
Integrating Organisational and Transactional
Aspects of Cooperative Activities*

Frans J. Faase t, Susan J. Even 1, Rolf A. de By 2, Peter M. G. Apers 1

1 University of Twente, Enschede, The Netherlands
E-mail: (faase , seven, apers}@cs .utwente. nl

2 International Institute for Aerospace Survey & Earth Sciences ITC,
Enschede, The Netherlands

E-mail: deby@itc .nl

A b s t r a c t . This paper introduces the specification language C b ~ . The
features of CoCoA are designed for the specification of both organisational
and transactional aspects of cooperative activities, based on the CoAcT
cooperative transaction model. The novelty of the language lies in its
ability to deal with a broad spectrum of cooperative applications, ranging
from cooperative document authoring to workflow applications.

1 I n t r o d u c t i o n

CoChA is a specification language for cooperative activities [20]. The novelty of
the language lies in its ability to deal with a broad spectrum of cooperative
applications, ranging from cooperative document authoring to workflow appli-
cations. CoCoA is unique in that it deals with both organisational and transac-
tional aspects of cooperation in a single language, but without coupling them as
is done in transactional workflows [27], which assign transactional properties to
the organisational steps of a workflow. In CocoA, the organisationat aspects of
a cooperative activity are specified by means of a procedure definition mecha-
nism, which is based on a formal state transition model. Transactional aspects
are specified by means of execution order rules. Termination constraints link the
state of the execution order rules to the transitions in the procedure definition.
The language features in Cocoa are used to extend an existing database schema
for cooperative work.

CoChA has a rich set of primitives for specifying the organisational aspects
of a cooperative activity. A procedure definition specifies which operations are
enabled at each stage of an activity by means of steps. The CoCOA concept
of a step is much broader than that found in traditional workflow systems. A
single step can deal with more than one user, and each user can be involved
in more than one step at the same time. A step can allow a user to execute
many different operations, without prescribing a fixed order. Also, CoChA allows

* This research was supported by the ESPRIT BRA project TRANSCOOP (8012).
TRANsCooP was funded by the Commission of the European Communities. The
partners in the TRANSCOOP project were GMD (Germany), Universiteit Twente
(The Netherlands), and VTT (Finland).

337

the specification of the dynamic instantiation of a single step with different
parameters. This makes CoCoA suitable for specifying free forms of cooperation,
such as those found in cooperative document authoring, while still being able to
specify the more restricted forms of cooperation found in workflow applications.
Details of the procedure definition mechanism are given in Section 3.

CoCoA specifies dynamic consistency requirements on data operation invoca-
tions. To do this, execution order rules are used to specify the allowed orderings
of invocations by means of an extended form of regular expression with operation
invocation patterns. Each execution order rule applies to a parameterised subset
of the invoked data operations. Details of the execution order rules mechanism
of the language are given in Section 4.1.

The underlying transaction model of CoCoA is the CoAcT transaction model
[20], which is based on the idea of exchanging partial results between the users
involved in a cooperative activity. In addition to a centralised database, each user
has a workspace, in which private copies of the data reside. Users can exchange
partial results with each other, or via the central database. After the completion
of the cooperative activity, which can be considered as a long-lived transaction,
the result of the activity is found in the shared central database. In the CoAcT
model, the operations performed on the data are exchanged, instead of the data
itself. CoAcT uses a merge algorithm [24], which exploits the commutativity
properties of database operations, to allow the users in the cooperative activity to
work in parallel. We refer to [13] for a discussion on the need for operation-based
merging in the CAMERA system. Because operation-based merging permits a
larger number of histories to be merged than state-based merging, more work
can be done in parallel.

Both the specification language CoCoA [7] and the transaction model CoAcT
were designed during the ESPRIT TRANSCOOP project. CoCoA is based on the
object-oriented, functional database specification language TM [2, 3]. The se-
mantics of CoCoA has been defined by mappings to the language LOTOS/TM
[6], which is based on TM and the process-algebraic language LOTOS [5], both
of which have well-defined semantics. A tool set for CoCoA has been implemented
within the TRANSCOOP project; it includes a graphical scenario editor, a simu-
lation environment (based on the TM Abstract Machine [8]), and a compiler to
a run-time environment, which consists of a CoAcT transaction manager and
a cooperation manager running on top of the VODAK object-oriented database
system [10]. This environment is being studied in the context of the SEPIA
cooperative document authoring system [22]. Proving the correctness of commu-
tativity relationships is the subject of further research.

The different aspects of the CoCaA language are illustrated in this paper by
means of a cooperative document authoring (CDA) example, to which workflow
aspects have been added. For the sake of compactness, the details of this example
axe presented as the various aspects of the language are explained. Section 2 gives
an introduction to the CDA example, and shows the general parts of a Co~A
specification by means of the example. Section 3 explains how the procedure of
a scenario is specified in CocoA. The subsequent sections deal with the trans-

338

actional consistency rules. Section 4.1 explains the execution order rules, and
Section 4.2 discusses the commutativity rules that are needed for the CoAcT
transaction model. Section 5 looks at the integration of the organisational and
transactional consistency rules. Section 6 outlines how properties of the organi-
sational aspects can be verified. Our conclusions are given in Section 8.

2 A n E x a m p l e C D A S c e n a r i o

The example cooperative scenario that we use throughout this paper describes
an editor who, with the help of some co-authors, must write a document that is
reviewed by a referee. The document consists of a number of chapters with text,
which can be spell-checked and annotated. The example has been constructed
such that it demonstrates sequencing, parallelism, choice, repeated activation
and dynamic step activation. It also illustrates a break-point condition that
enforces that all annotations are processed, and a termination condition that
guarantees that the final version of the document is spell-checked.

