
Temporally Invariant Junction Tree for
Inference in Dynamic Bayesian Network

Y. Xiang

Department of Computer Science
University of Regina

Regina, Saskatchewan, Canada S4S 0A2
Phone: (306) 585-4088, E-mail: yxiang@cs.uregina.ca

Abstract. Dynamic Bayesian networks (DBNs) extend Bayesian net-
works from static domains to dynamic domains. The only known generic
method for exact inference in DBNs is based on dynamic expansion and
reduction of active slices. It is effective when the domain evolves rel-
atively slowly, but is reported to be “too expensive” for fast evolving
domain where inference is under time pressure.
This study explores the stationary feature of problem domains to improve
the efficiency of exact inference in DBNs. We propose the construction
of a temporally invariant template of a DBN directly supporting exact
inference and discuss issues in the construction. This method eliminates
the need for the computation associated with dynamic expansion and
reduction of the existing method. The method is demonstrated by ex-
perimental result.

Keywords: probabilistic reasoning, temporal reasoning, knowledge represen-
tation, dynamic Bayesian networks.

1 Introduction

Dynamic Bayesian networks (DBNs) [5, 9] extend Bayesian networks (BNs) [10]
from static domains to dynamic domains, i.e., domains that change their states
with time. A DBN consists of a finite number of “slices” each of which is a
domain dependence model at a particular time interval. Slices corresponding
to successive intervals are connected through arcs that represent how the state
of the domain evolves with time. Collectively, the slices represent the dynamic
domain over a period of time.

When inference must be performed over an extended period of time, it is not
feasible to maintain all slices accumulated in the past. Kjaerulff [9] proposed a
method, which we shall refer to as the dynamic expansion and reduction (DER)
method, to perform exact inference by dynamically adding new slices and cutting
off old slices. To the best of our knowledge, it is the only method explicitly de-
signed for exact inference in DBNs. However, as networks become more complex,
the method does not provide satisfactory performance in time-critical domains
[7].

In this paper, we investigate ways to improve the efficiency of exact run
time inference computation when the domain is either stationary or close to be
stationary. In Section 2, we define the terminology. Graph-theoretic terms that
may not be familiar to some readers are included in Appendix. In Section 3,
we propose the construction of a temporally invariant representation to support
exact run time inference computation. We discuss technical issued involved in
the subsequent two sections and demonstrate our method with an experiment
in Section 6.

2 Dynamic Bayesian Networks

A DBN [5, 9] is a quadruplet

GK = (
K⋃

i=0

Ni,

K⋃

i=0

Ei,

K⋃

i=1

Fi,

K⋃

i=0

Pi).

Each Ni is a set of nodes labeled by variables. Ni represents the state of a
dynamic domain at time interval t = i (i = 0, . . . , K). Collectively, N =

⋃K
i=0 Ni

represents the states of the dynamic domain over K + 1 intervals. Each Ei is
a set of arcs between nodes in Ni, which represent conditional independencies
between domain variables at a given interval. Each Fi is a set of temporal arcs
each of which is directed from a node in Ni−1 to a node in Ni (i = 1, . . . , K).
These arcs represent the Markov assumption: the future states of the domain is
conditionally independent of the past states given the present state. The subset
of Ni (0 ≤ i < K)

FIi = {x ∈ Ni|(x, y) ∈ Fi+1}

is called the forward interface of Ni, where (x, y) is a temporal arc from x to y.
The subset of Ni (0 < i ≤ K)

BIi = {y ∈ Ni|(x, y) ∈ Fi} ∪ {z ∈ Ni|z ∈ π(y) & (x, y) ∈ Fi}

is called the backward interface of Ni, where π(y) is the set of parent nodes of y.
Arcs of Ei and Fi are so directed that Di = (Ni ∪ FIi−1, Ei ∪ Fi) is a directed
acyclic graph (DAG). Each Pi is a conditional probability distribution

Pi =
{

P (N0) i = 0
P (Ni|FIi−1) i > 0

specified by a set of probability tables one for each variable x in Ni conditioned
on π(x). The pair Si = (Di, Pi) is called a slice of the DBN and Di is called the
structure of Si. Collectively, the slices of a DBN define a Bayesian network, whose
structure is the union of slice structures and whose joint probability distribution
(jpd) is the product of probability tables in all slices.

