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A b s t r a c t .  This paper introduces the specification language C b ~ .  The 
features of CoCoA are designed for the specification of both organisational 
and transactional aspects of cooperative activities, based on the CoAcT 
cooperative transaction model. The novelty of the language lies in its 
ability to deal with a broad spectrum of cooperative applications, ranging 
from cooperative document authoring to workflow applications. 

1 I n t r o d u c t i o n  

CoChA is a specification language for cooperative activities [20]. The novelty of 
the language lies in its ability to deal with a broad spectrum of cooperative 
applications, ranging from cooperative document authoring to workflow appli- 
cations. CoCoA is unique in that  it deals with both organisational and transac- 
tional aspects of cooperation in a single language, but without coupling them as 
is done in transactional workflows [27], which assign transactional properties to 
the organisational steps of a workflow. In CocoA, the organisationat aspects of 
a cooperative activity are specified by means of a procedure definition mecha- 
nism, which is based on a formal state transition model. Transactional aspects 
are specified by means of execution order rules. Termination constraints link the 
state of the execution order rules to the transitions in the procedure definition. 
The  language features in Cocoa are used to extend an existing database schema 
for cooperative work. 

CoChA has a rich set of primitives for specifying the organisational aspects 
of a cooperative activity. A procedure definition specifies which operations are 
enabled at each stage of an activity by means of steps. The CoCOA concept 
of a step is much broader than that  found in traditional workflow systems. A 
single step can deal with more than one user, and each user can be involved 
in more than one step at the same time. A step can allow a user to execute 
many different operations, without prescribing a fixed order. Also, CoChA allows 
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the specification of the dynamic instantiation of a single step with different 
parameters. This makes CoCoA suitable for specifying free forms of cooperation, 
such as those found in cooperative document authoring, while still being able to 
specify the more restricted forms of cooperation found in workflow applications. 
Details of the procedure definition mechanism are given in Section 3. 

CoCoA specifies dynamic consistency requirements on data operation invoca- 
tions. To do this, execution order rules are used to specify the allowed orderings 
of invocations by means of an extended form of regular expression with operation 
invocation patterns. Each execution order rule applies to a parameterised subset 
of the invoked data operations. Details of the execution order rules mechanism 
of the language are given in Section 4.1. 

The underlying transaction model of CoCoA is the CoAcT transaction model 
[20], which is based on the idea of exchanging partial results between the users 
involved in a cooperative activity. In addition to a centralised database, each user 
has a workspace, in which private copies of the data reside. Users can exchange 
partial results with each other, or via the central database. After the completion 
of the cooperative activity, which can be considered as a long-lived transaction, 
the result of the activity is found in the shared central database. In the CoAcT 
model, the operations performed on the data are exchanged, instead of the data 
itself. CoAcT uses a merge algorithm [24], which exploits the commutativity 
properties of database operations, to allow the users in the cooperative activity to 
work in parallel. We refer to [13] for a discussion on the need for operation-based 
merging in the CAMERA system. Because operation-based merging permits a 
larger number of histories to be merged than state-based merging, more work 
can be done in parallel. 

Both the specification language CoCoA [7] and the transaction model CoAcT 
were designed during the ESPRIT TRANSCOOP project. CoCoA is based on the 
object-oriented, functional database specification language TM [2, 3]. The se- 
mantics of CoCoA has been defined by mappings to the language LOTOS/TM 
[6], which is based on TM and the process-algebraic language LOTOS [5], both 
of which have well-defined semantics. A tool set for CoCoA has been implemented 
within the TRANSCOOP project; it includes a graphical scenario editor, a simu- 
lation environment (based on the TM Abstract Machine [8]), and a compiler to 
a run-time environment, which consists of a CoAcT transaction manager and 
a cooperation manager running on top of the VODAK object-oriented database 
system [10]. This environment is being studied in the context of the SEPIA 
cooperative document authoring system [22]. Proving the correctness of commu- 
tativity relationships is the subject of further research. 

The different aspects of the CoCaA language are illustrated in this paper by 
means of a cooperative document authoring (CDA) example, to which workflow 
aspects have been added. For the sake of compactness, the details of this example 
axe presented as the various aspects of the language are explained. Section 2 gives 
an introduction to the CDA example, and shows the general parts of a Co~A 
specification by means of the example. Section 3 explains how the procedure of 
a scenario is specified in CocoA. The subsequent sections deal with the trans- 
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actional consistency rules. Section 4.1 explains the execution order rules, and 
Section 4.2 discusses the commutativity rules that are needed for the CoAcT 
transaction model. Section 5 looks at the integration of the organisational and 
transactional consistency rules. Section 6 outlines how properties of the organi- 
sational aspects can be verified. Our conclusions are given in Section 8. 

