
A Tool to Obtain a Hierarchical Qualitative Rules from
Quantitative Data

Jesus Aguilar, Jose Riquelme y Miguel Toro.

Departamento de Lenguajes y Sistemas Informaticos.
Facultad de Informatica y Estadfstica. Universidad de Sevilla.

Avda. Reina Mercedes s/n. 41012 Sevilla.
e-mail: {aguilar, riquelme, mtoro }@lsi.us.es

Abstract. A tool to obtain a classifier system from labelled databases is presented.
The result is a hierarchical set of rules to divide the space in n-orthohedrons. This
hierarchy means that obtained rules must be applied in specific order, that is, an
example will be classify by i-rule only if it isn't matched the conditions of the i-1
preceding rules. It is used a genetic algorithm with real codification as searching
method. Logically, computation time will be greater than other systems like C4.5,
but it will provide flexibility to the user because it is always possible to produce
rules set with 0% of error rate and, from here, to relax the error rate for having less
rules. Afterwards, a qualitative approach is made to obtain a linguistic rule set.
Finally, several results are summarized in section 4.

1 Introduction

C4.5 [1] is one of the most extended programs for supervised learning by several
qualities: easy use, low computation time, clear interpretation of the results and
acceptable error rate. Its algorithm learns decision trees by constructing them top­
down, beginning with the question "which attribute should be tested at the root of the
tree?" The best attribute is selected by using a statistical test to determine how well it
alone classifies the training examples. A descendant of the root node is then created
for each possible value of this attribute, and the training examples are sorted to the
appropriate descendant node. This forms a greedy search for an acceptable decision
tree, in which the algorithm never backtracks to reconsider earlier choices.
Therefore, it is susceptible to the usual risks of hill-climbing search without
backtracking: converging to locally optimal solutions that are not globally optimal.

Genetic algorithms employ a randomized search method to seed a maximally fit
hypothesis. This search is quite different from other learning methods. The genetic
algorithm search can move much more abruptly, replacing a parent hypothesis by an
offspring less likely to fall into the same kind of local minima that can happen with other
methods, like C4.5.

Some training files are very difficult to classify. Below, it is presented a file with two
parameters and two classes: white or black circles. The most immediate classification of
these data is to select three rectangles of black circles and the remainder of white circles,

337

that is, four rules. However, C4.5 produces a set of thirteen rules, which are presented in
the figure on the right.

0 0 0 0 0 (

0 0 • •
0 l: 1 • • • • 0

0
0

0

·I 0 0 • • 0

0 • • • 0

0 0 0 0 0

Fig. 1. Hierarchical rules vs C4.5

Sometimes it can be useful that user sets a maximum error rate for having a rules set
with the least number of rules, according to the initial error rate. Or vice versa, this is,
user establishes the number of rules that he wants and the system produces a rules set
with the minimum error rate for that number of rules.

Our approach for solving the disadvantages of C4.5 is to produce as solution a
hierarchic rules set. Here, rules must be applied in specific order. With this organization,
the number of rules is substantially reduced. The shape of these rules would be:

If conditions then A-class
else If conditions then B-class

else If
else z-class.

The objective is to design a system able to obtain a decision rules set from a labelled
database. We propose a genetic algorithm [2] with real codification for the individuals
[3]. GABIL [4] and GIL [5] are the most known tools. Both have binary codification but
these can not work well with continuous spaces.

Finally, in [6] we presented a first version of this work, which produces a rules set
without errors by using genetic algorithms with binary codification. Here, in addition to
use real codification, it is possible to relax the error rate what we wants for having less
rules and for making more comprehensible the linguistic model that rules set offers.

2 Description of the system

2.1 The environment and its codification

Information of the environment come from a data file, where each example has a class
and a number of parameters. The number of parameters is fixed but undefined, like the
number of classes. The genetic algorithm uses real codification, that is, an individual is

338

formed by a n-tuple of real, including class, that it takes real values beginning with 1 and
adding a unit to the successive. We consider that an example is a member of k-class if it
satisfies its conditions, which are defined with upper and lower boundaries for each
parameter. So, the representation of an individual takes the following form:

1 o.o 11.9 1 2.5 1

parameter 1 parameter n class

Each parameter is defined by,

• A value belonging to the set {0, 1, 2}, that identifies the type of operation:
- 0 means "if pl ~ 1.9 ... "
- 1 means "if p1 z2.5 ... "
- 2 means "if 1.9 ~ p1 ~ 2.5 ... "

• The two following values are the limits for each parameter. If the operator is ~
only makes sense the first value; if the operator is z, the second value is used; and, in
the third case the two values indicates lower and upper boundaries.