Figure 1 shows the structure of a DBN where N1 = {a1, b1, c1, d1, e1, f1},
E1 = {(a1, b1), (b1, c1), (b1, d1), (c1, e1), (d1, e1), (e1, f1)}, F1 = {(a0, b1), (f0, f1)},
FI1 = {a1, f1} and BI1 = {a1, b1, e1, f1}.

a

0

b
d

e
f

c

a

b
d

e
f

c

a

b
d

f
e

a

b
d

e
f

1

1
1

1
10

0

0
0

0

c0 c1

2

2
2

2
2

2

K

K
K

K
K

K

...

...

...

D D1 2 DKD

Fig. 1. A dynamic Bayesian network.

At any time t = j ≤ K, the slices S0, . . . , Sj−1 represent the domain history
and Sj+1, . . . , SK predict the future. Evidence (observations obtained in the past
and present) may be entered into S0, . . . , Sj. Limited by computational resource,
normally only Si, . . . , SK (i ≤ j ≤ K) are explicitly maintained, called active
slices of the DBN.

We assume that the DBN is connected. Otherwise the domain can be par-
titioned into independent subdomains each of which can be represented by a
separate DBN.

3 Temporally Invariant Template

Kjaerulff [9] proposed the DER method to perform exact inference in DBNs.
The method dynamically adds new slices to the front of active slices, converts
the expanded slices into a junction tree (JT) [8] representation, reduces the JT
by removing the parts corresponding to slices in the most remote history, and
uses the reduced JT to process new evidence.

The DER method is effective for domains that evolve relatively slowly, e.g.,
monitoring the effect of medical therapy [1] or commercial forecasting [3]. How-
ever, for fast evolving domains where inference computation is under time pres-
sure, e.g., mobile robot navigation [6] or automated vehicles [7], the computation
is “too expensive” as reported in [7].

We attribute the unsatisfactory performance of the DER method partially
to the expensive computation during dynamic expansion and reduction. We ar-
gue that in many practical applications, the domain is stationary or at least is
stationary for an extensive period of time before changing to a different (station-
ary) state. When the domain is stationary, the slices of the DBN are invariant
with time. If the number of active slices is also a constant, then dynamic ex-
pansion/reduction by the DER method is unnecessarily repeated over and over
again.

Forbes et al. [7] recognized this opportunity for improvement. They proposed
to precompile the slice of a stationary DBN into a “temporally invariant net-

work”. However, since the approach that they took was to replace exact inference
by approximate inference using stochastic simulation, they did not deal with the
issue of establishing a stable representation directly capable of exact inference.

Exact inference in BNs in general has been shown to be NP-hard [2]. More-
over, approximate inference is also NP-hard [4]. On the other hand, efficient
algorithms for exact inference [10, 8, 13] are available when the graphical struc-
ture of a BN is sparse. The approach taken in this study is to investigate ways to
improve the efficiency of exact inference. To this end, we explore the stationary
property of the DBN by precompiling a run-time slice representation capable of
supporting more efficient exact inference.

We assume that the number of active slices of the DBN is a constant (relaxed
in Section 7) m ≥ 1. Since the domain is stationary, the m active slices at any
two time intervals are identical. For the study of inference efficiency, it makes
no difference to treat the m slices as one big slice. Therefore, without loss of
generality, we can consider only the case m = 1.

As stated, we want to precompile some slice representation of a stationary
DBN that supports more efficient exact inference. The representation consists
of a graphical structure and the associated conditional probabilities. Once such
a representation is constructed, a copy of it can be stored as a template which
we shall denote by T . Inference using the template works as follows:

At any time interval t = i, place an active copy Ti of T in the memory. Ti

is identical to T except that it has absorbed all evidence acquired when t < i.
To proceed in time, we evolve Ti into Ti+1. First, we cache the belief on some
interface (defined below) between Ti and Ti+1. Then belief of T is copied into
Ti. This effectively makes Ti identical to T without changing the overall data
structure of Ti (e.g., the internal representation of the graphical structure). The
belief of Ti is then updated using cached belief, which turns (physical) Ti into
(logical) Ti+1. Now Ti+1 has emerged and is ready to process new evidence while
Ti has vanished.

We emphasize that the above inference uses only two physical copies of the
template, T and T ′, and only the belief of T ′ is modified from interval to interval.
Much computation required by DER method is no longer needed.

