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Abstract. A tool to obtain a classifier system from labelled databases is presented. 
The result is a hierarchical set of rules to divide the space in n-orthohedrons. This 
hierarchy means that obtained rules must be applied in specific order, that is, an 
example will be classify by i-rule only if it isn't matched the conditions of the i-1 
preceding rules. It is used a genetic algorithm with real codification as searching 
method. Logically, computation time will be greater than other systems like C4.5, 
but it will provide flexibility to the user because it is always possible to produce 
rules set with 0% of error rate and, from here, to relax the error rate for having less 
rules. Afterwards, a qualitative approach is made to obtain a linguistic rule set. 
Finally, several results are summarized in section 4. 

1 Introduction 

C4.5 [1] is one of the most extended programs for supervised learning by several 
qualities: easy use, low computation time, clear interpretation of the results and 
acceptable error rate. Its algorithm learns decision trees by constructing them top­
down, beginning with the question "which attribute should be tested at the root of the 
tree?" The best attribute is selected by using a statistical test to determine how well it 
alone classifies the training examples. A descendant of the root node is then created 
for each possible value of this attribute, and the training examples are sorted to the 
appropriate descendant node. This forms a greedy search for an acceptable decision 
tree, in which the algorithm never backtracks to reconsider earlier choices. 
Therefore, it is susceptible to the usual risks of hill-climbing search without 
backtracking: converging to locally optimal solutions that are not globally optimal. 

Genetic algorithms employ a randomized search method to seed a maximally fit 
hypothesis. This search is quite different from other learning methods. The genetic 
algorithm search can move much more abruptly, replacing a parent hypothesis by an 
offspring less likely to fall into the same kind of local minima that can happen with other 
methods, like C4.5. 

Some training files are very difficult to classify. Below, it is presented a file with two 
parameters and two classes: white or black circles. The most immediate classification of 
these data is to select three rectangles of black circles and the remainder of white circles, 
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that is, four rules. However, C4.5 produces a set of thirteen rules, which are presented in 
the figure on the right. 
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Fig. 1. Hierarchical rules vs C4.5 

Sometimes it can be useful that user sets a maximum error rate for having a rules set 
with the least number of rules, according to the initial error rate. Or vice versa, this is, 
user establishes the number of rules that he wants and the system produces a rules set 
with the minimum error rate for that number of rules. 

Our approach for solving the disadvantages of C4.5 is to produce as solution a 
hierarchic rules set. Here, rules must be applied in specific order. With this organization, 
the number of rules is substantially reduced. The shape of these rules would be: 

If conditions then A-class 
else If conditions then B-class 

else If ..................................... . 
else z-class. 

The objective is to design a system able to obtain a decision rules set from a labelled 
database. We propose a genetic algorithm [2] with real codification for the individuals 
[3]. GABIL [4] and GIL [5] are the most known tools. Both have binary codification but 
these can not work well with continuous spaces. 

Finally, in [6] we presented a first version of this work, which produces a rules set 
without errors by using genetic algorithms with binary codification. Here, in addition to 
use real codification, it is possible to relax the error rate what we wants for having less 
rules and for making more comprehensible the linguistic model that rules set offers. 

2 Description of the system 

2.1 The environment and its codification 

Information of the environment come from a data file, where each example has a class 
and a number of parameters. The number of parameters is fixed but undefined, like the 
number of classes. The genetic algorithm uses real codification, that is, an individual is 
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formed by a n-tuple of real, including class, that it takes real values beginning with 1 and 
adding a unit to the successive. We consider that an example is a member of k-class if it 
satisfies its conditions, which are defined with upper and lower boundaries for each 
parameter. So, the representation of an individual takes the following form: 

1 o.o 11.9 1 2.5 1 

parameter 1 parameter n class 

Each parameter is defined by, 

• A value belonging to the set {0, 1, 2}, that identifies the type of operation: 
- 0 means "if pl ~ 1.9 ... " 
- 1 means "if p1 z2.5 ... " 
- 2 means "if 1.9 ~ p1 ~ 2.5 ... " 

• The two following values are the limits for each parameter. If the operator is ~ 
only makes sense the first value; if the operator is z, the second value is used; and, in 
the third case the two values indicates lower and upper boundaries. 