• The last value identifies the class. It will exists as many possible values as
classes, that is to say, if there are five classes, the value will belong to the set
{0,1,2,3,4 }.

2.2 The algorithm

The algorithm is:

initialize
repeat

evolution
select rule
adapt environment

until stop condition

The initialize module calculates the number of data of the training file, the number of
parameters per datum and the number of classes. It also calculates the maximum and
minimum values for each parameter. The evolution module is a classic evolutionary
algorithm with real codification which is seeking a rule to minimize the fitness function.
The select rule module chooses the best individual of the evolutionary process,
transforming it into a rule. This rule is used in adapt environment to eliminate data from
the training file that fulfill its premise (though they do not satisfy the conditions). In this
way, the training file is reduced for the following iteration. Stop condition can be reached
when the training file have been totally covered or when a number of rules have been
obtained, or when it has been reached a precision. It is a typical sequential covering
algorithm [7].

339

2.3 Initial population

The initial population is randomly generated. First, two values are randomly obtained
between the boundaries of each parameter. An valid individual is formed by the values
that belongs to the set of intervals before obtained. However, the examples that are near
to the limits are hard to cover during the evolutive process. For solving it, the search
space is increased. For thus, the lower bound is decreased a 5% of the range, and the
upper bound is increased in the same value. To the end of the process, if the bound of a
interval is out of range, this is replaced by the original limit of the database search space.

2.4 Genetic operations

The main feature of the evolution module presents is elitism, in the sense that the best
of every generation is replicated to the next one and a set of children are obtained from
copies of the parents, selecting it randomly but depending on their fitness values. The
rest of individuals are formed through crossovers and after applying a mutation,
depending on a probability of mutation.

We used two kind of crossover which are alternatively applied depending on a
probability. On the one hand, it has been preserved the "n-point random crossover", that
takes advantage of parameter values which can be good for some individual. The n-point
random crossover chooses randomly a number k of crosspoints and the offspring (two
individuals) inherits pieces between the crosspoints. The usefulness of this crossover is
justified since can exist individual whose n-1 parameters may have good values but not
the remaining parameters; then, they are crossed these values with other individuals
before rejecting the defective individual. When n-point random crossover is applied with
real codification do not generate new values for the parameters, on the contrary that
binary codification. On the other hand, it has been used a real crossover specifically
designed. The real crossover uses three weighted types depending on the significance
that they could have in relation to the solution:

• intermediate segmented crossover: it obtains a random value belonging to the
defined segment by two values which occupies the same location in both selected
individuals (it is applied approximately the 40% of the times).

• segmented crossover forced to the minimal (maximal): it obtain a random value
belonging to the defined segment by the lower (upper) bound of the range and the
smaller (greater) of the two values which occupies the same location in both selected
individuals (it is applied approximately the 40% of the times each one).

Mutation makes to grow the region covered by the individual so that it could take
in more examples of the database. Two kinds of mutation have been used:

• incremental mutation: if it is right value of the parameter, the value is
incremented a small quantity (1 % of the range); and if it is the left value of the
parameter, it is decreased the same percentage.

• mutation forced to the boundary: one of the boundaries is mutated depending on
whether it is the right value or the left value of the parameter range. This will make
with very small probability (5% of the mutations).

340

2.5 Fitness function

The evolutionary algorithm minimizes the fitness function f for each individual. It
is given by

f (i) = 1 + N~ - g(i)
(1)

where ND is the cardinality of the training file and g is a penalty function. This
function presents two relevant features: first, the difference between class and data
errors; and second, the use of a new factor called coverage. Class errors are produced
when an example is covered by a rule even though the classes aren't the same. Class
errors are produced when an example isn't covered by a rule, independently of the
class.