2 A n  E x a m p l e  C D A  S c e n a r i o  

The example cooperative scenario that we use throughout this paper describes 
an editor who, with the help of some co-authors, must write a document that is 
reviewed by a referee. The document consists of a number of chapters with text, 
which can be spell-checked and annotated. The example has been constructed 
such that it demonstrates sequencing, parallelism, choice, repeated activation 
and dynamic step activation. It also illustrates a break-point condition that 
enforces that all annotations are processed, and a termination condition that 
guarantees that the final version of the document is spell-checked. 

The organisation of the cooperative scenario consists of three steps: a prepa- 
rationstep (in which the editor writes a title page and an introduction), a writing 
step (in which the editor assigns the writing tasks to groups of authors that per- 
form the actual writing), and a review step (in which the referee reviews the 
document). 

Figure 1 provides the first part of the example scenario specification. Only 
the signatures of the data(base) operations are required, as they are defined in 
a separate database schema. Chapters can be added, edited, removed and spell- 
checked; annotations can be added to or removed from a chapter text. Type 
definitions also originate from the database schema, and only their names need 
to be mentioned. 

CoCoA allows the specification of user roles. The actual users are determined 
at execution time (i.e., when the scenario is instantiated). A user role is identified 
by means of a user type in CoCoA, and is assigned a workspace type. Workspace 
types restrict the data operations that can be recorded in the private workspace 
of a user. In our example, only one workspace type is defined, and it allows all 
data operations. Three user types are defined: referee, editor, and author. 

Users can exhibit other activities besides data operations. Through so-called 
communications, a user may initiate a state transition in the scenario. State 
transitions influence the set of allowed data operations of other users in the 
scenario. (By including a 'system' user, issuing certain communications at regular 
intervals, reactive applications can be specified.) In Figure 1 only the names 
and parameter types of the communications are provided. They are used in the 
procedure definition, as illustrated in the next section. 

The underlying CoAcT transaction model uses history merging as the princi- 
ple for its operation. Each user workspace maintains a history of data operations 
that have been performed since the start of the scenario. A user can import or 
export data, and this exchange is achieved by re-executing a relevant sequence 
of data operations from one workspace in another workspace. To allow the user 
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scenario write_document 
data types chapter, text, annotation 

database operations 
addChapter(chapter) remChapter(chapter) 
editChapter(chapter, text) spellCheck(chapter) 
addAnnotation(chapter, annotation) remAnnotation(chapter, annotation) 

workspace types 
cda = { addChapter, editChapter, remChapter, spellCheck, 

addAnnotation, remAnnotation } 

user types 
referee using cda, editor using cda, author using cda 

c o m m u n i c a t i o n s  
introWritten(), 
startTask(¢hapter, P author), completeTask(chapter), 
readyNriting(), documentOkayO, reviseDocument(), abortNriting() 

data exchange operations 
Annotations (c : chapter) 
= select addAnnotation(c,_), remEnnotation(c, _) 
Chapte r (c  : chap te r )  
= se lec t  addChap te r (c ) ,  e d i t C h a p t e r ( c , _ ) ,  remChapter(c)  

F ig .  1. Interface specification of scenario 

this data exchange, the specifier needs to indicate those data operations from 
the history that are relevant to a particular piece of data. The s e l e c t  construct 
can be used for this. Two data exchange operations are defined in Figure 1. One 
allows exchange of annotations, the other allows the exchange of text changes. 
Selection clauses use invocation patterns of the data operations, in which the 
symbol '_' is used to indicate a don't-care value of a parameter. 

When exchanging data, consistency needs to be preserved, which means that 
additional, logically dependent data operations should also be selected from the 
workspace history. The rules for selecting these operations are described in Sec- 
tion 4.2. They are implemented in COAcT's merge algorithm, which takes two 
histories and tries to combine them into a consistent one. 

3 O r g a n i s a t i o n  o f  a C o o p e r a t i v e  A c t i v i t y  

3.1 P rocedure  Defini t ion 

A CoCoA procedure serves to define the organisation of activities within a sce- 
nario. It lists a number of steps and a number of transition rules. The latter de- 
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fine how the former are chained together, and define, so to say, the coarse-grain 
control flow of the procedure. Each step definition defines its entry, interrupt, 
signal and exit interaction points, at which interaction events with other steps 
can take place. This form of interaction is mandatory: the initiators of such an 
event forces the receivers to follow. The allowed interactions are defined in the 
transition rules. Entry interactions activate the step; exit interactions deactivate 
it. There may be several of each of them. Interrupts are received while the step 
is active; signals are sent when it is active. 

As an illustration, consider the partial specification provided in Figure 2. 
It defines a p r e p a r a t i o n  step and a wr i t i ng  step, amongst others. The first 
has an exit (interaction point) done, the second has an entry point s t a r t .  The 
two interaction points are made to coincide in the second transition rule, i.e., 
the second line with the 'on . . .  do '  syntax. This example shows a standard 
sequence of two steps, but more elaborate control flow can be built. As an aside, 
we mention that these definitions can be carried out in a graphic interface, which 
makes it less cumbersome. 