4 Defining Subnet

In order to construct the template, a portion of the DBN must be selected, which
we refer to as a subnet. It may or may not be identical to a slice. The subnet may
be multiply connected in general. To allow efficient exact inference, we convert
it into a JT representation [8] as the run-time template.

Instead of defining the subnet first and then converting to template, we may
conceptually first convert the DBN into a JT, then select a subtree T of it as the
template, and finally determine the corresponding subnet. The subnet/template
pair must be such that the template contains exactly the set of variables of the
subnet, namely, no clique in T contains variables outside the subnet. When this

is the case, we say that the subnet and the subtree template covers each other.
We will define the subnet in this way.

As in the standard method [8], the process of converting the DBN into a
JT consists of moralization, triangulation, organizing cliques into a JT, and
assigning belief to each clique. As we shall see, to ensure that the subnet is
covered by a subtree, triangulation is the key step in this process.

We define some minimum separator of the moral graph of DBN as the in-
terface between Ti and Ti+1, denoted by Ii. This is semantically correct since
variables in a separator renders the two groups of variables it separates condi-
tionally independent.

We use node elimination to triangulate (Appendix) the moral graph. The
elimination order will be consistent with the order that each Ti emerges and
vanishes. That is, for each Ti (0 < i ≤ K), nodes contained in Tj (0 ≤ j < i),
except Ii, are eliminated before any node of Ti. We shall call any such order
a temporal elimination order. We show that in the resultant triangulation, the
interface Ii is complete.

Proposition 1 Let G = {N, E} be the moral graph of a stationary DBN. Let
Ii ⊂ Ni−1∪Ni (1 < i ≤ K) be a minimum graph separator of G. Let {Na, Ii, Nb}
be a partition of N such that Na and Nb are separated by Ii. Let G be triangulated
into G′ by eliminating all nodes in Na before any node in Ii ∪ Nb is eliminated.

Then Ii is complete in G′.

Proof:
We show that an arbitrary pair of nodes in Ii is connected in G′. Since the

DBN is stationary, there exists Ii−1 ⊂ Ni−2 ∪Ni−1 for i ≥ 2. Consider a pair of
nodes xi and yi in Ii and the corresponding node xi−1 in Ii−1.

Since the DBN is connected and Ii is minimum, there exists a path from xi to
xi−1 such that all nodes on the path are contained in Na, except xi. Otherwise,
for every path from xi to xi−1, there exists a node zi ∈ Ii. In that case, xi

may be removed from Ii such that Ii is still a separator, which contradicts the
assumption that Ii is minimum.

For the similar argument, there exists a path from yi to xi−1 such that all
nodes on the path are contained in Na. Hence, there exists a path from xi to yi

such that all nodes on the path are contained in Na. Due to Lemma 4 in Rose
et al. [11], the link {xi, yi} is in G′. 2

Proposition 1 implies that Ii is contained in a clique of G′ and so is Ii−1. If
we organize cliques of G′ into a JT, then all nodes of the DBN between Ii and
Ii−1 can be covered by a subtree that connects to the rest of the JT through
these two cliques. This subtree (a JT) can then be used as the run-time template.
This is justified in Theorem 3. Proposition 2 prepares for its proof.

Proposition 2 Let I be a complete separator between nodes x and y in a tri-
angulated graph G. Let Cx and Cy be two cliques of G such that x ∈ Cx and
y ∈ Cy. Then there exists a JT T of G such that I is either a sepset on the
simple path from Cx to Cy in T or is contained in a clique on that path.

Proof:
The set N of nodes of G can be partitioned into {Nx, I, Ny} such that x ∈ Nx,

y ∈ Ny, and Nx and Ny are separated by I. Since I is a complete separator,
the subgraph Gx spanned by Nx ∪ I is triangulated and so is the subgraph Gy

spanned by Ny ∪ I. Hence, a JT Tx of Gx exists and so does a JT Ty of Gy.
The two JTs can be combined into a single JT as follows: Identify a clique

Qx in Tx containing I and a clique Qy in Ty containing I. If one of the cliques
equals I, then join the two JTs by unioning Qx and Qy. If none of the cliques
equals I, then join the two JTs by a sepset I. The resultant is a JT that satisfies
the requirement. 2

The following theorem shows that a JT of a DBN can be found that consists
of a sequence of (sub)JTs chained together. The subJT will be our template.