• The last value identifies the class. It will exists as many possible values as 
classes, that is to say, if there are five classes, the value will belong to the set 
{0,1,2,3,4 }. 

2.2 The algorithm 

The algorithm is: 

initialize 
repeat 

evolution 
select rule 
adapt environment 

until stop condition 

The initialize module calculates the number of data of the training file, the number of 
parameters per datum and the number of classes. It also calculates the maximum and 
minimum values for each parameter. The evolution module is a classic evolutionary 
algorithm with real codification which is seeking a rule to minimize the fitness function. 
The select rule module chooses the best individual of the evolutionary process, 
transforming it into a rule. This rule is used in adapt environment to eliminate data from 
the training file that fulfill its premise (though they do not satisfy the conditions). In this 
way, the training file is reduced for the following iteration. Stop condition can be reached 
when the training file have been totally covered or when a number of rules have been 
obtained, or when it has been reached a precision. It is a typical sequential covering 
algorithm [7]. 
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2.3 Initial population 

The initial population is randomly generated. First, two values are randomly obtained 
between the boundaries of each parameter. An valid individual is formed by the values 
that belongs to the set of intervals before obtained. However, the examples that are near 
to the limits are hard to cover during the evolutive process. For solving it, the search 
space is increased. For thus, the lower bound is decreased a 5% of the range, and the 
upper bound is increased in the same value. To the end of the process, if the bound of a 
interval is out of range, this is replaced by the original limit of the database search space. 

2.4 Genetic operations 

The main feature of the evolution module presents is elitism, in the sense that the best 
of every generation is replicated to the next one and a set of children are obtained from 
copies of the parents, selecting it randomly but depending on their fitness values. The 
rest of individuals are formed through crossovers and after applying a mutation, 
depending on a probability of mutation. 

We used two kind of crossover which are alternatively applied depending on a 
probability. On the one hand, it has been preserved the "n-point random crossover", that 
takes advantage of parameter values which can be good for some individual. The n-point 
random crossover chooses randomly a number k of crosspoints and the offspring (two 
individuals) inherits pieces between the crosspoints. The usefulness of this crossover is 
justified since can exist individual whose n-1 parameters may have good values but not 
the remaining parameters; then, they are crossed these values with other individuals 
before rejecting the defective individual. When n-point random crossover is applied with 
real codification do not generate new values for the parameters, on the contrary that 
binary codification. On the other hand, it has been used a real crossover specifically 
designed. The real crossover uses three weighted types depending on the significance 
that they could have in relation to the solution: 

• intermediate segmented crossover: it obtains a random value belonging to the 
defined segment by two values which occupies the same location in both selected 
individuals (it is applied approximately the 40% of the times). 

• segmented crossover forced to the minimal (maximal): it obtain a random value 
belonging to the defined segment by the lower (upper) bound of the range and the 
smaller (greater) of the two values which occupies the same location in both selected 
individuals (it is applied approximately the 40% of the times each one). 

Mutation makes to grow the region covered by the individual so that it could take 
in more examples of the database. Two kinds of mutation have been used: 

• incremental mutation: if it is right value of the parameter, the value is 
incremented a small quantity (1 % of the range); and if it is the left value of the 
parameter, it is decreased the same percentage. 

• mutation forced to the boundary: one of the boundaries is mutated depending on 
whether it is the right value or the left value of the parameter range. This will make 
with very small probability (5% of the mutations). 
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2.5 Fitness function 

The evolutionary algorithm minimizes the fitness function f for each individual. It 
is given by 

f ( i) = 1 + N~ - g( i) 
(1) 

where ND is the cardinality of the training file and g is a penalty function. This 
function presents two relevant features: first, the difference between class and data 
errors; and second, the use of a new factor called coverage. Class errors are produced 
when an example is covered by a rule even though the classes aren't the same. Class 
errors are produced when an example isn't covered by a rule, independently of the 
class. 