The procedure itself also has entry and exit interaction points, and these 
are declared between square brackets on the header line. They signal start and 
end of the procedure, and are used to declare interaction with the procedure's 
step interaction points. In addition, the procedure header also the defines the 
different user roles of users in the scenario. 

In some transactional workflow techniques, step-like structures serve also to 
define transactional boundaries. This is not the case in CoCoA, where steps only 
help to organise the work in smaller units of activity. 

3.2 Ins ide  Steps  

A step definition defines which data operations, data exchange operations, and 
communications can be enabled for the users of the scenario inside the step. This 
is free-form usage: enabled operations can be invoked any number of times, and in 
any given order. The enabling takes place only when the required communication 
takes place, as defined in the step. There exists no explicit disabling in the 
language: when a step terminates all permissions issued from it are automatically 
withdrawn. Only by invoking (enabled) communications, can one or more other 
steps be activated or deactivated. 

Data operations and data exchange operations are enabled inside a step for 
a specific user role, using the following construct: 

on  ( i n tpo in t )  enable  (use r ro le )  : ( ope ra t±on l i s t )  e n d o n  

This indicates that whenever the interaction at i n t p o i n t  occurs, the user in the 
role of u s e r r o l e  is allowed to perform the listed operations, (at least) up to the 
point where the step terminates. Figure 3 shows examples in the context of the 
p r e p a r a t i o n  step. In these examples, a literal argument value for an operation 
indicates that the user is allowed to invoke an operation only with that value. 
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p r o c e d u r e  ( ref  : r e f e r ee ,  ed : ed i to r ,  
authors : ~ author)[ in  s t a r t  out  cancel ,  done] 

begin  workspace  document : cda 

s tep  preparation[in start out done] . . .  

s t ep  writing[in start out  done] 
b e g i n  

paral le l (ch : chapter) 
s tep  t a sk[ in  s t a r t  (• author) 

e n d p a r  
out  compl] . . .  

on start enable 
when ed issues startTask(c, tas) ill 

(tas subset authors) do task(c).start(tas), 
when ed issues readyWritingO do done 

endon  
end 

s tep review[in s t a r t  out accept ,  r e j e c t ,  rev ise]  . . .  

on start do preparation.start 
on preparation.done do writing.start 
on writing.done do review.start 
on review.accept do done 
on review .revise do writing, start 
on review.reject do cancel 

end 

Fig. 2. Procedural specification of a scenario. Ellipses indicate omitted text. 

The enabling of communications (also illustrated in the figure) requires slightly 
more involved syntax: 

when <userrole} issues (communication) do (intpoint) 

This construct enables the user in the given user role to submit the indicated 

communication. The do-part identifies which interaction will occur. 

The enabling of communications can sometimes be conditional. In such cases, 
a s ta tement  of the form iff ( c o n d i t i o n )  is added to the communicat ion enabling 
statement.  Figure 2 has an example that  indicates that  a writing task should only 
be star ted if the involved authors are known to the overall procedure. 

3.3 D y n a m i c  S t e p  A c t i v a t i o n  

A special form of step definition is dynamic step activation, of which the task 
step inside the w r i t i n g  step of Figure 2 is an example. I t  defines an a priori 
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step preparation[in start  out  done] 
begin 

on start  enable 
ed : addChapter("title"), editChapter("title', 

addChapter("intro"), editChapter("intro", 
export Chapter("title") to document, 
export Chapter("intro") to document 

when ed issues introWritten() do done 
endon 
end 

_),  
-) ,  

Fig. 3. The enabling of operations and communications inside a step 

unlimited number of similar tasks, which can be active in parallel. To identify 
them, they should be parameterised with appropriate parameters,  either users 
or data  sources, for instance. In the case of our example, the chapter serves 
as the identification. In this example, the editor can only issue a s t a r t T a s k  
communication if the prospective set of authors t a s  is a subset of the set of 
known a u t h o r s .  The set t a s  is transferred to the t a s k  step via an additional 
parameter  associated with the interaction point s t a r t .  

3.4  I n f o r m a l  I n t e r a c t i o n  Po in t  S e m a n t i c s  

Interaction points identify the interaction possibilities between steps, and be- 
tween a step and its substeps. If an interaction takes place, the involved steps 
coincide at the interaction point. We assume synchronous communication, and 
thus abstract  away from the asynchronous communication characteristics of a 
possible implementation. An interaction at an entry point brings a step to life; 
an interaction at an exit point terminates a step. Interactions cannot be ignored, 
i.e., they are mandatory. A step can be defined to have several entry and exit in- 
teraction points. In addition, there can be interrupt interaction points, at which 
interrupts will be received and handled by the step only if it is active. These 
interrupts can be subject to synchronisation with interactions at points internal 
to the step. An active step can also submit interactions, known as signals (at 
signal interaction points), but the step will remain active after doing so. There is 
a natural  relationship between all these types of interaction and the primitives of 
a process specification language like LOTOS [5], and we refer to [7] for a detailed 
discussion. 