Theorem 3 Let G = {N, E} be the moral graph of a stationary DBN. Let Ii ⊂
Ni−1∪Ni (1 < i ≤ K) be a minimum graph separator of G. Let {Na, Ii−1, Nb, Ii, Nc}
be a partition of N , where Na and Nb are separated by Ii−1, and Nb and Nc are
separated by Ii.

Then there exists a temporal elimination order triangulating G into G′, and
there exists a JT T of G′ that satisfies the following conditions:

1. There exists a subtree Ti connected to the rest of T through two cliques
Ci−1 ⊇ Ii−1 and Ci ⊇ Ii such that every clique in Ti is a subset of Ii−1 ∪
Nb∪Ii except that Ci−1 may contain nodes in Na and Ci may contain nodes
in Nc.

2. For each y ∈ Nb, y is contained in nowhere in T except in Ti.

Proof:
It suffices to show that for any x ∈ Na and y ∈ Nb where x is contained in a

clique Cx and y is contained in a clique Cy, it must be the case that Cx 6= Cy and
Ci−1 is on the path between Cx and Cy in some T obtained by some temporal
elimination order.

According to a temporal elimination order, x is eliminated before y. They
are in a same clique of G′ iff they are connected when x is eliminated. Since Ii−1

is the separator between x and y, y is not in the adjacency of x, and hence they
are not connected at the time x is eliminated. Hence Cx 6= Cy.

By Proposition 1, since Ii−1 is a minimum separator, Ii−1 is complete in G′

using any temporal elimination order. Hence Ci−1 exists in G′. By Proposition 2,
it follows that Ci−1 is on the path between Cx and Cy. 2

We can now define the subnet based on such a template.

Definition 4 Let Ii be a minimum separator in the moral graph of a DBN. Let
{Na, Ii−1, Nb, Ii, Nc} be a partition of N such that Na and Nb are separated by
Ii−1, and Nb and Nc are separated by Ii. The subgraph spanned by Ii−1∪Nb ∪ Ii

defines the structure of a subnet relative to separator Ii.

Through previous conceptual analysis, we have understood what the structure
of a subnet should be. In practice, the subnet obtained by Definition 4 will be
the starting point in the construction of a template.

5 Choosing Separator

Given the moral graph of a DBN, there are many minimum separators. We
first consider two immediate choices: the forward and backward interface. The
following propositions show that both can be used as the basis in choosing the
separator.

Proposition 5 Backward interface BIi is a separator in the moral graph of
DBN.

Proof:
BIi contains the head of each temporal arc and the parents of the head. In

the moral graph, every simple path from a node in Ni−1 to a node in Ni must
contain either a temporal link or a moral link. Hence, deletion of BIi renders
them separated. 2

Proposition 6 Forward interface FIi is a separator in the moral graph of DBN.

Proof:
FIi contains the tail of each temporal arc. In the moral graph, every simple

path from a node in Ni−1 to a node in Ni must pass the tail of a temporal arc,
and then either the corresponding temporal link or a moral link. Hence, deletion
of BIi renders them separated. 2

It should be noted that both forward and backward interface may not be
minimum separators. For example, let x ∈ Ni be the head of a temporal arc,
and y ∈ Ni be a parent of x. If y has no parent nor other child, then the minimum
separator based on BIi includes x but not y.

Similarly, if the tail of a temporal arc has no parent nor other child, then the
minimum separator based on the forward interface does not include this node.

Construction of the template requires assignment of belief to cliques of the
template JT. This is performed by assigning each node in the subnet to a unique
clique in the JT that contains the family of the node. The belief of a clique C is
initialized to the product of P (x|π(x)) for each x assigned to C. The family of
a node in the subnet may not be identical to its family in the DBN. This may
or may not cause problem in the belief assignment as discussed below:

First, consider a subnet defined based on forward interface FIi−1 and FIi.
The family of each node in this subnet is identical to that in the DBN except for
nodes in FIi−1. Since during inference, the belief on FIi−1 will be replaced by the
belief on FIi−1 from the previously active template, the belief on these nodes can
be left unassigned (equivalent to a constant belief). Hence, difference of family
size for nodes in separator FIi−1 causes no problem to belief assignment.

On the other hand, if the subnet is defined based on backward interface
BIi−1 and BIi, the situation is different. For example, let x ∈ Ni be the head of
a temporal arc, and y ∈ Ni be a parent of x. The parents of y in the DBN may
not be contained in the subnet. Therefore, P (y|π(y)) as specified in the DBN
cannot be included in the belief assignment. Without this piece of knowledge,
a correct belief assignment of the template cannot be accomplished. Therefore,

the belief assignment of a template cannot be performed locally using only the
subnet defined by backward interface.