Due to the different influence of that errors types in the learning task, it is necessary 
to introduce two penalty factors, one for each error type, called class error and data 
error penalty, respectively. The rule coverage is the side of an-dimensional hypercube 
which volume is equivalent to the volume of the covered n-dimensional region by the 
rule. This new operator, applied to the population, allows to increase or to reduce the 
region of a rule without loosing matched examples. In this way, every rule can best 
adapt to the space by reducing its volume or, on the contrary, it can quickly expand for 
finding more examples. Particularly, our approach rewards to individuals that covers 
more space with same number of matched examples. 

2.6. Relaxing coefficient 

Databases uses as training files have not areas clearly differentiated in n­
orthohedrons, for that, to obtain a rules system totally coherent involves a high 
number of rules. We show in previous paper a system (that we call COGITO) capable 
of producing a rules set exempt from error rate; however sometimes, it is interesting to 
reduce the number of rules for having a rules set that it can be used like a 
comprehensible linguistic model. When databases present a distribution of examples 
very hard to classify, then it is advisable to use a relaxing coefficient. Many times, we 
are more interested to understand the structure of databases than error rate. In this 
way, it could be better a system with less cardinality (despite some errors) than too 
many rules (with 0% of error rate). Then, it could be interesting to introduce the 
relaxing coefficient for understanding the behaviour of databases by decreasing the 
number of rules. Relaxing coefficient indicates what percentage of examples inside of 
a indicated region can have different class to the individual. For example, if we allow 
a relaxing coefficient of 10%, it means that an individual covering 83 examples of the 
class 'A' could make 8 errors as maximum. Relaxing coefficient behaves like the 
upper bound of the error with respect to the training file. 

The present version of COGITO allows to limit the number of rules that we want to 
obtain and it can fix a maximum for the error rate. Consequently, two kinds of 
questions we could tackle: users can fix a maximum error rate and system produces a 
rules set minimizing the number of these; or users fix a maximum number of rules and 
the system produces a classifier minimizing the error rate. Results are very satisfactory 
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in both cases since user directly controls the error rate. For example, if we fix the 
relaxing coefficient (R=20) and it obtains a error rate equal to 16 with 23 rules, the 
user can decide: whether to increase R if the number of rules is too high, or to 
decrease R if the error rate is too high. In this way, users can get the rules sets more 
beneficial for its application. 

3 Qualitative Rules 

3.1 Linguistic terms definition 

The technique to obtain a qualitative information of a spatial arrangement, expressed 
in the previous paragraphs can be in a way simple converted automatically in a model 
based on linguistic terms. 

To express through a linguistic term a value range of a variable, is a relatively easy 
task. Only it must take into account two considerations: the first one is that the number of 
terms that are defined must be enough to attempt to cover most of linguistic nuances of 
the possible value ranges. The second is that the number should not be excessive so as to 
complicate the understanding of the model. To choose the number of terms together with 
the nomenclature of these is, then, the only difficulty of this approximation. In this case 
the linguistic model would follow the following grammar: 

<model> 
<list_rules> 
<rule> 

<list_premises> 

<premise> 
<list terms> 

<conclusion> 

: := <list_rules> 
::= <list_rules> <rule> 
::=IF <list_premises> THEN <conclusion> 

I <rule> 
<list_premises> AND <premise> 
<premise> 
PARAMETER IS <list_terms> 
<list_terms> OR <TERM> I <TERM> 
not <TERM> 
<CLASS> 

For the assignment between a set of values and what in the grammar has been 
expressed as <TERM> will have to be followed then steps: 

1) The parameter pis supposed to have a range of values that remains defined by the 
minimal and maximum values of that parameter in the database. Those values will be m 
and M, respectively. 