The organisation of the cooperative scenario consists of three steps: a prepa-
rationstep (in which the editor writes a title page and an introduction), a writing
step (in which the editor assigns the writing tasks to groups of authors that per-
form the actual writing), and a review step (in which the referee reviews the
document).

Figure 1 provides the first part of the example scenario specification. Only
the signatures of the data(base) operations are required, as they are defined in
a separate database schema. Chapters can be added, edited, removed and spell-
checked; annotations can be added to or removed from a chapter text. Type
definitions also originate from the database schema, and only their names need
to be mentioned.

CoCoA allows the specification of user roles. The actual users are determined
at execution time (i.e., when the scenario is instantiated). A user role is identified
by means of a user type in CoCoA, and is assigned a workspace type. Workspace
types restrict the data operations that can be recorded in the private workspace
of a user. In our example, only one workspace type is defined, and it allows all
data operations. Three user types are defined: referee, editor, and author.

Users can exhibit other activities besides data operations. Through so-called
communications, a user may initiate a state transition in the scenario. State
transitions influence the set of allowed data operations of other users in the
scenario. (By including a 'system' user, issuing certain communications at regular
intervals, reactive applications can be specified.) In Figure 1 only the names
and parameter types of the communications are provided. They are used in the
procedure definition, as illustrated in the next section.

The underlying CoAcT transaction model uses history merging as the princi-
ple for its operation. Each user workspace maintains a history of data operations
that have been performed since the start of the scenario. A user can import or
export data, and this exchange is achieved by re-executing a relevant sequence
of data operations from one workspace in another workspace. To allow the user

339

scenario write_document
data types chapter, text, annotation

database operations
addChapter(chapter) remChapter(chapter)
editChapter(chapter, text) spellCheck(chapter)
addAnnotation(chapter, annotation) remAnnotation(chapter, annotation)

workspace types
cda = { addChapter, editChapter, remChapter, spellCheck,

addAnnotation, remAnnotation }

user types
referee using cda, editor using cda, author using cda

c o m m u n i c a t i o n s
introWritten(),
startTask(¢hapter, P author), completeTask(chapter),
readyNriting(), documentOkayO, reviseDocument(), abortNriting()

data exchange operations
Annotations (c : chapter)
= select addAnnotation(c,_), remEnnotation(c, _)
Chapte r (c : chap te r)
= se lec t addChap te r (c) , e d i t C h a p t e r (c , _) , remChapter(c)

F ig . 1. Interface specification of scenario

this data exchange, the specifier needs to indicate those data operations from
the history that are relevant to a particular piece of data. The s e l e c t construct
can be used for this. Two data exchange operations are defined in Figure 1. One
allows exchange of annotations, the other allows the exchange of text changes.
Selection clauses use invocation patterns of the data operations, in which the
symbol '_' is used to indicate a don't-care value of a parameter.

When exchanging data, consistency needs to be preserved, which means that
additional, logically dependent data operations should also be selected from the
workspace history. The rules for selecting these operations are described in Sec-
tion 4.2. They are implemented in COAcT's merge algorithm, which takes two
histories and tries to combine them into a consistent one.

3 O r g a n i s a t i o n o f a C o o p e r a t i v e A c t i v i t y

3.1 P rocedure Defini t ion

A CoCoA procedure serves to define the organisation of activities within a sce-
nario. It lists a number of steps and a number of transition rules. The latter de-

340

fine how the former are chained together, and define, so to say, the coarse-grain
control flow of the procedure. Each step definition defines its entry, interrupt,
signal and exit interaction points, at which interaction events with other steps
can take place. This form of interaction is mandatory: the initiators of such an
event forces the receivers to follow. The allowed interactions are defined in the
transition rules. Entry interactions activate the step; exit interactions deactivate
it. There may be several of each of them. Interrupts are received while the step
is active; signals are sent when it is active.

As an illustration, consider the partial specification provided in Figure 2.
It defines a p r e p a r a t i o n step and a wr i t i ng step, amongst others. The first
has an exit (interaction point) done, the second has an entry point s t a r t . The
two interaction points are made to coincide in the second transition rule, i.e.,
the second line with the 'on . . . do ' syntax. This example shows a standard
sequence of two steps, but more elaborate control flow can be built. As an aside,
we mention that these definitions can be carried out in a graphic interface, which
makes it less cumbersome.

The procedure itself also has entry and exit interaction points, and these
are declared between square brackets on the header line. They signal start and
end of the procedure, and are used to declare interaction with the procedure's
step interaction points. In addition, the procedure header also the defines the
different user roles of users in the scenario.

In some transactional workflow techniques, step-like structures serve also to
define transactional boundaries. This is not the case in CoCoA, where steps only
help to organise the work in smaller units of activity.

3.2 Ins ide Steps

A step definition defines which data operations, data exchange operations, and
communications can be enabled for the users of the scenario inside the step. This
is free-form usage: enabled operations can be invoked any number of times, and in
any given order. The enabling takes place only when the required communication
takes place, as defined in the step. There exists no explicit disabling in the
language: when a step terminates all permissions issued from it are automatically
withdrawn. Only by invoking (enabled) communications, can one or more other
steps be activated or deactivated.

Data operations and data exchange operations are enabled inside a step for
a specific user role, using the following construct:

on (i n tpo in t) enable (use r ro le) : (ope ra t±on l i s t) e n d o n

This indicates that whenever the interaction at i n t p o i n t occurs, the user in the
role of u s e r r o l e is allowed to perform the listed operations, (at least) up to the
point where the step terminates. Figure 3 shows examples in the context of the
p r e p a r a t i o n step. In these examples, a literal argument value for an operation
indicates that the user is allowed to invoke an operation only with that value.