Due to the different influence of that errors types in the learning task, it is necessary
to introduce two penalty factors, one for each error type, called class error and data
error penalty, respectively. The rule coverage is the side of an-dimensional hypercube
which volume is equivalent to the volume of the covered n-dimensional region by the
rule. This new operator, applied to the population, allows to increase or to reduce the
region of a rule without loosing matched examples. In this way, every rule can best
adapt to the space by reducing its volume or, on the contrary, it can quickly expand for
finding more examples. Particularly, our approach rewards to individuals that covers
more space with same number of matched examples.

2.6. Relaxing coefficient

Databases uses as training files have not areas clearly differentiated in n­
orthohedrons, for that, to obtain a rules system totally coherent involves a high
number of rules. We show in previous paper a system (that we call COGITO) capable
of producing a rules set exempt from error rate; however sometimes, it is interesting to
reduce the number of rules for having a rules set that it can be used like a
comprehensible linguistic model. When databases present a distribution of examples
very hard to classify, then it is advisable to use a relaxing coefficient. Many times, we
are more interested to understand the structure of databases than error rate. In this
way, it could be better a system with less cardinality (despite some errors) than too
many rules (with 0% of error rate). Then, it could be interesting to introduce the
relaxing coefficient for understanding the behaviour of databases by decreasing the
number of rules. Relaxing coefficient indicates what percentage of examples inside of
a indicated region can have different class to the individual. For example, if we allow
a relaxing coefficient of 10%, it means that an individual covering 83 examples of the
class 'A' could make 8 errors as maximum. Relaxing coefficient behaves like the
upper bound of the error with respect to the training file.

The present version of COGITO allows to limit the number of rules that we want to
obtain and it can fix a maximum for the error rate. Consequently, two kinds of
questions we could tackle: users can fix a maximum error rate and system produces a
rules set minimizing the number of these; or users fix a maximum number of rules and
the system produces a classifier minimizing the error rate. Results are very satisfactory

341

in both cases since user directly controls the error rate. For example, if we fix the
relaxing coefficient (R=20) and it obtains a error rate equal to 16 with 23 rules, the
user can decide: whether to increase R if the number of rules is too high, or to
decrease R if the error rate is too high. In this way, users can get the rules sets more
beneficial for its application.

3 Qualitative Rules

3.1 Linguistic terms definition

The technique to obtain a qualitative information of a spatial arrangement, expressed
in the previous paragraphs can be in a way simple converted automatically in a model
based on linguistic terms.

To express through a linguistic term a value range of a variable, is a relatively easy
task. Only it must take into account two considerations: the first one is that the number of
terms that are defined must be enough to attempt to cover most of linguistic nuances of
the possible value ranges. The second is that the number should not be excessive so as to
complicate the understanding of the model. To choose the number of terms together with
the nomenclature of these is, then, the only difficulty of this approximation. In this case
the linguistic model would follow the following grammar:

<model>
<list_rules>
<rule>

<list_premises>

<premise>
<list terms>

<conclusion>

: := <list_rules>
::= <list_rules> <rule>
::=IF <list_premises> THEN <conclusion>

I <rule>
<list_premises> AND <premise>
<premise>
PARAMETER IS <list_terms>
<list_terms> OR <TERM> I <TERM>
not <TERM>
<CLASS>

For the assignment between a set of values and what in the grammar has been
expressed as <TERM> will have to be followed then steps:

1) The parameter pis supposed to have a range of values that remains defined by the
minimal and maximum values of that parameter in the database. Those values will be m
and M, respectively.

2) The interval of values is supposed to be divided into L linguistic terms, that may
have an equivalence in L ranges of equal length values for the parameter p.

3) The central values of those ranges would come to consider the values succession:

M-m
m+---

2L '
3(M -m) (2L-l)(M -m)

m+ , ... , m+------
2L 2L

(2)

342

4) From these central values each range would have a value of ~(M-m)/2L, that is, the
first term would come defined by the range [m,m+(M-m)IL], the second term would give
value to the numbers of the range [m+(M-m)/L, m+2(M-m)IL], and so on until [m +(L­
l)(M-m)IL,M].

3.2 Linguistic terms assignment to an interval

Let the interval [c,C] that have been determined by COGITO for a given parameter.
For the assignment of a rule to each interval the following methodology is proposed:

Notation:
C : if it exists superior bound.
c : if it exists inferior bound.
L : number of linguistic terms.