4 Transac t ion  Consis tency Rules of a Coopera t ive  
Act iv i ty  

Whenever two users want to exchange information, they will perceive it  as data- 
based exchange: the receiving user obtains a new version of the enti ty of inter- 
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est. The preservation of data consistency in a workspace, however, should not 
be data-based, but rather operation-based, as this has a far bigger potential 
for conflict-resolution. To this end, each workspace maintains a history of in- 
voked operations. When an entity is selected for data export, the system will 
determine the relevant (not necessarily contiguous) operation subsequence of the 
workspace's history, and export this subsequence. Then, an attempt is made to 
merge this subsequence with the history of the receiving workspace. 

The definition of workspace consistency is based on these ideas, and takes 
shape through two types of rules: execution order rules and history merge rules. 
The first type restricts the allowed sequences of operations in a workspace; the 
second type defines what constitutes the relevant operation subsequence, and 
allows to identify potential conflict situations. 

4.1 Execu t ion  Order  Rules 

The execution order rules restrict the order of invoked data operations in the 
workspace history. A history contains both data operations executed by its 
owner, and imported data operations from other workspaces. The ordering con- 
straints are expressed through extended regular expressions, the elements of 
which are data operation patterns. These patterns may include values and vari- 
ables for the operation parameters. A history is order correct with respect to an 
execution order rule, if and only if it is a prefix of one of the filtered histories 
described by the rule's regular expression. A filtered history is obtained from the 
real history by removing all data operation invocations that do not match any 
pattern in the rule. This includes proper treatment of parameter instantiations. 
A history is order correct if it is order correct for all execution order rules. 

The following execution order rule is defined for the given editing example: 

data operat ion  o r d e r  

chapter_rule : 

forall c : chapter 
order addChapter(c) "edited"; 

(editChapter(c,_) "edited" ) spellCheck(c))*; 

remChapt er (c) 

The rule states that a chapter can only be edited, spell-checked, or removed after 
it has been added to the document, and that a chapter cannot be edited or spell- 
checked after it is removed. This rule does not restrict how often a chapter can be 
edited or spell-checked. The string "ed i ted"  following the addChapter(c) and 
ed i tChapter  (c, _) operation patterns indicates that the chapter is in the edited 
state, directly after these data operations are carried out. Section 5 explains 
how these state tags are used to integrate the transactional aspects and the 
organisational aspects of a CoCo~ scenario. 

The following order rule places restrictions on the occurrence of operations 
on annotations: 

annotation_rule : 

forall  c : c h a p t e r ,  a n  : annotation 
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order addChapter(c); 
(addAnnotation(c,an) "added"; remAnnotation(c,an))*; 
remChapter(c) 

The rule states that annotations can only be made to a chapter after it has been 
added to the document, and that all annotations have to be removed before a 
chapter is removed. 

In [9], regular expressions are used to specify the external behaviour of objects 
in an object database. This approach can be compared to the execution order 
rules of CoCoA when the database itself is considered as a single, complex object. 
Nodine [17] describes transaction groups as a formal notation for the specification 
of cooperative transactions. An LR(0) grammar is used to describe a transaction 
group's correctness criteria in terms of valid histories. Neither of these approaches 
deals with organisational aspects or history merging. Furthermore, they do not 
consider constraints that depend on the state tags of the execution order rules. 

4.2 History Merge Rules 

Consistent operation history merging is implemented via the merging algorithm 
of the CoAcT transaction model, which needs information about the commu- 
tativity of data operations. The first requirement for performing a consistent 
merge is that the relevant operation subsequence is correctly determined. In our 
example, we cannot select an edi tChapter  operation without its corresponding 
addChapter operation. The notion of backward commutativity, as defined in [25], 
is used to determine which operations depend on each other, but it is the speci- 
fier who has to indicate which pairs of operations backward commute. Given an 
initial set of operations selected by the user who invokes a data exchange op- 
eration, the first part of the merge algorithm calculates the minimal transitive 
closure of this set with respect to the defined backward commutativity conflicts. 

The second part of the merging algorithm determines how the extended set of 
selected operations can be merged with receiving history such that a consistent 
result is produced. The notion of forward commutativity, also defined in [25], is 
used to detect conflicts between operations of the relevant operation subsequence 
and operations in the receiving history. If no conflicts are present, the two his- 
tories can be merged. In case there are conflicts, the user is given the option to 
either choose a smaller set of operations to be merged, or to undo operations 
present in the receiving history. For details about the history merging algorithm 
of COACT, we refer to [24]. 