341

p r o c e d u r e (ref : r e f e r ee , ed : ed i to r ,
authors : ~ author)[in s t a r t out cancel , done]

begin workspace document : cda

s tep preparation[in start out done] . . .

s t ep writing[in start out done]
b e g i n

paral le l (ch : chapter)
s tep t a sk[in s t a r t (• author)

e n d p a r
out compl] . . .

on start enable
when ed issues startTask(c, tas) ill

(tas subset authors) do task(c).start(tas),
when ed issues readyWritingO do done

endon
end

s tep review[in s t a r t out accept , r e j e c t , rev ise] . . .

on start do preparation.start
on preparation.done do writing.start
on writing.done do review.start
on review.accept do done
on review .revise do writing, start
on review.reject do cancel

end

Fig. 2. Procedural specification of a scenario. Ellipses indicate omitted text.

The enabling of communications (also illustrated in the figure) requires slightly
more involved syntax:

when <userrole} issues (communication) do (intpoint)

This construct enables the user in the given user role to submit the indicated

communication. The do-part identifies which interaction will occur.

The enabling of communications can sometimes be conditional. In such cases,
a s ta tement of the form iff (c o n d i t i o n) is added to the communicat ion enabling
statement. Figure 2 has an example that indicates that a writing task should only
be star ted if the involved authors are known to the overall procedure.

3.3 D y n a m i c S t e p A c t i v a t i o n

A special form of step definition is dynamic step activation, of which the task
step inside the w r i t i n g step of Figure 2 is an example. I t defines an a priori

342

step preparation[in start out done]
begin

on start enable
ed : addChapter("title"), editChapter("title',

addChapter("intro"), editChapter("intro",
export Chapter("title") to document,
export Chapter("intro") to document

when ed issues introWritten() do done
endon
end

_),
-) ,

Fig. 3. The enabling of operations and communications inside a step

unlimited number of similar tasks, which can be active in parallel. To identify
them, they should be parameterised with appropriate parameters, either users
or data sources, for instance. In the case of our example, the chapter serves
as the identification. In this example, the editor can only issue a s t a r t T a s k
communication if the prospective set of authors t a s is a subset of the set of
known a u t h o r s . The set t a s is transferred to the t a s k step via an additional
parameter associated with the interaction point s t a r t .

3.4 I n f o r m a l I n t e r a c t i o n Po in t S e m a n t i c s

Interaction points identify the interaction possibilities between steps, and be-
tween a step and its substeps. If an interaction takes place, the involved steps
coincide at the interaction point. We assume synchronous communication, and
thus abstract away from the asynchronous communication characteristics of a
possible implementation. An interaction at an entry point brings a step to life;
an interaction at an exit point terminates a step. Interactions cannot be ignored,
i.e., they are mandatory. A step can be defined to have several entry and exit in-
teraction points. In addition, there can be interrupt interaction points, at which
interrupts will be received and handled by the step only if it is active. These
interrupts can be subject to synchronisation with interactions at points internal
to the step. An active step can also submit interactions, known as signals (at
signal interaction points), but the step will remain active after doing so. There is
a natural relationship between all these types of interaction and the primitives of
a process specification language like LOTOS [5], and we refer to [7] for a detailed
discussion.

4 Transac t ion Consis tency Rules of a Coopera t ive
Act iv i ty

Whenever two users want to exchange information, they will perceive it as data-
based exchange: the receiving user obtains a new version of the enti ty of inter-

343

est. The preservation of data consistency in a workspace, however, should not
be data-based, but rather operation-based, as this has a far bigger potential
for conflict-resolution. To this end, each workspace maintains a history of in-
voked operations. When an entity is selected for data export, the system will
determine the relevant (not necessarily contiguous) operation subsequence of the
workspace's history, and export this subsequence. Then, an attempt is made to
merge this subsequence with the history of the receiving workspace.

The definition of workspace consistency is based on these ideas, and takes
shape through two types of rules: execution order rules and history merge rules.
The first type restricts the allowed sequences of operations in a workspace; the
second type defines what constitutes the relevant operation subsequence, and
allows to identify potential conflict situations.

4.1 Execu t ion Order Rules

The execution order rules restrict the order of invoked data operations in the
workspace history. A history contains both data operations executed by its
owner, and imported data operations from other workspaces. The ordering con-
straints are expressed through extended regular expressions, the elements of
which are data operation patterns. These patterns may include values and vari-
ables for the operation parameters. A history is order correct with respect to an
execution order rule, if and only if it is a prefix of one of the filtered histories
described by the rule's regular expression. A filtered history is obtained from the
real history by removing all data operation invocations that do not match any
pattern in the rule. This includes proper treatment of parameter instantiations.
A history is order correct if it is order correct for all execution order rules.

The following execution order rule is defined for the given editing example:

data operat ion o r d e r

chapter_rule :

forall c : chapter
order addChapter(c) "edited";

(editChapter(c,_) "edited") spellCheck(c))*;

remChapt er (c)

The rule states that a chapter can only be edited, spell-checked, or removed after
it has been added to the document, and that a chapter cannot be edited or spell-
checked after it is removed. This rule does not restrict how often a chapter can be
edited or spell-checked. The string "ed i ted" following the addChapter(c) and
ed i tChapter (c, _) operation patterns indicates that the chapter is in the edited
state, directly after these data operations are carried out. Section 5 explains
how these state tags are used to integrate the transactional aspects and the
organisational aspects of a CoCo~ scenario.