2) The interval of values is supposed to be divided into L linguistic terms, that may 
have an equivalence in L ranges of equal length values for the parameter p. 

3) The central values of those ranges would come to consider the values succession: 

M-m 
m+---

2L ' 
3(M -m) (2L-l)(M -m) 

m+ , ... , m+------
2L 2L 

(2) 
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4) From these central values each range would have a value of ~(M-m)/2L, that is, the 
first term would come defined by the range [m,m+(M-m)IL], the second term would give 
value to the numbers of the range [m+(M-m)/L, m+2(M-m)IL], and so on until [m +(L­
l)(M-m)IL,M]. 

3.2 Linguistic terms assignment to an interval 

Let the interval [c,C] that have been determined by COGITO for a given parameter. 
For the assignment of a rule to each interval the following methodology is proposed: 

Notation: 
C : if it exists superior bound. 
c : if it exists inferior bound. 
L : number of linguistic terms. 

Method: 

vi l~iQ: central value of the ith term. 
ti l~iQ: ith linguistic term. 
TERM: linguistic term assigned. 

If 3 c, let r with 2~& I v,_1 < c & v, >c else r=l. 
If 3 C, lets with l~Q-1 I Vs <C & v.,+l >C 
else s=L 

TERM is calculated through the equation: 

TERM=Uti 
i=r 

(3) 

where the union symbol indicates the conjunction of the terms by the logical operator or. 
If TERM is formed by the union of L-llinguistic term, it is substituted for the expression 
not TERM' where TERM' is the linguistic term that is not in TERM. Finally, if a 
parameter have an interval that coincide with the range of parameter, then the 
correspondent premise is unnecessary. 

4. Application 

First, it has been applied to two files specifically created to demonstrate the 
weakness of C4.5 to find good regions in same cases. Afterwards, it has been applied 
to the standard databases for learning and classification of the UCI Repository [8]. We 
have compared results with C4.5, being presented in both cases the number of rules 
and error rate for every training file. 

4.1 Bricks and boxes 

The figure below shows a database (that we have called bricks) with two parameters 
and three labels, so that if the first rule collects the information of the central square, 
five hierarchic rules are sufficient to cover the whole database (left). However, C4.5 
would need eight rules at least (right). 
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Fig. 2. Bricks database 

Next figure shows a database (that we have called boxes), yet more extreme, since 
white or black circles are found distributed in squares one inside of the other. A 
hierarchical rules set only needs five rules while C4.5 produces not less than 
seventeen rules. 
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Fig. 3. Boxes database 

Results, for both C4.5 and COGITO are shown in the table 1. 

I DATABASE C4.5 COG ITO 
I ER NR ER NR 

I BRICKS 0 9 0 5 
I BOXES 0.8 27 0 5 

Table 1. ER means error rate and NR means number of rules 

This new version of COGITO improves the execution time on 25%. It can be 
asserted that a classifier system based on genetic algorithm with real codification is 
more powerful than other based on binary codification, since for a number of 
generations and a size of population fixed, the results are better in the first one than in 
the second one. 
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4.2 Databases of the UCI Repository 

Below, they are presented the obtained results which are compared to those that 
C4.5 offers. In the two cases are indicated the number of rules and the error rate. 

DATABASES C4.5 COG ITO 
ER NR ER NR 

IRIS 1.3 6 0 6 
WINES 1.1 5 0 3 
PIMA 3.6 115 11.46 13 

8.5 63 
BUP A 6.1 55 13.91 7 

9.6 35 
BREAST CANCER 0.7 23 2.64 2 

Table 2. Results for UCI Databases 

It is notorious the difference between results offered by C4.5 and COGITO, above 
all, with respect to the number of rules. Though in the last three cases the error rate of 
C4.5 is lower, the number of rules is much greater, which makes complex the 
linguistic model. Furthermore, with all certainty, COGITO will obtain lower error rate 
than C4.5 for the same number of rules. Wine and Breast Cancer databases are 
surprising since they needs only one rule for each class -in the first case with 
unsurpassable efficiency-, what demonstrates the quality of the provided solutions. 