In CoCoA, commutativity relations are specified by enumerating pairs of con- 
flicting operation patterns. For each pair, a predicate expression over the param- 
eters of the operations identifies when a forward and/or backward commutativity 
conflict exists. When the conditions for forward and backward commutativity 
are the same, which is often the case, syntax allows to provide the predicative 
only once. Below, an example for the edi tChapter  and spellCheck operations 
is given. Because these operations do not, in general, commute (neither forward 
nor backward), we specify their non-commutativity using history merge rules, 
as follows: 
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history rules 
forall c : chapter 
non-commutative editChapter (c,_) and editChapter (c,_), 
non-commutative editChapter(c,_) and spellCheck(c), 
non-commutatlve spellCheck(c) and spellCheck(c) 

In the CDA example, we have assumed that  there are no commutat ivi ty  con- 
flicts between the data operations that  edit the text of a chapter and the da ta  
operations that  add or remove its annotations. However, to capture the applica- 
tion semantics that  an edit operation incorporates prior annotations that  were 
removed since the last edit, a backwards commutat ivi ty rule can be specified 
to enforce that  r enu inno ta t ion  operations should always be exchanged with a 
subsequent e d i t C h a p t e r  operation. This application semantics requirement can 
be specified using the following history rule: 

forall c : chapter 
non-commutative remAnnotati0n(c,_) and editChapter(c,_) 
backward true forward false 

Because the backward commutativity relationship of C o A c T  is symmetric,  the 
above conflict also implies that remAnnotat  ion  operations depend on previously 
issued e d i t C h a p t e r  operations. This unwanted side effect could be avoided, if 
the C o A c T  transaction model supported an asymmetric relationship, such as 
the right backwards commutativity relationship introduced in [26]. 

R e l a t i o n s h i p  w i t h  t h e  E x e c u t i o n  O r d e r  R u l e s  Both the execution order 
rules and the history merge rules are based on the semantics of the operations. 
For this reason, it is not surprising that  they enforce overlapping constraints. 
The execution order rule chap t e r_ ru l e ,  for example, specifies that  the operation 
addChapter  can only occur once in each history for each chapter. This allows 
the situation where two users issue this operation independently for the same 
chapter. Any at tempt  to merge these two operations into a single history will 
fail because of c h a p t e r _ r u l e .  Such a merge also fails if the following forward 
commutat ivi ty conflict is specified: 

fo ra l l  c : chap te r  
n o n - c o m m u t a t i v e  addChapter(~) and addChapter(c) 
backward false forward true 

The reverse, however, is not true. Specifying the above conflict does not state 
tha t  a single user can execute the operation addChapter  more than once for the 
same chapter. In case an execution order rule enforces that  an operation pat tern  
can only occur once in a history, then this, in a certain sense, implies a forward 
commutat ivi ty conflict. 

In our example, the c h a p t e r _ r u l e  enforces tha t  the a d d C h a p t e r  operat ion 
for a certain chapter always occurs before any of the other operations on tha t  
chapter. This means a user cannot import  an e d i t C h a p t e r  operation without im- 
porting also the related addChapter  operation. To ensure that  the addChapte r  
operation is included, a backward commutat ivi ty conflict has to be specified. 
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Again, we could conclude that an execution order rule implies a certain commu- 
tativity conflict. 

Unfortunately, not all commutativity conflicts are 'implied' by execution or- 
der rules. The conflicts between the edi tChapter  and spellCheck operations, 
for example, are not implied by any of the given execution order rules. Because 
it lies in the intention that these operations can be executed in any order, it is 
not possible to add execution order rules that would imply the existing conflicts. 

It is also clear that not all order constraints as specified by the execution 
order rules could be enforced by the commutativity rules. A merging algorithm 
based on execution order rules seems to be an interesting research direction. 

5 I n t e g r a t i n g  O r g a n i s a t i o n  a n d  T r a n s a c t i o n  C o n s i s t e n c y  

In the previous sections, we explained how organisational and transactional 
aspects of a cooperative activity are specified in isolation. Both the opera- 
tion/communication enabling statements and ordering constraints are descrip- 
tive, not prescriptive: they express what may happen, not what must happen. 
Termination constraints are used for the latter purpose. They can be added to 
the communication enabling statements in the form of a predicate. Such a pred- 
icate is allowed to query rule states, i.e. check the current state value of a rule. 
If the enabling concerns an exit point, we have defined a condition that must 
be satisfied before the step can finish. This approach allows the formulation of 
break-point and termination conditions. 

To express the condition that the editor can only terminate the writing step 
when all the chapters in the shared workspace are spell-checked, the following 
condition is added: 

s t e p  w r i t e [ i n  s t a r t ,  r e v i s e  o u t  done]  
b e g i n  . . . .  

o n  s t a r t  e n a b l e  . . . . .  
w h e n  ed i s s u e s  r e a d y W r i t i n g ( )  
i f f  f o r a l l  ch : c h a p t e r  

I ( q u e r y  document o n  c h a p t e r _ r u l e ( c h )  <> " e d i t e d " )  
d o  done  

e n d o n  
s t e p  

Here, the predicate checks the status of the execution order rule with respect 
to all chapters. If the condition is not met, the readyWriting communication is 
n o t  enabled, and the step cannot exit. The parameter list attached to the rule 
name serves to uniquely identify the rule instantiation, and for c h a p t e r _ r u l e  

we need one such parameter. In case the current state of the execution order 
rule is not tagged with a string, the query expression returns an empty string 
value. 