The following order rule places restrictions on the occurrence of operations
on annotations:

annotation_rule :

forall c : c h a p t e r , a n : annotation

344

order addChapter(c);
(addAnnotation(c,an) "added"; remAnnotation(c,an))*;
remChapter(c)

The rule states that annotations can only be made to a chapter after it has been
added to the document, and that all annotations have to be removed before a
chapter is removed.

In [9], regular expressions are used to specify the external behaviour of objects
in an object database. This approach can be compared to the execution order
rules of CoCoA when the database itself is considered as a single, complex object.
Nodine [17] describes transaction groups as a formal notation for the specification
of cooperative transactions. An LR(0) grammar is used to describe a transaction
group's correctness criteria in terms of valid histories. Neither of these approaches
deals with organisational aspects or history merging. Furthermore, they do not
consider constraints that depend on the state tags of the execution order rules.

4.2 History Merge Rules

Consistent operation history merging is implemented via the merging algorithm
of the CoAcT transaction model, which needs information about the commu-
tativity of data operations. The first requirement for performing a consistent
merge is that the relevant operation subsequence is correctly determined. In our
example, we cannot select an edi tChapter operation without its corresponding
addChapter operation. The notion of backward commutativity, as defined in [25],
is used to determine which operations depend on each other, but it is the speci-
fier who has to indicate which pairs of operations backward commute. Given an
initial set of operations selected by the user who invokes a data exchange op-
eration, the first part of the merge algorithm calculates the minimal transitive
closure of this set with respect to the defined backward commutativity conflicts.

The second part of the merging algorithm determines how the extended set of
selected operations can be merged with receiving history such that a consistent
result is produced. The notion of forward commutativity, also defined in [25], is
used to detect conflicts between operations of the relevant operation subsequence
and operations in the receiving history. If no conflicts are present, the two his-
tories can be merged. In case there are conflicts, the user is given the option to
either choose a smaller set of operations to be merged, or to undo operations
present in the receiving history. For details about the history merging algorithm
of COACT, we refer to [24].

In CoCoA, commutativity relations are specified by enumerating pairs of con-
flicting operation patterns. For each pair, a predicate expression over the param-
eters of the operations identifies when a forward and/or backward commutativity
conflict exists. When the conditions for forward and backward commutativity
are the same, which is often the case, syntax allows to provide the predicative
only once. Below, an example for the edi tChapter and spellCheck operations
is given. Because these operations do not, in general, commute (neither forward
nor backward), we specify their non-commutativity using history merge rules,
as follows:

345

history rules
forall c : chapter
non-commutative editChapter (c,_) and editChapter (c,_),
non-commutative editChapter(c,_) and spellCheck(c),
non-commutatlve spellCheck(c) and spellCheck(c)

In the CDA example, we have assumed that there are no commutat ivi ty con-
flicts between the data operations that edit the text of a chapter and the da ta
operations that add or remove its annotations. However, to capture the applica-
tion semantics that an edit operation incorporates prior annotations that were
removed since the last edit, a backwards commutat ivi ty rule can be specified
to enforce that r enu inno ta t ion operations should always be exchanged with a
subsequent e d i t C h a p t e r operation. This application semantics requirement can
be specified using the following history rule:

forall c : chapter
non-commutative remAnnotati0n(c,_) and editChapter(c,_)
backward true forward false

Because the backward commutativity relationship of C o A c T is symmetric, the
above conflict also implies that remAnnotat ion operations depend on previously
issued e d i t C h a p t e r operations. This unwanted side effect could be avoided, if
the C o A c T transaction model supported an asymmetric relationship, such as
the right backwards commutativity relationship introduced in [26].

R e l a t i o n s h i p w i t h t h e E x e c u t i o n O r d e r R u l e s Both the execution order
rules and the history merge rules are based on the semantics of the operations.
For this reason, it is not surprising that they enforce overlapping constraints.
The execution order rule chap t e r_ ru l e , for example, specifies that the operation
addChapter can only occur once in each history for each chapter. This allows
the situation where two users issue this operation independently for the same
chapter. Any at tempt to merge these two operations into a single history will
fail because of c h a p t e r _ r u l e . Such a merge also fails if the following forward
commutat ivi ty conflict is specified:

fo ra l l c : chap te r
n o n - c o m m u t a t i v e addChapter(~) and addChapter(c)
backward false forward true

The reverse, however, is not true. Specifying the above conflict does not state
tha t a single user can execute the operation addChapter more than once for the
same chapter. In case an execution order rule enforces that an operation pat tern
can only occur once in a history, then this, in a certain sense, implies a forward
commutat ivi ty conflict.

In our example, the c h a p t e r _ r u l e enforces tha t the a d d C h a p t e r operat ion
for a certain chapter always occurs before any of the other operations on tha t
chapter. This means a user cannot import an e d i t C h a p t e r operation without im-
porting also the related addChapter operation. To ensure that the addChapte r
operation is included, a backward commutat ivi ty conflict has to be specified.

346

Again, we could conclude that an execution order rule implies a certain commu-
tativity conflict.

Unfortunately, not all commutativity conflicts are 'implied' by execution or-
der rules. The conflicts between the edi tChapter and spellCheck operations,
for example, are not implied by any of the given execution order rules. Because
it lies in the intention that these operations can be executed in any order, it is
not possible to add execution order rules that would imply the existing conflicts.

It is also clear that not all order constraints as specified by the execution
order rules could be enforced by the commutativity rules. A merging algorithm
based on execution order rules seems to be an interesting research direction.