In the following table it can be appreciated the range of error rate varying the 
number of rules for Pima database. 

Table 3. Error rate for Pima Database with several NR 

The executions have been accomplished in SUN SPARC 1000 E and, logically, 
execution time depends on the number of data of the training tile and on the number 
of rules sought. For 200 individuals and 200 generations, to find the thirteen rules of 
Pima can take about 15 minutes, while the two rules of Breast Cancer about two 
minutes. 

It could be a disadvantage the diversity of solutions since COGITO depends on 
probabilistic search. The tables shows the better of the possible executions, however, 
after realizing 20 executions to find 13 rules for Pima, the error rate range of found 
solutions was from 11.5 to 12.9, what from our point of view is not a relevant factor. 

Below, it has shown two rule systems, Bupa and Breast Cancer, respectively, and 
number of goals/errors of each rule with respect to the training file. 
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Database BUPA: 
Quantitative rules: 
If p1~97.0 y 44.0~p2 y p3~70.0 y 22.0~p4 y p5~297 y p6~16.0 then class=A 
(79/15) 
Else If p1~103.0 y 19.5~p2~79.0 y p3~20.0 y 5~p4 y 7.0~p5 y O.O~p6 then 
class= A ( 49/8) 
Else If 87.0~p1~100.0 y 59.0~p2 y 15.l~p3 y p4~47.8 y p5~297 y O.O~p6 then 
class=B (81118) 
Else If p1~94.0 y 23.0~p2 y 15.l~p3 y 14.0~p4~21.0 y p5~30.0 y p6~20.0 then 
class=B (18/1) 
Else If 78.0~p1 y 35.0~p2~119.0 y 1l.Os:;p3s:;33.0 y 5.0s:;p4 y 9.0s:;p5 y p6s:;20.0 
then class=A (36/2) 
Else If p1~103.0 y p2~134.0 y 4.Qs:;p3 y p4~55.0 y p5s:;48.0 y O.O~p6 then class=B 
(18/1) 
Else If p1s:;l03.0 y 23~p2 y p3s:;155.0 y p4s:;82.0 y p5s:;297.0 y O.Os:;p6 then 
class=A (16/3) 

Qualitative rules: 
If p1 is not big and p2 is not small and p3 is small or medium and p4 is not small 
and p6 is not big then A 
Else If p1 is small or medium and p2 is small or medium and p3 is small then A 
Else If p1 is big and p2 is medium or big and p3 is not small and p4 is small or 
medium then B 
Else If p1 is not big and p3 is not small and p4 is small and p5 is small then B 
Else If p 1 is small and p2 is medium and p3 is small then A 
Else If p4 is small or medium and p5 is small then B 
ElseA 

Database CANCER: 
Quantitative rules: 
If p1s:;7.0 y p2s:;6.0 y l.O~p3 y l.O~p4 yl.Os:;p5 y p6~6.3 yl.Os:;p7 y p8s:;8.3 y 
l.Qs:;p9 then class=A (432/16) 
Else If l.O~p1 y l.O~p2 y l.O~p3 y l.O~p4 y l.O~p5 y l.O~p6 y l.O~p7 y l.O~p8 y 
l.O~p9 then class=B (233/12) 

Qualitative rules: 
If p1 is not big and p2 is small or medium and p6 is small or medium and p8 is not 
big then A Else B 

5 Conclusions 

A supervised learning tool to classify databases in n-orthohedrons is presented. It 
produces a hierarchic rules set where conditions of each rule indicates the belonging 
of a example to an orthohedron. Relevant qualities of this system are two: important 
reduction of number of rules in comparison to C4.5 and flexibility to construct the 
classifier fixing boundaries to the number of rules or error rate through relaxing 
coefficient. The intervals defined by this system are easily translated to qualitative 
rules. The results as for bricks and boxes as UCI Repository databases has been very 
satisfactory. 
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