If we would like to state that a task for writing can be completed only if all 
the annotations are removed from the chapter (and hopefully processed as well), 
this can be done by adding the following condition to the transition: 
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w h e n  a i s sues  completeTask(ch) 
i f f f o r a l l  an : annotat ion  

t ( q u e r y  document on  annota t ion_ru le (oh ,  
do compl 

an) <> "added") 

6 P r o p e r t i e s  o f  S c e n a r i o s  

A major reason to use a formal specification technique is to find design flaws 
at an early stage of the application development process. This section discusses 
checking run-time properties at design time. The run-time properties can be 
divided into generic properties, such as termination, and user-defined ones, like 
post-state requirements. An example is the question of whether all chapters 
will be spell-checked at the end of the scenario. To a certain degree the generic 
properties can be checked by means of static analysis of the scenario specification, 
by analysing how steps are activated through transitions, ignoring the conditions 
on the execution order rules, which may be set on the various communication 
operations. 

A more accurate analysis can be performed by generating the state space of 
the organisation of the scenario. In practical examples, generating a complete 
state space may be both impossible and undesirable. There axe, however, some- 
times possibilities for finitely representing an infinite state space. Other, more 
pragmatic approaches may yield still interesting analysis results by limiting the 
maximum number of step instantiations and data items to a fixed number. If 
those limits are set appropriately, one may hope to generalise the results to 
arbitrary numbers. 

To perform such analyses, we have to provide the formal semantics of the lan- 
guage first. Section 6.1 below indicates how procedure specifications are mapped 
to a state transition system. This mapping has been automated in one of the 
tools developed by the TRANSCOOP project. 

When organisational characteristics are analysed in isolation, the blocking 
conditions of termination and break points are ignored. It may be useful to 
check if such conditions can be met, using the properties of the execution order 
rules. These rules are (tagged) regular expressions that define a language, i.e. 
a set of sentences, and some of the blocking conditions can be rephrased as 
quantified logical expressions over this set. In a similar way, some of the user- 
defined statements about the result of a scenario can be investigated. We discuss 
this in greater detail in Section 6.2. 

6 .1  F o r m a l i s a t i o n  o f  t h e  O r g a n i s a t i o n a l  A s p e c t s  

The organisation of a scenario can be represented as a state transition system. 
Such a system is defined by a set of state representations, and a s tate  t rans i t ion  
function. In our case, the first represents the status of the scenario instance, and 
the second represents the behaviour of the defined procedure, i.e., how ins tances  
change from one to the other. 

A state of a scenario instance S consists of four parts, U, A, E and T: 
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- U: The assignment of users to user parameters ,  i.e., the set of actual  users 
and their roles. These parameters  are assigned a value when the scenario is 
instantiated,  and this assignment does not change during the execution of 
the scenario instance. 

- A: The  set of steps currently active in the scenario. Each active step is rep- 
resented as a structure a, of which the first component  is a list of step names 
identifying the hierarchical position of the step in the procedure definition, 
and the second component  is a (possibly empty)  list of values for the parallel 
clause parameters  that  enclose the step. 

- E: The set of enabled interaction points tha t  have operation enabling state- 
ments  attached. Each point is represented as a s tructure with four com- 
ponents.  The first two components are the same as for a step. The third 
component  is the name of the interaction point, and the fourth component  
is a list of values for the point parameters .  

- T: The terminations state set. This is a possibly empty  set of names of exit 
points of the scenario. This set is empty  if and only if it represents a running 
scenario instance. 

From any scenario state, its set of enabled operations can be inferred. The  
initial s ta te  of a scenario instance is determined from the scenario's entry points. 
Communicat ions semantically are state transitions, and each communicat ion is 
defined precisely once in the procedure definition. This allows us to construct  
a complete s tate  transit ion function from the communications. An entry signal 
is interpreted as an insertion of the step into the set A of active steps. An exit 
signal f rom a step is interpreted as removal of the step from the set A of active 
steps. At the same time, any steps that  were activated from that  now deactivated 
step are automatical ly  also deactivated, i.e., they are removed from A. In ter rupt  
signals do not affect the set A, and therefore steps that  are not active cannot  
become active because of them. Bellow we give a pseudo-code algorithm which, 
for a given s tate  S and signal s, calculates the effects on the A and E components  
of s tate  S: 

P := points_of_communication(s) ; 

while not_empty(P) 
{ 

for all p in interrupt_points_in(P) 
{ if step_of(p) in A 

{ E - - - E u p ;  }} 
for a l l  p in  ent ry_poin ts_ in(P)  
{ A := A U s tep_of(p) ;  