5 I n t e g r a t i n g O r g a n i s a t i o n a n d T r a n s a c t i o n C o n s i s t e n c y

In the previous sections, we explained how organisational and transactional
aspects of a cooperative activity are specified in isolation. Both the opera-
tion/communication enabling statements and ordering constraints are descrip-
tive, not prescriptive: they express what may happen, not what must happen.
Termination constraints are used for the latter purpose. They can be added to
the communication enabling statements in the form of a predicate. Such a pred-
icate is allowed to query rule states, i.e. check the current state value of a rule.
If the enabling concerns an exit point, we have defined a condition that must
be satisfied before the step can finish. This approach allows the formulation of
break-point and termination conditions.

To express the condition that the editor can only terminate the writing step
when all the chapters in the shared workspace are spell-checked, the following
condition is added:

s t e p w r i t e [i n s t a r t , r e v i s e o u t done]
b e g i n

o n s t a r t e n a b l e
w h e n ed i s s u e s r e a d y W r i t i n g ()
i f f f o r a l l ch : c h a p t e r

I (q u e r y document o n c h a p t e r _ r u l e (c h) <> " e d i t e d ")
d o done

e n d o n
s t e p

Here, the predicate checks the status of the execution order rule with respect
to all chapters. If the condition is not met, the readyWriting communication is
n o t enabled, and the step cannot exit. The parameter list attached to the rule
name serves to uniquely identify the rule instantiation, and for c h a p t e r _ r u l e

we need one such parameter. In case the current state of the execution order
rule is not tagged with a string, the query expression returns an empty string
value.

If we would like to state that a task for writing can be completed only if all
the annotations are removed from the chapter (and hopefully processed as well),
this can be done by adding the following condition to the transition:

347

w h e n a i s sues completeTask(ch)
i f f f o r a l l an : annotat ion

t (q u e r y document on annota t ion_ru le (oh ,
do compl

an) <> "added")

6 P r o p e r t i e s o f S c e n a r i o s

A major reason to use a formal specification technique is to find design flaws
at an early stage of the application development process. This section discusses
checking run-time properties at design time. The run-time properties can be
divided into generic properties, such as termination, and user-defined ones, like
post-state requirements. An example is the question of whether all chapters
will be spell-checked at the end of the scenario. To a certain degree the generic
properties can be checked by means of static analysis of the scenario specification,
by analysing how steps are activated through transitions, ignoring the conditions
on the execution order rules, which may be set on the various communication
operations.

A more accurate analysis can be performed by generating the state space of
the organisation of the scenario. In practical examples, generating a complete
state space may be both impossible and undesirable. There axe, however, some-
times possibilities for finitely representing an infinite state space. Other, more
pragmatic approaches may yield still interesting analysis results by limiting the
maximum number of step instantiations and data items to a fixed number. If
those limits are set appropriately, one may hope to generalise the results to
arbitrary numbers.

To perform such analyses, we have to provide the formal semantics of the lan-
guage first. Section 6.1 below indicates how procedure specifications are mapped
to a state transition system. This mapping has been automated in one of the
tools developed by the TRANSCOOP project.

When organisational characteristics are analysed in isolation, the blocking
conditions of termination and break points are ignored. It may be useful to
check if such conditions can be met, using the properties of the execution order
rules. These rules are (tagged) regular expressions that define a language, i.e.
a set of sentences, and some of the blocking conditions can be rephrased as
quantified logical expressions over this set. In a similar way, some of the user-
defined statements about the result of a scenario can be investigated. We discuss
this in greater detail in Section 6.2.

6 .1 F o r m a l i s a t i o n o f t h e O r g a n i s a t i o n a l A s p e c t s

The organisation of a scenario can be represented as a state transition system.
Such a system is defined by a set of state representations, and a s tate t rans i t ion
function. In our case, the first represents the status of the scenario instance, and
the second represents the behaviour of the defined procedure, i.e., how ins tances
change from one to the other.

A state of a scenario instance S consists of four parts, U, A, E and T:

348

- U: The assignment of users to user parameters , i.e., the set of actual users
and their roles. These parameters are assigned a value when the scenario is
instantiated, and this assignment does not change during the execution of
the scenario instance.

- A: The set of steps currently active in the scenario. Each active step is rep-
resented as a structure a, of which the first component is a list of step names
identifying the hierarchical position of the step in the procedure definition,
and the second component is a (possibly empty) list of values for the parallel
clause parameters that enclose the step.

- E: The set of enabled interaction points tha t have operation enabling state-
ments attached. Each point is represented as a s tructure with four com-
ponents. The first two components are the same as for a step. The third
component is the name of the interaction point, and the fourth component
is a list of values for the point parameters .

- T: The terminations state set. This is a possibly empty set of names of exit
points of the scenario. This set is empty if and only if it represents a running
scenario instance.

From any scenario state, its set of enabled operations can be inferred. The
initial s ta te of a scenario instance is determined from the scenario's entry points.
Communicat ions semantically are state transitions, and each communicat ion is
defined precisely once in the procedure definition. This allows us to construct
a complete s tate transit ion function from the communications. An entry signal
is interpreted as an insertion of the step into the set A of active steps. An exit
signal f rom a step is interpreted as removal of the step from the set A of active
steps. At the same time, any steps that were activated from that now deactivated
step are automatical ly also deactivated, i.e., they are removed from A. In ter rupt
signals do not affect the set A, and therefore steps that are not active cannot
become active because of them. Bellow we give a pseudo-code algorithm which,
for a given s tate S and signal s, calculates the effects on the A and E components
of s tate S:

P := points_of_communication(s) ;

while not_empty(P)
{

for all p in interrupt_points_in(P)
{ if step_of(p) in A

{ E - - - E u p ; }}
for a l l p in ent ry_poin ts_ in(P)
{ A := A U s tep_of(p) ;

E := E U p ; }
for all p in exit_points_in(P)
{ A := A - step_and_sub_steps_of(p);

E := E - points_of(step_and_sub_steps_of(p)); }
P := points_reached_by_transitions_from(P) ;

)

Once the state transit ion model is established, it can be used to perform a s tate
space analysis, to find out if the scenario terminates, and whether there are no

349

blocking states. It is also useful for checking whether the specified behaviour
matches the behaviour the specifier had in mind. As the mapping does not take
into account the state of the workspaces, it does not match with the run-time
behaviour. The next section describes how reasoning about the execution order
rules can give a more accurate analysis of run-time behaviour.

