
7 m_low -- low -- med m_low Broken
8 m_low low -- low -- m_low Broken
9 low low -- low -- m_low Broken
10 m_high m_low med -- med low Broken
11 m_low -- low high -- -- Sharp
12 m_low low -- low -- low Broken
13 m_low -- low low -- low Broken
14 low low low -- -- low Sharp

As a conclusion, NF systems as hybrid learning systems can comply with the funda-
mental requirements of intelligent manufacturing, namely real-time nature, combined
structure and parameter learning ability, handling of uncertainties, managing and
learning both symbolic and numerical information. This approach has the additional
benefits of explicit knowledge representation, which is easily modifiable, and incor-
porates a kind of explanation facility. Its structure is potentially applicable for inte-
grating pattern-based, rule-based and analytical knowledge, which integration is of
fundamental importance in different manufacturing assignments.

A genetic algorithm-based approach was introduced to overcome problems experi-
enced during applications of previous NF algorithms in manufacturing. The first re-
sults are promising. There are, however, numerous open problems also in this narrow
field, e.g. the automatic generation of the number of MBFs assigned to input and
output variables, the automatic or computer-aided partitioning and training of more
complex assignments, etc., which are subjects of further research.

4. Acknowledgments

This work was partially supported by the Nat. Res. Foundation, Hungary, Grant Nos.
F023628 and T026486. A part of the work was covered by the Nat. Comm. for Techn.
Dev., Hungary Grants (EU-96-B4-025 and EU-EU-97-A3-099), which promote Hun-

 Lecture Notes in Artificial intelligence

garian research activity related to the ESPRIT LTR Working Groups (IiMB 21108 and
IMS 21995).

5. References

1. Davis, L., Job shop scheduling with genetic algorithms, in Proc. of the International Con-
ference on Genetic Algorithms and their Applications, Pittsburgh, Morgan Kaufman,
(1985) 136-140.

2. Egresits, Cs.; Monostori, L.; Hornyák, J., Multistrategy learning approaches to generate
and tune fuzzy control structures and their applications in manufacturing, Proceedings of
the Second World Congress on Intelligent Manufacturing Processes and Systems, June 10-
13, Budapest, Hungary, Springer, (1997) 88-94, also in Journal of Intelligent Manufactur-
ing, Special Issue on Soft Computing Approaches to Manufacturing, Chapman and Hall,
1998, (in print)

3. Fang, Hsiao-Lan; Ross, P.; Corne, D., A promising Genetic Algorithm approach to job-
shop scheduling, rescheduling, and open-shop scheduling problems, Proc. of the Fifth In-
ternational Conference on Genetic Algorithms, San Mateo, Morgan Kaufmann, (1993)
375-382.

4. Hatvany, J., The efficient use of deficient information, CIRP Annals, Vol. 32/1, (1983)
423-425.

5. Hatvany, J., Nemes, L.,. Intelligent manufacturing systems - a tentative forecast, In: A link
between science and applications of automatic control, Proc. of the VIIth IFAC World
Congress, (A. Niemi, (Ed.)), June 12-16, Helsinki, Finland, Vol. 2, (1978) 895-899.

6. Lin, C. H.; Lee, C. S. G., Neural-network-based fuzzy logic control and decision system,
IEEE Trans. on Comp., Vol. 40, Dec., (1991) 1320-1336.

7. Monostori L.; Egresits Cs.; Kádár B., Hybrid AI solutions and their application in manu-
facturing, Proc. of IEA/AIE-96, The Ninth Int. Conf. on Industrial & Engineering Applica-
tions of Artificial Intelligence & Expert Systems, June 4-7, 1996, Fukuoka, Japan, Gordon
and Breach Publishers, (1996) 469- 478.

8. Monostori, L., A step towards intelligent manufacturing: Modeling and monitoring of
manufacturing processes through artificial neural networks, CIRP Annals, 42, No. 1,
(1993) 485-488.

9. Monostori, L.; Egresits, Cs., On hybrid learning and its application in intelligent manufac-
turing. Preprints of the Second Int. Workshop on Learning in IMSs, Budapest, Hungary,
April 20-21, (1995) 655-670, and Computers in Industry, Special issue on Learning in
IMSs, Vol. 33, 1997, pp. 111-117.

10. Monostori, L.; Hornyák, J.; Kádár, B., Novel approaches to production planning and
control, IMS Europe 1998, April 15-17, Lausanne, Switzerland (in print)

11. Monostori, L.; Márkus, A.; Van Brussel, H.; Westkämper, E., Machine learning approaches to
manufacturing, Annals of the CIRP, Vol. 45, No. 2, (1996) 675-712.