E := E U p ;  } 
for all p in exit_points_in(P) 
{ A := A - step_and_sub_steps_of(p); 

E := E - points_of(step_and_sub_steps_of(p)); } 
P := points_reached_by_transitions_from(P) ; 

) 

Once the state transit ion model is established, it can be used to perform a s tate  
space analysis, to find out if the scenario terminates,  and whether there are no 
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blocking states. It is also useful for checking whether the specified behaviour 
matches the behaviour the specifier had in mind. As the mapping does not take 
into account the state of the workspaces, it does not match with the run-time 
behaviour. The next section describes how reasoning about the execution order 
rules can give a more accurate analysis of run-time behaviour. 

6.2 Including Transactional Aspects  

The mapping described in the previous section does not take into account trans- 
actional aspects. This means that scenario instances may not terminate when the 
above analysis would conclude that they likely do. Also, questions like whether 
the last version of the chapters are always spell-checked, cannot be answered. 

To make such additional claims, we can analyse the conditions under which 
the communications occur, and compare these with the execution order rules. 
In our example, the communication readyWrit ing inside the wr i t i ng  step has 
a condition attached to it, which queries the chapter_rule.  An analysis of this 
rule reveals that this condition is violated by the addChapter and ed i tChapter  
operation, and made valid again by the spellCheck and remChapter operations. 
By querying which operations are enabled at the various paths reaching the state 
in which the readyWrit ing communication is enabled, we can verify that the 
condition can be met. 

Likewise, if we would want to verify if indeed all chapters are spell-checked 
when the scenario terminates successfully, we have to check if this condition is 
valid when the scenario terminates at the done exit. Analysis shows this condi- 
tion is enforced when the wr i t ing  step is deactivated through the readyWri t ing 
communication, and that step review is activated next, which can lead to a 
successful termination of the scenario. We know that in the reviewer is only al- 
lowed to make annotations in the review step, which means that the operations 
addChapter and edi tChapter  are not enabled. From this, we may conclude that 
all the chapters will be spell-checked when the scenario terminates at the done 
exit. 

7 R e l a t e d  W o r k  

Several extended transaction models have been designed to deal with the re- 
laxed correctness requirements found in cooperative systems. See, for example, 
the open nested transaction model [29, 10], transaction groups [17], and the 
ConTract model [19, 21]. Although these transaction models support long-lived, 
multi-participant transactions, they are limited in their support for the organi- 
sational aspects of cooperation. In contrast, workflow applications typically offer 
plenty of support for the organisation of activities. During the past decade, sev- 
eral workflow systems have been extended with transactional abilities. See, for 
example, the TriGS system [12], and the Exotica system [1]. However, the exten- 
sion of workflow systems with transactional properties is not sufficient to model 
cooperation: the tight coupling of the control-flow and transactional behaviour 
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in these systems limits the types of behaviour that can be modelled. In addition 
to workflow, there are other domains for which cooperative applications have 
been developed, such as software engineering and cooperative document author- 
ing [11, 18]. Although these applications have good support for various forms of 
cooperation, they typically do not offer transaction support. 

The transactional features of CoCoA are based on the CoAcT transaction 
model [20]. The COAcT model assumes that each scenario instance is an ACID 
transaction. All data operations are considered to be ACID subtransactions 
within a scenario execution. In the CoAcT model, there are no 'transactional' 
conflicts between operations executed in different workspaces; conflicts can only 
arise during an attempt to merge operations from different workspaces [24]. For 
this reason, the CoAcT model does not describe a transactional workflow, as 
defined in [27]. The transaction model by which the data operations are executed 
in CoAcT is the open nested transaction model [28], which is a semantic trans- 
action model [27]. The semantics of the CoAcT model has played an important 
role in the design of CoCoA. 

The history merging mechanism provided by the CoAcT transaction model 
has allowed us to take advantage of high-level system primitives in the definition 
and implementation of the CoCoA language. In related work, the ASSET transac- 
tion framework [4] has identified a number of system-level primitives to support 
the definition of application-specific transaction models. It is shown how to use 
the primitives to model the relaxed correctness requirements found in cooper- 
ating transactions and workflows. It is assumed that the primitives are used in 
the code generated by a compiler; the issue of mapping a high-level specification 
language to these primitives is not addressed. In contrast, in the TRANSCOOP 
Project, we have concentrated on the development of high-level language fea- 
tures to describe cooperation in the context of a specific cooperative transaction 
model. 