6.2 Including Transactional Aspects

The mapping described in the previous section does not take into account trans-
actional aspects. This means that scenario instances may not terminate when the
above analysis would conclude that they likely do. Also, questions like whether
the last version of the chapters are always spell-checked, cannot be answered.

To make such additional claims, we can analyse the conditions under which
the communications occur, and compare these with the execution order rules.
In our example, the communication readyWrit ing inside the wr i t i ng step has
a condition attached to it, which queries the chapter_rule. An analysis of this
rule reveals that this condition is violated by the addChapter and ed i tChapter
operation, and made valid again by the spellCheck and remChapter operations.
By querying which operations are enabled at the various paths reaching the state
in which the readyWrit ing communication is enabled, we can verify that the
condition can be met.

Likewise, if we would want to verify if indeed all chapters are spell-checked
when the scenario terminates successfully, we have to check if this condition is
valid when the scenario terminates at the done exit. Analysis shows this condi-
tion is enforced when the wr i t ing step is deactivated through the readyWri t ing
communication, and that step review is activated next, which can lead to a
successful termination of the scenario. We know that in the reviewer is only al-
lowed to make annotations in the review step, which means that the operations
addChapter and edi tChapter are not enabled. From this, we may conclude that
all the chapters will be spell-checked when the scenario terminates at the done
exit.

7 R e l a t e d W o r k

Several extended transaction models have been designed to deal with the re-
laxed correctness requirements found in cooperative systems. See, for example,
the open nested transaction model [29, 10], transaction groups [17], and the
ConTract model [19, 21]. Although these transaction models support long-lived,
multi-participant transactions, they are limited in their support for the organi-
sational aspects of cooperation. In contrast, workflow applications typically offer
plenty of support for the organisation of activities. During the past decade, sev-
eral workflow systems have been extended with transactional abilities. See, for
example, the TriGS system [12], and the Exotica system [1]. However, the exten-
sion of workflow systems with transactional properties is not sufficient to model
cooperation: the tight coupling of the control-flow and transactional behaviour

350

in these systems limits the types of behaviour that can be modelled. In addition
to workflow, there are other domains for which cooperative applications have
been developed, such as software engineering and cooperative document author-
ing [11, 18]. Although these applications have good support for various forms of
cooperation, they typically do not offer transaction support.

The transactional features of CoCoA are based on the CoAcT transaction
model [20]. The COAcT model assumes that each scenario instance is an ACID
transaction. All data operations are considered to be ACID subtransactions
within a scenario execution. In the CoAcT model, there are no 'transactional'
conflicts between operations executed in different workspaces; conflicts can only
arise during an attempt to merge operations from different workspaces [24]. For
this reason, the CoAcT model does not describe a transactional workflow, as
defined in [27]. The transaction model by which the data operations are executed
in CoAcT is the open nested transaction model [28], which is a semantic trans-
action model [27]. The semantics of the CoAcT model has played an important
role in the design of CoCoA.

The history merging mechanism provided by the CoAcT transaction model
has allowed us to take advantage of high-level system primitives in the definition
and implementation of the CoCoA language. In related work, the ASSET transac-
tion framework [4] has identified a number of system-level primitives to support
the definition of application-specific transaction models. It is shown how to use
the primitives to model the relaxed correctness requirements found in cooper-
ating transactions and workflows. It is assumed that the primitives are used in
the code generated by a compiler; the issue of mapping a high-level specification
language to these primitives is not addressed. In contrast, in the TRANSCOOP
Project, we have concentrated on the development of high-level language fea-
tures to describe cooperation in the context of a specific cooperative transaction
model.

The ASSET primitives have recently been used in [15] to synthesise delega-
tion and the resulting history rewriting found in advanced transaction models.
Our work also involves delegation, but we take a more fine-grained view with
respect to the operations that are delegated. Delegations (exchanges) in the
TRANSCOOP model are made by users (specified in terms of user roles) rather
than by transactions as they are in ASSET. User-directed delegation provides
more flexibility for the support of cooperative activities: multiple users can par-
ticipate in a transaction, and a transaction boundary is not tied to a particular
user. Another difference between our work and the ASSET approach is that del-
egation in the TRANSCOOP model is semantics-based, whereas in [15] delegation
is described in terms of a generic update operation on database objects.

During the first year of the TRANSCOOP Project, we investigated the use of
the process algebraic specification language LOTOS [5] to specify cooperative
activities [6]. A drawback of this approach was the fact that distinct scenario con-
cepts were all described by events. This lack of a linguistic distinction between
different concepts proved difficult for the typical scenario specifier to understand
and use. It was for this reason that we opted to design the more conceptual lan-

351

guage COCOA. Other formal techniques have been used to specify the semantics
of workflows: Aalst [23] shows how Petri-nets can be used to verify properties of
workflows, whereas [16] is an example of a communication constraint formalism
based on Propositional Temporal Logic [14]. With these formalisms, we see the
potential for the same drawbacks that we experienced with LOTOS. It is also
the case that some semantics issues are abstracted away in these approaches.
For example, [23] abstracts away from the computations done by the tasks in a
workflow.