Since forward interface separator allows local belief assignment and thus sim-
plifies the implementation of the template constructor, it is generally preferred
over backward interface separator. We shall call forward interface a self sufficient
separator. In fact, it is not the only self sufficient separator. We characterize such
separators as follows:

Definition 7 Let Ii be a minimum separator in a DBN and S be a subnet
defined by separators Ii−1 and Ii. Ii is self sufficient if for each node in S,
its family is identical to that in the DBN except nodes in Ii−1.

Since self sufficient separators simplify template constructor, they are gener-
ally preferred over separators that are not self sufficient.

Among self sufficient separators, different separators may produce templates
of different run-time computational complexity. It is known that the amount of
inference computation in a JT of a BN increases as the size of the total state
space (STSS) of the JT [12]. Hence a template of smaller STSS is preferred.
As finding a JT with the minimum STSS is NP-hard [12], we have to settle for
heuristic methods.

According to Proposition 1, the separator will be completed during triangu-
lation. Therefore, a larger separator creates a larger clique and tends to increase
the STSS of the resultant template. Furthermore, a larger separator needs more
fill-ins to complete. These fill-ins may cause additional cycles which in turn re-
quire more fill-ins to triangulate the graph. The result is the additional increase
of the STSS. Therefore, one useful heuristics is to choose the separator of the
smallest state space, which we shall term as a minimal separator.

6 Experimental Demonstration

The method proposed has been implemented and tested in WEBWEAVR-III
environment, a research testbed that supports many aspects of representation
and inference with uncertain knowledge. The modules involved in this work
include a Bayesian network editor for specifying a slice or subnet, a template
constructor, and a dynamic inference engine. In the following, we demonstrate
the method proposed using our implementation.

We shall demonstrate using the monitoring of a digital counter since under-
standing the problem requires very little domain knowledge. The counter consists
of three D flip-flops (DFFs). The first DFF is driven by an external clock signal.
Its output is used to drive the second DFF, whose output is in turn used to drive
the third DFF. The circuit, a clock input and its normal output are shown in
Figure 2.

The counter cannot be modeled using standard Bayesian networks. This is
because the input and output of each DFF are changing with time. The state of
each DFF can also change with time. A DFF may be initially normal but becomes
abnormal. However, the topology of the circuit is fixed. The state of each DFF

DFF1DFF2

Q

Q D

DFF3

-
Clk

Q Q Q

Clock

3 2 1

-
Q

Q D

Clk
-

Q

Q D

Clk

Clock
Time 0 86543 9

3

721 10

Q

2

1

Q

Q

Fig. 2. Left: a digital counter made of three D flip-flops. Right: the input and output
of the counter.

can be modeled as temporally changing between two types of behavior: normal
and abnormal. Each type can be described without reference to time. Hence the
domain is stationary and our proposed method is applicable.

The first DFF toggles at the positive edge (not positive level) of the clock. The
edge monitoring can be modeled by a variable GotLow. At each time interval,
GotLow = true if the input clock level is negative. The value implies that the
next positive level will be a positive edge. When the input clock level is positive,
two possible previous clock levels should be considered. If the previous clock
level has been positive, then GotLow should be false since the negative level
has not been seen yet. If the previous clock level has been negative, then the
current positive level represents a positive edge. The value of GotLow should be
reset to start the next cycle of monitoring. Hence, GotLow = false whenever the
input clock level is positive. We have P (GotLow = true|Clock = 0) = 1 and
P (GotLow = true|Clock = 1) = 0.

The toggling decision is made based on both GotLow value and the current
clock level. This decision can be modeled by a variable Flip. Flip = yes if and
only if GotLow = true and Clock = 1.

The output Q1 is determined by the previous value of Q1 and the Flip deci-
sion. Q1 toggles if and only if Flip = yes.

To model the abnormal behavior of a DFF, we assume that if the DFF is
abnormal, it will not toggle when it should 80% of the time. It may toggle when
it shouldn’t 10% of the time.

The other two DFFs can be similarly modeled. Since each of them is driven
by Q of another DFF, it toggles at the negative edge of Q of the other DFF.
Hence the variable GotHigh is used to model the edge monitoring.