The ASSET primitives have recently been used in [15] to synthesise delega- 
tion and the resulting history rewriting found in advanced transaction models. 
Our work also involves delegation, but we take a more fine-grained view with 
respect to the operations that are delegated. Delegations (exchanges) in the 
TRANSCOOP model are made by users (specified in terms of user roles) rather 
than by transactions as they are in ASSET. User-directed delegation provides 
more flexibility for the support of cooperative activities: multiple users can par- 
ticipate in a transaction, and a transaction boundary is not tied to a particular 
user. Another difference between our work and the ASSET approach is that del- 
egation in the TRANSCOOP model is semantics-based, whereas in [15] delegation 
is described in terms of a generic update operation on database objects. 

During the first year of the TRANSCOOP Project, we investigated the use of 
the process algebraic specification language LOTOS [5] to specify cooperative 
activities [6]. A drawback of this approach was the fact that distinct scenario con- 
cepts were all described by events. This lack of a linguistic distinction between 
different concepts proved difficult for the typical scenario specifier to understand 
and use. It was for this reason that we opted to design the more conceptual lan- 
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guage COCOA. Other formal techniques have been used to specify the semantics 
of workflows: Aalst [23] shows how Petri-nets can be used to verify properties of 
workflows, whereas [16] is an example of a communication constraint formalism 
based on Propositional Temporal Logic [14]. With these formalisms, we see the 
potential for the same drawbacks that we experienced with LOTOS. It is also 
the case that some semantics issues are abstracted away in these approaches. 
For example, [23] abstracts away from the computations done by the tasks in a 
workflow. 

The MENTOR Project [31, 30] looks at the specification and execution of 
distributed workflows. The formalism is based on state and activity charts, which 
share similarities with the step definition facilities of CoCOA. A notable difference 
is that an activity in MENTOR is 'an arbitrary piece of C code' [31]. The main 
contribution of [30] is a method for the behaviour-preserving transformation of a 
centralised workflow specification into a distributed workflow specification. The 
MENTOR transformation assumes that the centralised state and activity chart 
is defined in such a way that orthogonal business units can be identified by 
the partitioning. The main distinction between the MENTOR approach and the 
model underlying the CoCoA language is that CoCoA addresses cooperation inside 
what would be a single business unit in the MENTOR approach. In contrast to 
our work, the formal model described in [30] does not address the kinds of 
complex values found in object-oriemed databases. In a distributed MENTOR 
workflow, variable updates done in different activities must be detected and 
collected (apparently as part of the C code) for communication to other activities 
to keep shared data consistent [31]. 

8 C o n c l u s i o n s  

In this paper we describe CoCoA, a specification language for data-intensive co- 
operative applications; the language is based on the CoAcT cooperative transac- 
tion model. Compared to other advanced transaction model work, CoOv4 takes 
an alternative approach in combining organisational aspects and transactional 
aspects of cooperative activities. 

During the design of CoCOA, special attention has been paid in defining the 
semantics of the language through mappings to two well-defined formal lan- 
guages: the process-algebraic language LOTOS, and the database specification 
language TM. Within the ESPRIT TRANSCOOP project, prototype implemen- 
tations of a cooperation manager that implements the organisational aspects of 
Cocoa specifications, and of the COAcT transaction model have been made. 
These were tested with a demonstrator application based on the SEPIA coop- 
erative hypertext authoring system. 

Language features for cooperative decisions could be improved upon. COCOA 
lacks an 'and'-join possibility in the organisational rules of the language. The 
reason for this lies in the fact that different semantics can be assigned to 'and'- 
joins, all of them adding additional state variables. [7] suggests an extension of 
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the language which allows groups of users to execute a communication according 
a specified protocol. 

The usefulness of execution order rules as a specification mechanism needs 
further investigation. The current implementation of the CoAcT transaction 
model does not check execution order rules. Imposing execution order rules as a 
post-condition on the result histories of the current merging algorithm seems to 
be too restrictive an approach. Alternative merging algorithms which do take into 
account the execution order rules during the merge would allow more histories 
to be merged. On the other hand, it is not clear whether the proposed execution 
order rules are powerful enough to specify all possible ordering constraints. 

We have observed that operation-based merging does not always result in 
the most intuitive semantics from the perspective of the end-users. For example, 
when a user wants to import a certain data item, which happens to be an older 
version than the one the user has, the merging algorithm is such that nothing is 
changed in the user's workspace, because there is nothing new to be imported. 
This is logically correct, but confusing to the users who are not always able to 
keep track of object versions. Going back to an older version can only be achieved 
by undoing operations. 

A language to support the specification of cooperative systems must provide 
many diverse features. Within the TRANSCOOP project, we designed CoCoA in 
such a way that it could be used to specify information needed by the CoAcT 
cooperative transaction model, as well as information helpful in structuring the 
activities of a cooperative scenario. The combination of features in CoCoA has 
been interesting to study. The experience we have gained in using the language 
to describe a real system has revealed that some features are easier to use than 
others (as described above). The ability to specify different aspects of a coopera- 
tive system in an orthogonal manner is pleasing to us. However, the interactions 
of these orthogonal components requires more study. This also holds for the 
interaction of the merge algorithm and the execution rules of the  transaction 
model. 
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