The MENTOR Project [31, 30] looks at the specification and execution of
distributed workflows. The formalism is based on state and activity charts, which
share similarities with the step definition facilities of CoCOA. A notable difference
is that an activity in MENTOR is 'an arbitrary piece of C code' [31]. The main
contribution of [30] is a method for the behaviour-preserving transformation of a
centralised workflow specification into a distributed workflow specification. The
MENTOR transformation assumes that the centralised state and activity chart
is defined in such a way that orthogonal business units can be identified by
the partitioning. The main distinction between the MENTOR approach and the
model underlying the CoCoA language is that CoCoA addresses cooperation inside
what would be a single business unit in the MENTOR approach. In contrast to
our work, the formal model described in [30] does not address the kinds of
complex values found in object-oriemed databases. In a distributed MENTOR
workflow, variable updates done in different activities must be detected and
collected (apparently as part of the C code) for communication to other activities
to keep shared data consistent [31].

8 C o n c l u s i o n s

In this paper we describe CoCoA, a specification language for data-intensive co-
operative applications; the language is based on the CoAcT cooperative transac-
tion model. Compared to other advanced transaction model work, CoOv4 takes
an alternative approach in combining organisational aspects and transactional
aspects of cooperative activities.

During the design of CoCOA, special attention has been paid in defining the
semantics of the language through mappings to two well-defined formal lan-
guages: the process-algebraic language LOTOS, and the database specification
language TM. Within the ESPRIT TRANSCOOP project, prototype implemen-
tations of a cooperation manager that implements the organisational aspects of
Cocoa specifications, and of the COAcT transaction model have been made.
These were tested with a demonstrator application based on the SEPIA coop-
erative hypertext authoring system.

Language features for cooperative decisions could be improved upon. COCOA
lacks an 'and'-join possibility in the organisational rules of the language. The
reason for this lies in the fact that different semantics can be assigned to 'and'-
joins, all of them adding additional state variables. [7] suggests an extension of

352

the language which allows groups of users to execute a communication according
a specified protocol.

The usefulness of execution order rules as a specification mechanism needs
further investigation. The current implementation of the CoAcT transaction
model does not check execution order rules. Imposing execution order rules as a
post-condition on the result histories of the current merging algorithm seems to
be too restrictive an approach. Alternative merging algorithms which do take into
account the execution order rules during the merge would allow more histories
to be merged. On the other hand, it is not clear whether the proposed execution
order rules are powerful enough to specify all possible ordering constraints.

We have observed that operation-based merging does not always result in
the most intuitive semantics from the perspective of the end-users. For example,
when a user wants to import a certain data item, which happens to be an older
version than the one the user has, the merging algorithm is such that nothing is
changed in the user's workspace, because there is nothing new to be imported.
This is logically correct, but confusing to the users who are not always able to
keep track of object versions. Going back to an older version can only be achieved
by undoing operations.

A language to support the specification of cooperative systems must provide
many diverse features. Within the TRANSCOOP project, we designed CoCoA in
such a way that it could be used to specify information needed by the CoAcT
cooperative transaction model, as well as information helpful in structuring the
activities of a cooperative scenario. The combination of features in CoCoA has
been interesting to study. The experience we have gained in using the language
to describe a real system has revealed that some features are easier to use than
others (as described above). The ability to specify different aspects of a coopera-
tive system in an orthogonal manner is pleasing to us. However, the interactions
of these orthogonal components requires more study. This also holds for the
interaction of the merge algorithm and the execution rules of the transaction
model.

References

1. G. Alonso, D. Agrawal, A. E1-Abbadi, M. Kamath, R. GiinthSr, and C. Mohan.
Advanced transaction models in workflow contexts. In Proceedings of the 12th
International Conference on Data Engineering, pages 574-583, New Orleans,
Louisiana, March 1996. IEEE Computer Society Press.

2. Ren~ Bal, Herman Balsters, Rolf A. de By, Alexander Bosschaart, Jan Flokstra,
Maurice va~ Keulen, Jacek Skowronek, and Bart Termorshuizen. The TM Man-
ual, version 2.0, revision f. Technical Report IMPRESS/UT-TECH-T79-001-R2,
Universiteit Twente, The Netherlands, Enschede, The Netherlands, February 1996.

3. H. Balsters, R. A. de By, and R. Zicari. Typed sets as a basis for object-oriented
database schemas. In Oscar M. Nierstrasz, editor, Proceedings of the ~eventh Eu-
ropean Conference on Object-Oriented Programming, volume 707 of Lecture Notes
in Computer Science, pages 161-184, Kaiserslautern, Germany, 1993. Springer-
Verlag.

353

4. A. Biliris, S. Dar, N. Gehani, H. V. Jagadish, and K. Ramamritham. ASSET: A
System for Supporting Extended Transactions. In Proceedings of the ACM SIG-
MOD Conference on Management of Data, pages 44-54, Minneapolis~ Minnesota,
May 1994.

5. Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO Specification Lan-
guage LOTOS. Computer Networks and tSDN Systems, t4:25-59, 1987.

6. Susan J. Even, Frans J. Faase, and Rolf A. de By. Language features for cooper-
ation in an object-oriented database environment. International Journal of Co-
operative Information Systems, Special Issue on Formal Methods, 5(4):469-500,
December 1996.