Method:

vi l~iQ: central value of the ith term.
ti l~iQ: ith linguistic term.
TERM: linguistic term assigned.

If 3 c, let r with 2~& I v,_1 < c & v, >c else r=l.
If 3 C, lets with l~Q-1 I Vs <C & v.,+l >C
else s=L

TERM is calculated through the equation:

TERM=Uti
i=r

(3)

where the union symbol indicates the conjunction of the terms by the logical operator or.
If TERM is formed by the union of L-llinguistic term, it is substituted for the expression
not TERM' where TERM' is the linguistic term that is not in TERM. Finally, if a
parameter have an interval that coincide with the range of parameter, then the
correspondent premise is unnecessary.

4. Application

First, it has been applied to two files specifically created to demonstrate the
weakness of C4.5 to find good regions in same cases. Afterwards, it has been applied
to the standard databases for learning and classification of the UCI Repository [8]. We
have compared results with C4.5, being presented in both cases the number of rules
and error rate for every training file.

4.1 Bricks and boxes

The figure below shows a database (that we have called bricks) with two parameters
and three labels, so that if the first rule collects the information of the central square,
five hierarchic rules are sufficient to cover the whole database (left). However, C4.5
would need eight rules at least (right).

343

0 0 0 I D D
O 0 D n o

0 0 • • •• • 0

~ • • 1---• • 0 •
0 0 • • • 0 0

o I o 0
D 0 0 D

0 o I o 0

0 0 0 h
0

0 0 • •••• 0

~ • • I--

0 • • •
0 0 • • • 0 0

0 I o o
0

0
0

Fig. 2. Bricks database

Next figure shows a database (that we have called boxes), yet more extreme, since
white or black circles are found distributed in squares one inside of the other. A
hierarchical rules set only needs five rules while C4.5 produces not less than
seventeen rules.

0 , v () (
0 • • ••

0 " v 0
0 • • • ~ 0

0 .E] c
0 0. 0 •

0 p • •
0 • 0 0

0 " v c • • •
o o., u-o •
0 • ..!.,._~ ~ 0

:) • 0 (

0 0. 0 •
0 • • • 0 0 • • • • 0 • • . 0

0 0 0 0

Fig. 3. Boxes database

Results, for both C4.5 and COGITO are shown in the table 1.

I DATABASE C4.5 COG ITO
I ER NR ER NR

I BRICKS 0 9 0 5
I BOXES 0.8 27 0 5

Table 1. ER means error rate and NR means number of rules

This new version of COGITO improves the execution time on 25%. It can be
asserted that a classifier system based on genetic algorithm with real codification is
more powerful than other based on binary codification, since for a number of
generations and a size of population fixed, the results are better in the first one than in
the second one.

344

4.2 Databases of the UCI Repository

Below, they are presented the obtained results which are compared to those that
C4.5 offers. In the two cases are indicated the number of rules and the error rate.

DATABASES C4.5 COG ITO
ER NR ER NR

IRIS 1.3 6 0 6
WINES 1.1 5 0 3
PIMA 3.6 115 11.46 13

8.5 63
BUP A 6.1 55 13.91 7

9.6 35
BREAST CANCER 0.7 23 2.64 2

Table 2. Results for UCI Databases

It is notorious the difference between results offered by C4.5 and COGITO, above
all, with respect to the number of rules. Though in the last three cases the error rate of
C4.5 is lower, the number of rules is much greater, which makes complex the
linguistic model. Furthermore, with all certainty, COGITO will obtain lower error rate
than C4.5 for the same number of rules. Wine and Breast Cancer databases are
surprising since they needs only one rule for each class -in the first case with
unsurpassable efficiency-, what demonstrates the quality of the provided solutions.

In the following table it can be appreciated the range of error rate varying the
number of rules for Pima database.

Table 3. Error rate for Pima Database with several NR

The executions have been accomplished in SUN SPARC 1000 E and, logically,
execution time depends on the number of data of the training tile and on the number
of rules sought. For 200 individuals and 200 generations, to find the thirteen rules of
Pima can take about 15 minutes, while the two rules of Breast Cancer about two
minutes.