We model the persistence of the state of a DFF as follows: If a DFF is
normal at t = i, it may become abnormal at t = i + 1 with 1% probability. If it
is abnormal at t = i, it will stay abnormal. A subnet of the DBN specified using
the Bayesian network editor is shown in Figure 3, where each node is labeled
by the variable name followed by the index of the node. The subnet is defined
based on the forward interface. FIi−1 contains nodes 0, 2, 3, 4, 6, 7, 8, 10 and
11. FIi contains nodes 13 through 21.

Fig. 3. A subnet of DBN for digital counter.

Once the subnet is specified, we use the template constructor to generate
the template. The constructor module converts subnet into a template JT with
belief assigned and initialized. The template JT generated based on the subnet
is shown in Figure 4, where each clique is labeled by the indexes of member vari-
ables. The clique C8 contains FIi−1 and is used to propagate evidence from the
previous active template into the current template during inference. The clique
C0 contains FIi and is used to propagate evidence from the current template
into the next active template.

After the template is generated, inference can be performed using the dy-
namic inference engine. In our experiment, we assume that all DFFs are normal
at t = 0. At t = 4, DFF2 breaks down and did not toggle. Since DFF3 is driven
by the output of DFF2, the output of DFF3 is also affected. The correspond-
ing output of DFF2 and DFF3 are shown in Figure 5. Note the difference from
Figure 2.

We assume that the initial values of all variables at t < 0 are known, e.g.,
Qi = 0, GotLow1 = false, DFF1 = good, etc. We assume that clock can
be cheaply observed and is observed at every time interval. The observation of
output of each DFF incurs a cost, and hence only one DFF is observed at a time
interval. The first observation is made on Q1 at t = 4. At t = 5, 6 and 7, Q2, Q3

Fig. 4. The template of DBN for digital counter.

1 1096542

3

2

1

Q

Q

Q

73 80Time
Clock

Fig. 5. Incorrect output due to breading down of DFF2 at t = 4.

and Q1 are observed respectively, and so on. No other variables are observable
after t = 0.

Figure 6 shows the belief at t = 3. Since no observation has been made
except on clock, the inference engine has simulated the expected output of each
DFF from t = 0 to t = 3 essentially based on their normal behavior. The
first observation on Q1 is made at t = 4 (not shown in figures due to space
limit). Although Q2 becomes abnormal and does not toggle at this interval, the
observation on Q1 does not reflect the problem yet.

Figure 7 shows the belief at t = 5. Since the observed value of Q2 is in-

Fig. 6. The belief at t = 3.

consistent with the expected value 1, its abnormality is being suspected. Due to
limited observation, DFF1 is also suspected. The suspicion on the abnormality of
DFF1 is denied by subsequent observations. Hence at t = 10, the belief becomes
P (DFF1 = bad) = 0.05, P (DFF2 = bad) = 0.98, and P (DFF2 = bad) = 0.08
(not shown in figures due to space). At this time, the monitor is fairly certain
about the problem of the counter through tying together observations made
across different time intervals.

7 Conclusions

In this work, we explore the stationary feature of problem domains to improve
the efficiency of exact inference in DBNs. We propose the construction of a tem-
porally invariant template of a DBN which can be reused at run time. This saves
the run time computation associated with dynamic expansion and reduction by
the DER method.

We show that once a slice of DBN is specified, the forward and backward
interface form direct basis to select a minimum separator in the moral graph of
the DBN. A subnet can then be defined from which the template is constructed.
Unlike backward interface and other non-self sufficient separators, forward inter-
face and other self sufficient separators allow local belief assignment using the
subnet only. Thus self sufficient separators should be preferred as they simplify
template construction.

Fig. 7. The belief at t = 5.

Besides the property of self sufficiency, using a minimal separator appears
to be a useful heuristics in order to reduce the size of total state space of the
resultant template. Further experimental study is being conducted to test this
heuristics.

Our approach can be extended to close-to-stationary domains. If the DBN
can be expressed by a small number of distinct slices, several templates may be
created for each distinct slice, one for each distinct preceding slice. The assump-
tion of a constant number of active slices (Section 3) can also be lifted in the
same way.

Our presentation has focused on inference that supports estimation (estimat-
ing the current state of some unobserved variables) and forecast (predicting the
future state of the domain). The template constructed can also support back-
ward smoothing (re-estimating the past state of some unobserved variables). The
extension is straightforward.