7. Frans J. Faase, Susan J. Even, and Rolf A. de By. An Introduction to CoCoA.
Technical Report INF-96-10, University of Twente, Enschede, The Netherlands,
September 1996.

8. Jan Flokstra and Reinier Boon. The TM Abstract Machine (TAM). Internal
working document, University of Twente, Enschede, The Netherlands~ February
1996.

9. Nicoletta De Francesco and Gigliola Vaglini. Concurrent Behavior: A Construct
to Specify the External Behavior of Objects in Object Databases. Distributed and
Parallel Databases, 2(1):33-58, January 1994.

10. GMD-IPSI. VODAK V4.0 User Manual. Arbeitspapiere der GMD 910, Technical
Report, GMD, April 1995.

11. Philip M. Johnson. Experiences with EGRET: An exploratory group work envi-
ronment. Collaborative Computing, 1(1), January 1994.

12. G. Kappel, B. PrSll, S. Rausch-Schott, and W. Retschitzegger. TriGSf~ow--Active
Object-oriented Workflow Management. In Proceedings of the 28th International
Conference on System Sciences, 1995.

13. Ernst Lippe and Norbert van Oosterom. Operation-based merging. In Proceed-
ings of the Fifth Symposium on Software Development Environments, volume 17
of ACM SIGSOFT Software Engineering Notes, pages 78-77, Tyson's Corner, Vir-
ginia, December 1992.

14. Z. Manna and A. Pnueli. Verification of temporal programs: the temporal frame-
work. In R. S. Boyer and J. S. Moore, editors, The Correctness Problem in Com-
puter Science. Academic Press, New York, 1981.

15. C. P. Martin and K. Ramamritham. Delegation: Efficiently Rewriting History.
In Proceedings of the Thirteenth International Conference on Data Engineering,
Birmingham, U.K., April 1997.

16. A. H. H. Ngu, R. Meersman, and H. Weigand. Specification and verification of
communication constraints for interoperable transactions. International Journal
of Cooperative Information Systems, 3(1), 1994.

17. H. M. Nodine, S. Ramaswamy, and S. B. Zdonik. A cooperative transaction model
for design databases. In Ahmed K. Elmagarmid, editor, Database ~n sa c t i o n
Models for Advanced Applications, chapter 3, pages 53-85. Morgan Kaufmann Pub-
lishers, Inc., 1992.

18. Atul Prakash and Hyong Sop Shim. DistView: Support for building efficient collab-
orative applications using replicated objects. In Proceedings of the Fifth Conference
on Computer-Supported Cooperative Work, Chapel Hill, North Carolina, October
1994.

19. Andreas Reuter and Helmut W~ichter. The ConTract Model. IEEE Data Engi-
neering Bulletin, 14(1):39-43, March 1991.

354

20. Marek Rusinkiewicz, Wolfgang Klas, Thomas Tesch, J/irgen W~isch, and Peter
Muth. Towards a Cooperative Transaction Model--The Cooperative Activity
Model. In Proceedings of the 21st VLDB Conference, Zurich, Switzerland, Septem-
ber 1995.

21. F. Schwenkreis. APRICOTS--A Prototype Implementation of a ConTract
System--Management of the Control Flow and the Communication System. In
Proceedings of the 12th Symposium on Reliable Distributed Systems, Princeton,
New Jersey, 1993. IEEE Computer Society Press.

22. N. Streitz, J. Haake, J. Hannemann, W. Schuler A. Lemke, H. Schuett, and
M. Thuering. SEPIA: A Cooperative Hypermedia Authoring Environment. In
Proceedings of the A CM Conference on Hypertext, pages 11-22, Milano, Italy, 1992.

23. W. M. P. van der Aalst. Verification of workflow nets. In P. Azema and G. Balbo,
editors, Application and Theory of Petri Nets, Lecture Notes in Computer Science.
Springer-Verlag, Berlin, 1997.

24. Jiirgen Wfisch and Wolfgang Klas. History merging as a mechanism for concur-
rency control in cooperative environments. In Proceedings of the 6th International
Workshop on Research Issues in Data Engineering: Interoperability on Nontradi-
tional Database Systems (RIDE-NDS'96), pages 76-85, February 1996.

25. W. E. Weihl. Commutativity-based concurrency control for abstract data types.
IEEE Transactions on Computers, 37(12):1488-1505, 1988.

26. William E. Weihl. The impact of recovery on concurrency control. Journal of
Computer and System Sciences, 47:157-184, 1993.

27. Gerhard Weikum. Extending transaction management to capture more consistency
with better performance. In Proceedings of the Yth b'~ench Database Conference,
Toulouse, France, September 1993. Invited Paper.

28. Gerhard Weikum and Hans-JSrg Scheck. Multi-level transactions and open nested
transactions. IEEE Data Engineering Bulletin, 14(1), 1991.

29. Gerhard Weikum and Hans-JSrg Scheck. Concepts and applications of multi-
level transactions and open nested transactions. In Ahmed K. Elmagarmid, ed-
itor, Database Transaction Models for Advanced Applications, chapter 13. Morgan
Kaufmann Publishers, Inc., 1992.

30. Dirk Wodtke and Gerhard Weikum. A formal foundation for distributed workflow
execution based on state charts. In Proceedings of the Sixth International Confer-
ence on Database Theory (ICDT'97), volume 1186 of Lecture Notes in Computer
Science, Delphi, Greece, January 1997. Springer-Verlag.

31. Dirk Wodtke, Jeanine Weissenfels, Gerhard Weikum, and Angelika Kotz Dittrich.
The MENTOR Project: Steps towards Enterprise-Wide Workflow Management. In
Proceedings of the 12th International Conference on Data Engineering, February
1996.