It could be a disadvantage the diversity of solutions since COGITO depends on
probabilistic search. The tables shows the better of the possible executions, however,
after realizing 20 executions to find 13 rules for Pima, the error rate range of found
solutions was from 11.5 to 12.9, what from our point of view is not a relevant factor.

Below, it has shown two rule systems, Bupa and Breast Cancer, respectively, and
number of goals/errors of each rule with respect to the training file.

345

Database BUPA:
Quantitative rules:
If p1~97.0 y 44.0~p2 y p3~70.0 y 22.0~p4 y p5~297 y p6~16.0 then class=A
(79/15)
Else If p1~103.0 y 19.5~p2~79.0 y p3~20.0 y 5~p4 y 7.0~p5 y O.O~p6 then
class= A (49/8)
Else If 87.0~p1~100.0 y 59.0~p2 y 15.l~p3 y p4~47.8 y p5~297 y O.O~p6 then
class=B (81118)
Else If p1~94.0 y 23.0~p2 y 15.l~p3 y 14.0~p4~21.0 y p5~30.0 y p6~20.0 then
class=B (18/1)
Else If 78.0~p1 y 35.0~p2~119.0 y 1l.Os:;p3s:;33.0 y 5.0s:;p4 y 9.0s:;p5 y p6s:;20.0
then class=A (36/2)
Else If p1~103.0 y p2~134.0 y 4.Qs:;p3 y p4~55.0 y p5s:;48.0 y O.O~p6 then class=B
(18/1)
Else If p1s:;l03.0 y 23~p2 y p3s:;155.0 y p4s:;82.0 y p5s:;297.0 y O.Os:;p6 then
class=A (16/3)

Qualitative rules:
If p1 is not big and p2 is not small and p3 is small or medium and p4 is not small
and p6 is not big then A
Else If p1 is small or medium and p2 is small or medium and p3 is small then A
Else If p1 is big and p2 is medium or big and p3 is not small and p4 is small or
medium then B
Else If p1 is not big and p3 is not small and p4 is small and p5 is small then B
Else If p 1 is small and p2 is medium and p3 is small then A
Else If p4 is small or medium and p5 is small then B
ElseA

Database CANCER:
Quantitative rules:
If p1s:;7.0 y p2s:;6.0 y l.O~p3 y l.O~p4 yl.Os:;p5 y p6~6.3 yl.Os:;p7 y p8s:;8.3 y
l.Qs:;p9 then class=A (432/16)
Else If l.O~p1 y l.O~p2 y l.O~p3 y l.O~p4 y l.O~p5 y l.O~p6 y l.O~p7 y l.O~p8 y
l.O~p9 then class=B (233/12)

Qualitative rules:
If p1 is not big and p2 is small or medium and p6 is small or medium and p8 is not
big then A Else B

5 Conclusions

A supervised learning tool to classify databases in n-orthohedrons is presented. It
produces a hierarchic rules set where conditions of each rule indicates the belonging
of a example to an orthohedron. Relevant qualities of this system are two: important
reduction of number of rules in comparison to C4.5 and flexibility to construct the
classifier fixing boundaries to the number of rules or error rate through relaxing
coefficient. The intervals defined by this system are easily translated to qualitative
rules. The results as for bricks and boxes as UCI Repository databases has been very
satisfactory.

346

References

1. Quinlan, J.R. C4.5: Programs for Machine Learning, Morgan Kaufmann Pub., 1993.
2. Goldberg, D.E. Genetic Algorithms in search, optimization and machine Learning.

Addison-Wesley, 1991.
3. Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution programs. Second

Edition, Springer-Verlag, 1994.
4. De Jong,K.A. Using Genetic Algorithms for Concept Learning. Machine Learning, 93.
5. Janikow, C.Z. A Knowlege-Intensive Genetic Algorithm for Supervised Learning. Machine

Learning, 93.
6. Aguilar, J., Riquelme, J. y Taro, M. COGITO: Un Sistema de Autoaprendizaje Basado en

Algoritmos Geneticos. Aetas de las III Jomadas de Informatica. pp. 79-88., 1997.
7. Mitchell, T. Machine Learning. MacGraw-Hill, 1997.
8. Murphy, P. y Aha, D.W. UCI repository of machine learning databases. Dept. of

Information and C.S. University of California, Irvine, 1994 .