Acknowledgement

This work is supported by the Research Grant OGP0155425 from NSERC.

Appendix: Graph-theoretic terminology

Let G be an undirected graph. The adjacency of a node x is the set of nodes
adjacent to x. A set X of nodes in G is complete if each pair of nodes in X is
adjacent. A set S of nodes in G is a separator if deleting S makes G disconnected.
S is minimum if no node in S may be removed such that S is still a separator.
A set C of nodes is a clique if C is complete and no superset of C is complete.
G is connected if there is a path between every pair of nodes. G is multiply
connected if there exists undirected cycles in G. A chord is a link connecting two
nonadjacent nodes. G is triangulated if every cycle of length > 3 has a chord.

A node x in an undirected graph G = (N, E) is eliminated if its adjacency
is made complete by adding links (if necessary) before x and links incident to x
are removed. Each link thus added is called a fill-in. Let ρ be the set of fill-ins
added in eliminating all nodes in some order. Then the graph G′ = (N, E ∪ ρ) is
triangulated. Let T be a graph whose nodes are labeled by cliques of G′ such that
intersection of any two nodes are contained in every node on the path between
them. Then T is a junction tree (JT) of G′. We shall call a node of T as a clique
if no confusion is possible. Each link in T is labeled by the intersection of the
two end nodes and is called a sepset.

Let D be a directed graph. For any arc (x, y) (from x to y), x is called the
tail and y is called the head of the arc. The family of a node is the union of
the node and its parent nodes. The moral graph of D is obtained by completing
parents of each node and dropping the direction of each arc. Each link added is
called a moral link. The process of obtaining the moral graph from D is called
moralization.

References

1. S. Andreassen, R. Hovorka, J. Benn, K.G. Olesen, and E.R. Carson. A model-
based approach to insulin adjustment. In Proc. 3rd Conf. on Artificial Intelligence
in Medicine, pages 239–248. Springer-Verlag, 1991.

2. G.F. Cooper. The computational complexity of probabilistic inference using
Bayesian belief networks. Artificial Intelligence, 42(2-3):393–405, 1990.

3. P. Dagum, A. Galper, and E. Horvitz. Dynamic network models for forecasting. In
D. Dubois, M.P. Wellman, B. D’Ambrosio, and P. Smets, editors, Proc. 8th Conf.
on Uncertainty in Artificial Intelligence, pages 41–48, Stanford, CA, 1992.

4. P. Dagum and M. Luby. Approximating probabilistic inference in Bayesian belief
networks is NP-hard. Artificial Intelligence, 60(1):141–153, 1993.

5. T.L. Dean and K. Kanazawa. A model for reasoning about persistence and causa-
tion. Computational Intelligence, (5):142–150, 1989.

6. T.L. Dean and M.P. Wellman. Planning and Control. Morgan Kaufmann, 1991.
7. J. Forbes, T. Huang, K. Kanazawa, and S. Russell. The batmobile: towards a

bayesian automated taxi. In Proc. Fourteenth International Joint Conf. on Ar-
tificial Intelligence, pages 1878–1885, Montreal, Canada, 1995.

8. F.V. Jensen, S.L. Lauritzen, and K.G. Olesen. Bayesian updating in causal prob-
abilistic networks by local computations. Computational Statistics Quarterly,
(4):269–282, 1990.

9. U. Kjaerulff. A computational scheme for reasoning in dynamic probabilistic net-
works. In D. Dubois, M.P. Wellman, B. D’Ambrosio, and P. Smets, editors, Proc.
8th Conf. on Uncertainty in Artificial Intelligence, pages 121–129, Stanford, CA,
1992.

10. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference. Morgan Kaufmann, 1988.

11. D.J. Rose, R.E. Tarjan, and G.S. Lueker. Algorithmic aspects of vertex elimination
on graphs. SIAM J. Computing, 5:266–283, 1976.

12. W.X. Wen. Optimal decomposition of belief networks. In Proc. 6th Conf. on
Uncertainty in Artificial Intelligence, pages 245–256, 1990.

13. Y. Xiang, D. Poole, and M. P. Beddoes. Multiply sectioned Bayesian networks and
junction forests for large knowledge based systems. Computational Intelligence,
9(2):171–220, 1993.

This article was processed using the LATEX macro package with LLNCS style

